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Abstract
Although SGD with random reshuffle has been
widely-used in machine learning applications,
there is a limited understanding of how model
characteristics affect the convergence of the al-
gorithm. In this work, we introduce model in-
coherence to characterize the diversity of model
characteristics and study its impact on conver-
gence of SGD with random reshuffle under weak
strong convexity. Specifically, minimizer inco-
herence measures the discrepancy between the
global minimizers of a sample loss and those
of the total loss and affects the convergence er-
ror of SGD with random reshuffle. In particular,
we show that the variable sequence generated by
SGD with random reshuffle converges to a certain
global minimizer of the total loss under full min-
imizer coherence. The other curvature incoher-
ence measures the quality of condition numbers
of the sample losses and determines the conver-
gence rate of SGD. With model incoherence, our
results show that SGD has a faster convergence
rate and smaller convergence error under random
reshuffle than those under random sampling, and
hence provide justifications to the superior practi-
cal performance of SGD with random reshuffle.

1. Introduction
We study the following finite-sum optimization problem that
covers many important machine learning applications.

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

`i(θ), (P)

where θ ∈ Rd corresponds to the model parameters, f :
Rd → R denotes the total loss and each `i corresponds to
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the sample loss of the i-th data sample. Such a problem
formulation covers a variety of machine learning problems
including support vector machine, logistic regression, matrix
completion and neural network training, etc. The common
approach is minimizing the error of a predictive model over
all data samples in a dataset, an i.i.d. assumption on the data
typically decomposes the error into a sum of sample errors.

A standard and widely-applied algorithm that solves the
problem (P) is the stochastic gradient descent (SGD) al-
gorithm, which has been well studied in both convex op-
timization (Bottou et al., 2018; Robbins & Monro, 1951;
Nemirovski et al., 2009; Lan, 2012) and nonconvex opti-
mization (Bottou et al., 2018; Ghadimi et al., 2016; Ghadimi
& Lan, 2016). In these works, the SGD adopts a random
sampling with replacement scheme (referred to as random
sampling) and its analysis is based on a bounded stochas-
tic variance assumption. Although such an SGD frame-
work yields theoretically optimal convergence rate (Rakhlin
et al., 2012), it cannot fully explain the superior practical
performance of SGD in modern machine learning applica-
tions where the models are typically over-parameterized and
SGD usually adopts the incremental sampling with random
reshuffle scheme (referred to as random reshuffle). Hence,
it is desired to develop novel SGD frameworks that provide
better understanding of the superior practical performance
of SGD with random reshuffle.

Toward this goal, some existing works have proposed vari-
ous novel analysis frameworks that lead to improved con-
vergence rates of SGD with random sampling. In specific,
(Tseng, 1998; Solodov, 1998) introduced a strong growth
condition that bounds the maximum sample loss gradient
norm in terms of the total loss gradient norm. Under such
a condition, (Schmidt & Roux, 2013) established a sub-
linear convergence rate and a linear convergence rate for
SGD with random sampling in convex and strongly convex
optimization, respectively. More recently, (Vaswani et al.,
2018) proposed a more relaxed weak growth condition and
established similar convergence rate results for SGD with
random sampling. In another recent work, (Ma et al., 2017)
considered an interpolation setting where the model over-
fits all the data points so that all the sample losses share a
unique global minimizer, and they showed that SGD with
random sampling achieves a linear convergence rate un-
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der strong convexity. On the other hand, another line of
works studied SGD with random reshuffle and established
sublinear convergence rates under strong convexity, e.g.,
(HaoChen & Sra, 2018; Nagaraj et al., 2019; Shamir, 2016).
However, the analysis in these works are based on tradi-
tional assumptions (e.g., Lipshcitzness, boundedness) that
do not emphasize model characteristics, and a sufficiently
small step size (typically O(n−1)) is required to justify the
advantage of random reshuffle over random sampling. In
particular, these technical settings are not practical in mod-
ern machine learning training scenarios where the models
are typically over-parameterized and a constant-level step
size is adopted. Therefore, it is of great importance and
interest to develop a novel theoretical framework for SGD
with random reshuffle that characterizes the impact of model
characteristics on its convergence under a practical constant
step size. In specific, we are interested in studying SGD
with random reshuffle in the following aspects.

• The convergence results of SGD with random reshuffle
studied in the existing works are in-expectation with re-
gard to the randomness of reshuffle under a sufficiently
small step size. Can we prove stronger type of con-
vergence of SGD with random reshuffle under over-
parameterized models and a constant step size?

• It has been observed in many practical scenarios that SGD
with random reshuffle converges faster than SGD with
random sampling under a constant step size. Therefore,
the framework that we develop for analyzing SGD with
random reshuffle is expected to provide theoretical justifi-
cations for this phenomenon.

• The existing theoretical frameworks for analyzing SGD
either assume the loss is strongly convex or assume the
sample losses share a single global minimizer, both of
which rule out many practical machine learning problems
that are nonconvex and have multiple global minimizers.
Therefore, our framework for analyzing SGD with ran-
dom reshuffle must cover nonconvex scenarios and allow
the existence of multiple global minimizers.

1.1. Our Contributions

We analyze the convergence of SGD with random reshuf-
fle under a constant step size by exploiting two notions of
model incoherence. In specific, we introduce a minimizer in-
coherence that measures the discrepancy between the global
minimizer of a sample loss and that of the total loss. In par-
ticular, full minimizer coherence implies that all the sample
losses share a global minimum and hence the model is over-
parameterized. We also introduce a curvature incoherence
that measures the quality of the condition numbers of the
sample losses. Our theoretical results are in two-fold:

• We first consider the case of full minimizer coherence
where all the sample losses share a set of global minimiz-

ers. In such a case, we show that the variable sequence
generated by SGD with random reshuffle converges to a
certain global minimizer under a constant step size, and
therefore the algorithm converges deterministically. Then,
under full minimizer coherence and restricted strong con-
vexity, we show that SGD with random reshuffle achieves
a linear convergence rate, in which the contraction param-
eter is determined by the curvature incoherence of the sam-
ple losses. Moreover, we establish a linear convergence
rate for SGD with random sampling in our framework and
prove that SGD achieves a faster linear convergence rate
under random reshuffle than that under random sampling,
which provides justification to the superior performance of
SGD with random reshuffle in training over-parameterized
models. We further verify these theoretical results via ex-
periments on over-parameterized neural network training.

• Then, we analyze SGD with random reshuffle in the case
of minimizer incoherence where the sample losses do
not share any global minimizer. Under a constant step
size and restricted strong convexity, we show that SGD
with random reshuffle converges to a neighborhood of
the global minimizer set at a linear convergence rate. In
specific, the convergence rate depends on the curvature in-
coherence of the sample losses and the convergence error
is determined by the minimizer incoherence of the sample
losses. We show that the convergence rate of SGD with
random reshuffle is faster than that of SGD with random
sampling, and the convergence error of SGD is smaller
under random reshuffle than that under random sampling.
We verify our theoretical results via experiments on non-
convex phase retrieval.

Our analysis shows that the convergence rate and conver-
gence error of SGD with random reshuffle are in the form
of geometric mean, whereas those of SGD with random
sampling are in the form of arithmetic mean. Therefore,
random reshuffle leads to a better convergence statistics for
SGD than random sampling.

1.2. Related Works

SGD with random sampling: Various theoretical frame-
works have been developed for analyzing SGD with random
sampling. In specific, (Schmidt & Roux, 2013) exploited
the strong growth condition to show that SGD with ran-
dom sampling achieves a sublinear convergence rate in the
convex case and achieves a linear convergence rate in the
strongly convex case. (Ma et al., 2017) introduced an in-
terpolation setting, in which they showed that SGD with
random sampling achieves a linear convergence rate in the
strongly convex case. (Vaswani et al., 2018) proposed a
relaxed weak growth condition and established a linear con-
vergence rate for SGD with random sampling under strong
convexity. (Bottou et al., 2018) studied SGD with random
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sampling under a second moment condition. In (Gower
et al., 2019), they introduced an expected smooth condition
and established linear convergence of SGD with random
sampling to a neighborhood of the global minimum.

SGD with random reshuffle: It has been noticed that in-
cremental SGD can achieve a faster convergence rate com-
pared to SGD with random sampling in (Bottou, 2009). The
first theoretical analysis was given in (Gürbüzbalaban et al.,
2015), where incremental SGD is shown to outperform
SGD with random sampling under a diminishing stepsize.
Random reshuffle has been shown to further improve the
convergence rate of traditional SGD from O( 1

k ) to O( 1
k2 )

in the strongly convex case. Then, in more recent works
(HaoChen & Sra, 2018), (Nagaraj et al., 2019), and (Ying
et al., 2018), it was shown that SGD with random reshuffle
outperforms SGD with random sampling after finite epochs
under a sufficiently small constant step size and strong con-
vexity.

2. Introduction to Model Incoherence
In this section, we introduce two notions of model incoher-
ence. Recall the finite-sum optimization problem

min
x∈Rd

f(θ) :=
1

n

n∑
i=1

`i(θ). (P)

We make the following standard assumption on the existence
of solution set of the problem (P).

Assumption 1 (Existence of solution set). Each sample
loss `i, i = 1, ..., n has a solution set Θ∗i ⊂ Rd, on which
its global minimum `∗i > −∞ is attained. The total loss f
has a solution set Θ∗ ⊂ Rd, on which its global minimum
f∗ > −∞ is attained.

In general, the solution sets {Θ∗i }ni=1 of the sample losses
can be different from the solution set Θ∗ of the total loss.

We also make the following standard assumptions on the
sample losses, where we denote projA(x) as the Euclidean
projection of x onto set A.

Assumption 2. The problem (P) satisfies:

1. The sample losses are L-smooth, i.e., ∀i and x, y ∈ Rd,

`i(x) ≤ `i(y) + 〈x− y,∇`i(y)〉+
L

2
‖x− y‖2;

2. Every sample loss `i is µi-weakly strong convex on Θ∗i ∪
Θ∗, i.e.,

`i(ω) ≥ `i(x) + 〈ω − x,∇`i(x)〉+
µi
2
‖x− ω‖2

holds for all x ∈ Rd, ω ∈ projΘ∗
i
(x),projΘ∗(x).

We note that the weak strong convexity is a weaker condition
than the usual strong convexity and covers a wide range of
non-convex problems including phase retrieval (Zhou et al.,
2016; Zhang et al., 2017), neural networks (Zhong et al.,
2017; Zhou & Liang, 2017), low-rank matrix factorization
(Tu et al., 2016), blind deconvolution (Li et al., 2018), etc.
Also, the weak strong convexity implies the restricted strong
convexity under an additional convexity condition. We refer
to (Karimi et al., 2016) for further discussions.

2.1. Minimizer Incoherence

In this subsection, we introduce minimizer incoherence to
measure the discrepancy between the sample loss solution
sets {Θ∗i }ni=1 and the total loss solution set Θ∗. In Ap-
pendix B, we provide a discussion that outlines the con-
nections between the minimizer incoherence and other loss
conditions that have been studied in the existing literature.

Definition 1 (Minimizer incoherence). The minimizer inco-
herence εi > 0 of every sample loss `i is defined as

εi := sup
θ∈Θ∗

`i(θ)− `∗i , i = 1, ..., n.

To elaborate, the minimizer incoherence corresponds to the
gap between the highest sample loss that is achievable on the
total loss solution set and the global minimum of the sample
loss. Intuitively, it measures the incoherence between the
sample loss solution set Θ∗i and the total loss solution set
Θ∗. In particular, when minimizer incoherence vanishes,
the following inclusion properties of the solution sets hold.

Proposition 1 (Minimizer coherence). The definition of
minimizer incoherence implies that

1. If εi = 0 for some i, then Θ∗ ⊂ Θ∗i ;
2. If εi = 0 for all i, then Θ∗ = ∩ni=1Θ∗i .

In particular, the second item corresponds to the case where
we have full minimizer coherence, i.e., all the sample losses
share the set of global minimizers Θ∗. This is common
in deep learning applications where the models are over-
parameterized to overfit all the data samples (hence have
full minimizer coherence) and have multiple global mini-
mizers. Moreover, our minimizer incoherence generalizes
the interpolation condition proposed in (Ma et al., 2017),
which requires all the sample losses to share a unique global
minimizer under strong convexity.

Figure 1 illustrates the cases of both minimizer incoherence
and full minimizer coherence via quadratic sample losses.
In fact, many nonconvex machine learning problems have
been shown to have either vanishing or small minimizer in-
coherence, and we provide two illustrative examples below.

• Phase retrieval (Zhang et al., 2017): In this problem, we
take linear measurements of an underlying complex signal
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ℓ" ℓ#

𝜃Θ"∗ ≠ Θ∗ ≠ Θ#∗
𝜖 > 0

ℓ" ℓ#

Θ∗ = Θ"∗ = Θ#∗ 𝜃
𝜖 = 0

Figure 1. Left: Illustration of minimizer incoherence. Right: Illus-
tration of full minimizer coherence.

x0 ∈ Cd with multiple Gaussian vectors {ai}ni=1 and
make phaseless observations yi = |aᵀi x0|. The goal is to
recover the complex signal up to a global phase shift by
solving the problem

min
x∈Cd

f(x) :=
1

2n

n∑
i=1

(
yi − |aᵀi x|

)2
.

It is clear that all the sample losses share the set of min-
imizers {x0e

jφ | φ ∈ (0, 2π]} and hence have full mini-
mizer coherence.

• Over-parameterized neural networks: In deep learn-
ing, the neural network model θ is typically over-
parameterized so that the predictor hθ can be trained to
overfit all the training samples, i.e., hθ(xi) ≈ yi for all
i = 1, ..., n. Such overfitting usually achieves a small
total loss as well as small sample losses. To justify this,
we train a Resnet18 network to overfit the MNIST dataset
with the cross-entropy loss. We do not apply any regu-
larization. Figure 2 shows the distribution of the sample
losses after 50 training epochs. One can see that most of
the sample losses are below 3× 10−3, implying that deep
models have very small minimizer incoherence.

Figure 2. Distribution of sample losses after training ResNet18 for
50 epochs on MNIST dataset.

2.2. Curvature Incoherence

In this subsection, we introduce the curvature incoherence.
Recall that the condition number of each sample loss `i is
L
µi

. Then, we define the following curvature incoherence.

Definition 2 (Curvature incoherence). The curvature inco-
herence α of the sample losses is defined as

α :=

n∏
i=1

(
1− µi

L

)
.

In particular, α belongs to the range [0, 1).

As an intuitive understanding, if all the sample losses have a
good condition number (i.e., L

µi
→ 1), then α vanishes and

the curvatures of all sample losses are highly coherent.

3. SGD with Random Reshuffle
In this section, we introduce the SGD with random reshuffle
algorithm and provide some preliminary results on it.

The SGD algorithm starts with an initialization θ0 ∈ Rd and
applies the following update rule iteratively.

(SGD): θk+1 = θk − η∇`ξ(k)(θk), k = 0, 1, ..., (1)

where η > 0 is the step size and ξ(k) corresponds to the
index of data sample drawn from {1, ..., n} randomly in the
k-th iteration. In this work, we focus on the widely-used
incremental sampling with random reshuffle scheme, which
is formally defined as follows and is referred to as random
reshuffle for simplicity throughout the paper, .

(Random reshuffle): In each epoch, we apply a random
permutation to the sample indexes, i.e., {1, 2, ..., n} permute−→
{ξ(0), ξ(1), ..., ξ(n− 1)}. Then, the sample ξ(k) is used in
the k-th iteration of this epoch.

We obtain the following preliminary result for SGD with
random reshuffle.
Lemma 1. Let Assumptions 1 and 2 hold. Apply SGD with
random reshuffle to solve the problem (P) with step size
η ≤ 1

L . Then, the variable sequence {θk}k generated by
the algorithm satisfies: for all k ∈ N and all ω ∈ Θ∗ξ(k),

‖θk+1 − ω‖2 ≤ ‖θk − ω‖2 − η
(
`ξ(k)(θk+1)− `∗ξ(k)

)
.

We note that the proof of Lemma 1 only requires the sample
losses to be restricted convex (i.e., µi can be zero in Assump-
tion 2.3). The above lemma characterizes the per-iteration
progress of SGD with random reshuffle towards any global
minimizer of the sample loss used in the k-th iteration. In
particular, it implies that ‖θk+1−ω‖ ≤ ‖θk−ω‖, i.e., SGD
makes monotonic progress towards the minimizer of the
sample loss used in the k-th iteration.

4. Analysis under Full Minimizer Coherence
In this section, we study the convergence properties of SGD
with random reshuffle under full minimizer coherence, i.e.,
εi = 0 for all i = 1, ..., n (see Definition 1) and hence all
sample losses share a set of global minimizers Θ∗.
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4.1. Convergence of SGD Trajectory

We note that all the results in this subsection only require the
sample losses to be restricted convex. We first characterize
the boundedness of the optimization trajectory of SGD with
random reshuffle.

Lemma 2 (Bounded trajectory). Let Assumptions 1 and 2
hold and assume that the problem (P) has full minimizer
coherence. Apply SGD with random reshuffle with step size
η ≤ 1

L to solve the problem. Then, the SGD trajectory
{θk}k is bounded.

As the trajectory of SGD with random reshuffle {θk}k is
bounded, it has a compact set of limit points and we denote
it as X. Also, note that the iteration index sequence {k}k∈N
can be decomposed into n subsequences {i(T )}T , i =
1, ..., n, each of which tracks the SGD iterations that sample
the i-th data point in the epochs T = 1, 2, .... In particular,
we denote Xi as the set of limit points of {θi(T )}T and it
holds that X =

⋃n
i=1 Xi. Moreover, we obtain the following

properties regarding the limit point sets of the trajectory of
SGD with random reshuffle.

Proposition 2 (Limit points). Under the same conditions
as those of Lemma 2, the trajectory of SGD with random
reshuffle satisfies the following properties.

1. Xi ⊂ Θ∗i for all i = 1, ..., n;
2. Xi = X ⊂ Θ∗ for all i = 1, ..., n.

To elaborate, item 1 shows that each sub-trajectory {θi(T )}T
generated by SGD with random reshuffle is a minimizing se-
quence for the corresponding sample loss `i. Item 2 further
strengthens item 1 by showing that all the sub-trajectories
{i(T )}T , i = 1, ..., n share the same set of limit points,
which is a subset of the global minimizer set of the total loss.
Intuitively, this is due to the fact that all the sample losses
share a set of global minimizers under full minimizer co-
herence, which guarantees the sub-trajectories of SGD with
random reshuffle to have consistent asymptotic properties.

The proof of Proposition 2 consists of two major steps. We
first exploit full minimizer coherence to prove item 1 and the
stationary condition ‖θk+1− θk‖

k→ 0. Then, the stationary
condition further guarantees that all sub-trajectories share
the same set of limit points and hence implies item 2.

Our main result below further strengthens the convergence
properties of the SGD trajectory.

Theorem 1 (Trajectory convergence). Under the same con-
ditions as those of Lemma 2, every trajectory {θk}k gener-
ated by SGD with random reshuffle converges to a certain
global minimizer in Θ∗, i.e., it has a single limit point.

The above result shows that the entire trajectory of SGD with
random reshuffle converges to a certain global minimizer
in the case of full minimizer coherence. This implies that

full minimizer coherence helps suppress the randomness
of the random reshuffle and leads to the point-wise con-
vergence. Such a deterministic convergence result of SGD
with random reshuffle is stronger than other in-expectation
convergence results of SGD with random sampling that
are established under various loss conditions (e.g., strong
growth condition, interpolation) that imply full minimizer
coherence.

4.2. Convergence Rate Analysis

In this subsection, we further study the convergence rate of
SGD with random reshuffle under full minimizer coherence.
For any point θ ∈ Rd, we denote its distance to an arbitrary
set A ⊂ Rd as distA(θ) := infu∈A ‖θ − u‖.

We obtain the following convergence rate result.

Theorem 2 (Random reshuffle). Let Assumptions 1 and 2
hold and assume that the problem (P) has full minimizer
coherence. Apply SGD with random reshuffle with step
size η = 1

L to solve the problem. Then, for all epochs
B = 1, 2, ..., it holds that

dist2
Θ∗(θnB) ≤

n∏
i=1

(
1− µi

L

)B
dist2

Θ∗(θ0). (2)

The above theorem establishes the linear convergence rate of
SGD with random reshuffle under full minimizer coherence
and the constant step size η = 1

L . In particular, the conver-
gence rate depends on the curvature incoherence parameter
α =

∏n
i=1(1− µi

L ) (see Definition 2) that characterizes the
quality of the condition numbers of all the sample losses.
We also note that in the special case that all the sample losses
have the same condition number µ

L , the above convergence
rate of SGD with random reshuffle is of order O(1− µ

L )nB ,
which meets the convergence rate of full gradient descent
under strong convexity.

4.3. Comparison to Other Sampling Schemes

We further analyze the convergence rates of SGD with in-
cremental sampling (i.e., cyclic sampling without random
reshuffle) and random sampling under full minimizer co-
herence and compare them with that of SGD with random
reshuffle.

In fact, under full minimizer coherence, our proof of Theo-
rem 2 only rely on the fact that the random reshuffle scheme
samples every data point once in each epoch, which is also
satisfied by the incremental sampling scheme. Therefore,
the convergence rate result in Theorem 2 also applies to
SGD with incremental sampling and we obtain the follow-
ing corollary.

Corollary 1 (Incremental sampling). Under the same set-
tings as those of Theorem 2 and apply SGD with incremental
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sampling and step size η = 1
L to solve the problem (P). Then,

the convergence rate is also characterized by eq. (2).

On the other hand, we obtain the following result for SGD
with random sampling.

Proposition 3 (Random sampling). Under the same set-
tings as those of Theorem 2 and apply SGD with random
sampling and step size η = 1

L to solve the problem (P).
Then, for all epochs B = 1, 2, ..., it holds that

dist2
Θ∗(θnB) ≤

(
1− µ̄

L

)nB
dist2

Θ∗(θ0), (3)

where µ̄ := 1
n

∑n
i=1 µi.

The above result establishes a linear convergence rate for
SGD with random sampling. Note that the convergence
rate depends on the average of the condition numbers of
the sample losses. This is different from the convergence
rate of SGD with random reshuffle, which depends on the
product of the condition numbers of all the sample losses.
In particular, by the arithmetic mean-geometric mean (AM-
GM) inequality, it holds that

n∏
i=1

(
1− µi

L

)
≤
(

1− µ̄

L

)n
. (4)

Therefore, under full minimizer coherence, SGD achieves
a faster convergence rate under random reshuffle than that
under random sampling. Such a result provides a theoreti-
cal justification for the superior performance of SGD with
random reshuffle in training over-parameterized models.

We note that (HaoChen & Sra, 2018) also obtains a similar
comparison of convergence rate between SGD with random
sampling and SGD with random reshuffle. However, their
analysis requires the loss to be uniformly strongly convex,
whereas our result applies to the broader class of restricted
strongly convex functions. Moreover, we established trajec-
tory convergence of SGD with random reshuffle under the
existence of multiple global minimizers, whereas their result
establishes convergence in expectation under the existence
of a unique global minimizer.

4.4. Empirical Verification

In this subsection, we verify our theoretical results via exper-
iments. We first study the impact of curvature incoherence
α on the convergence of SGD with random reshuffle. In spe-
cific, we train a Resnet 18 network using SGD with random
reshuffle on a mini MNIST dataset that consists of 1000
images of digit “1” and 1000 images of digit “8”. To model
different distributions of curvature incoherence, we divide
the data samples evenly into 50 fixed mini-batches and con-
sider two different settings: 1) each mini-batch contains
50% images of digit “1” and 50% images of digit “8”; and

2) each mini-batch contains either images of digit “1” or
images of digit “8”. In both settings, the average condition
numbers of the sample losses are different. Figure 3 (Left)
shows the training loss curves of SGD with random reshuf-
fle in these two settings starting from the same initialization
point. It can be observed that SGD with random reshuffle
converges faster in the second setting. This implies that the
average condition number of the sample losses in the first
setting is better than that in the second setting.

Next, we further compare the empirical convergence of
SGD under random reshuffle with that under incremental
sampling and random sampling. We train a Resnet18 on
4096 images sampled from CIFAR10 using SGD with the
three sampling schemes. We use learn rate η = 0.03, batch-
size 128 and a fixed initialization model that is trained by
SGD with random reshuffle for one epoch (with learning
rate 0.0025) using a pre-trained ImageNet model. Figure 3
(Right) shows the training loss curves of the three algorithms.
It can be seen that SGD with random reshuffle and incremen-
tal sampling have a comparable convergence speed, both of
which are faster than that of SGD with random sampling.
This observation fully supports our theoretical comparison
in eq. (4).

Figure 3. Left: Comparison of convergence of SGD with random
reshuffle under different curvature incoherence distributions. Right:
Comparison of convergence of SGD under random reshuffle, in-
cremental sampling and random sampling.

5. Analysis under Minimizer Incoherence
In this section, we study the convergence of SGD with
random reshuffle under minimizer incoherence where εi > 0
for some i ∈ {1, ..., n}. In such a case, the minimizer sets
of the sample losses are different from that of the total loss.
For simplicity, we assume the minimizer incoherences of
all the sample losses are bounded by ε := maxi∈{1,...,n} εi.

5.1. Convergence Rate Analysis

We first show the boundedness of the trajectory of SGD
with random reshuffle under minimizer incoherence and a
constant step size.

Lemma 3 (Bounded trajectory). Let Assumptions 1 and 2
hold and assume that the problem (P) has bounded min-
imizer incoherence ε. Apply SGD with random reshuffle
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with step size η = 1
L to solve the problem. Then, the SGD

trajectory {θk}k is bounded.

The above result generalizes the bounded trajectory result in
Lemma 2, which is proved under full minimizer coherence.
Next, we obtain the following result regarding the conver-
gence rate of SGD with random reshuffle under minimizer
incoherence and a constant step size.
Theorem 3 (Random reshuffle). Let Assumptions 1 and 2
hold. Apply SGD with random reshuffle with step size η = 1

L
to solve the problem (P). Then, for all epochs B = 1, 2, ...,

Edist2
Θ∗(θnB) ≤ αB

(
dist2

Θ∗(θ0)− 2εM

L(1−α)

)
+

2εM

L(1−α)
,

where M = Eξ
[∑n−1

k=0

∏n−1
s=k+1

(
1 − µξ(s)

L

)]
and α cor-

responds to the curvature incoherence.

The above result shows that SGD with random reshuffle con-
verges linearly to a neighborhood of the global minimizer
set under minimizer incoherence. Similar to the full min-
imizer coherence case, the convergence rate coefficient is
determined by the curvature incoherence α. Moreover, the
size of the neighborhood is characterized by the minimizer
incoherence ε and the condition numbers of the sample
losses. This explains why over-parametrized models such
as neural networks can be trained to achieve a small loss
by SGD with constant step size: they have very small min-
imizer incoherence, as demonstrated by the experiment in
Figure 2. In general, a higher minimizer incoherence and
worse condition numbers lead to a larger convergence error
of SGD.

5.2. Comparison to Other Sampling Schemes

We also obtain the convergence rates of SGD with incre-
mental sampling and random sampling under minimizer
incoherence and a constant step size.

In specific, for SGD with incremental sampling, we denote
{σ(0), σ(1), ..., σ(n− 1)} as a specific permutation of the
data sample indexes. Such a permutation is fixed through-
out the entire training process under incremental sampling.
We obtain the following result on SGD with incremental
sampling.
Corollary 2 (Incremental sampling). Let Assumptions 1
and 2 hold. Apply SGD with incremental sampling with step
size η = 1

L to solve the problem (P). Then, for all epochs
B = 1, 2, ...,

dist2
Θ∗(θnB) ≤ αB

(
dist2

Θ∗(θ0)− 2εM̃

L(1−α)

)
+

2εM̃

L(1−α)
,

where M̃ =
∑n−1
k=0

∏n−1
s=k+1

(
1− µσ(s)

L

)
and α corresponds

to the curvature incoherence.

To elaborate, the permutation map σ used by the incremen-
tal sampling can be viewed as a particular realization of
the random permutation of the random reshuffle scheme.
In particular, the convergence error term M in Theorem 3
corresponds to the average of the convergence errors over all
possible random permutations of the data indexes, whereas
the convergence error term M̃ in Corollary 2 is determined
by the specific permutation map σ used. Therefore, depend-
ing on the quality of the permutation map, the convergence
error of SGD under incremental sampling can be either
larger or smaller than that of SGD under random reshuffle.

For SGD with random sampling, we obtain the following
convergence rate under minimizer incoherence and a con-
stant step size.

Proposition 4 (Random sampling). Let Assumptions 1 and
2 hold. Apply SGD with random sampling with learning
rate η = 1

L to solve the problem (P). Then, for all k =
nB, n = 1, 2, ...,

Edist2
Θ∗(θnB) ≤

(
1− µ

L

)nB(
dist2

Θ∗(θ0)− 2ε

µ

)
+

2ε

µ
.

where µ̄ := 1
n

∑n
i=1 µi.

Comparing the above result with that in Theorem 3, one
can see that under minimizer incoherence, SGD with ran-
dom reshuffle has a better convergence rate coefficient
α =

∏n
i=1(1 − µi

L ) than that (1 − µ
L )n of SGD with ran-

dom sampling (due to the AM-GM inequality). Moreover,
regarding the convergence error, one can show that the con-
vergence error 2εM

L(1−α) of SGD with random reshuffle is
smaller than that 2ε

µ of SGD with random sampling, and we
outline the proof below.

2εM

L(1− α)
=

2ε
∑n−1
k=0 Eξ

[∏n−1
s=k+1

(
1− µξ(s)

L

)]
L(1− α)

(i)

≤
2ε
∑n−1
k=0

(
1− µ

L

)n−k−1

L(1− α)

=
2εL

µ

1−
(
1− µ

L

)n
L(1− α)

(ii)

≤ 2ε

µ
.

To elaborate, consider the quantity Eξ
[∏n−1

s=k+1

(
1−µξ(s)

L

)]
in M . Note that for each fixed k, the samples {ξ(s)}n−1

s=k+1

are drawn from {1, ..., n} uniformly at random without re-
placement due to the random reshuffle scheme, and hence
the expectation over {ξ(s)}n−1

s=k+1 consists of
(

n
n−k−1

)
num-

ber of different combinations. Therefore, the inequality (i)
follows from the Maclaurin’s inequality. Moreover, the in-
equality (ii) follows from the AM-GM inequality. Such a
comparison result reveals the statistical advantage of random
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reshuffle over random sampling: random reshuffle visits all
data permutations in expectation and leads to a convergence
error in spirit of geometric series (i.e., the

∑∏
term in

M ), whereas random sampling samples each data uniformly
with replacement and leads to a convergence error in spirit
of arithmetic mean (i.e., the µ term).

5.3. Empirical Verification

We verify our theoretical results obtained in this section
via experiments on nonconvex phase retrieval. In specific,
consider an underlying complex signal x0 ∈ Cd with a set
of Gaussian measurement vectors {ai}mi=1. The nonconvex
phase retrieval model is written as yi = |〈ai, x0〉| + n,
where {yi}mi=1 are the phaseless observations and n denotes
a Gaussian random noise. To retrieve the signal based on
the phaseless observations and the Gaussian measurement
vectors, we aim to solve the following nonconvex problem.

min
x∈Cd

1

2n

n∑
i=1

(
yi − |aᵀi x|

)2
.

Due to noise corruption, the sample losses do not share
a minimizer and hence have minimizer incoherence. In
particular, the minimizer incoherence increases as the noise
level increases. Specifically, we generate x0, ai, and yi from
normal distribution with d = 128, n = 512. We repeat each
experiment for 300 times and use learning rate η = 0.1.

Figure 4. Left: Impact of minimizer incoherence on convergence
error of SGD. Right: Convergence curves of SGD with different
sampling schemes under minimizer incoherence.

We first explore how the level of noise (i.e., level of min-
imizer incoherence) in phase retrieval affects the conver-
gence error of SGD with different sampling schemes. Fig-
ure 4 (Left) presents the box plot of convergence errors of
SGD with random sampling and random reshuffle under dif-
ferent levels of Gaussian noise corruptions. For SGD with
incremental sampling, we plot the smallest and largest errors
achieved in the repeated experiments. It can be seen that as
the noise increases (i.e., minimizer incoherence increases),
the convergence errors of these SGDs increase accordingly,
which matches our theoretical characterizations of the con-
vergence error. In particular, it can be observed that SGD
with random reshuffle consistently has smaller convergence
error than SGD with random sampling. Moreover, SGD

with incremental sampling can sometimes outperforms SGD
with random reshuffle when the permutation map happen
to be good. Figure 4 (Right) shows the training loss curves
of these algorithms under noise variance σ2 = 9. Under
minimizer incoherence, it can be seen that SGD with ran-
dom reshuffle and SGD with incremental sampling have a
comparable convergence speed (i.e., a comparable slope of
the training curves), and both of them converge faster than
SGD with random sampling. These empirical results vali-
date our convergence rate results of SGD under minimizer
incoherence obtained in this section.

6. Conclusion
In this paper, we propose a model incoherence framework
to study the impact of model incoherence on convergence
of SGD. When the model has full minimizer coherence, we
prove that SGD with random reshuffle converges to a global
minimum deterministically and achieves a faster conver-
gence rate than that of SGD with random sampling. When
the sample losses have incoherent minimizers, we further
show that SGD with random reshuffle has a smaller con-
vergence error than that of SGD with random sampling.
Our results reveal the statistical difference between the two
random sampling schemes and characterize the impact of
model incoherence on the optimization convergence. In the
future work, we will further explore the generalization abil-
ity of SGD under different sampling schemes and develop a
proper analysis framework for it.
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Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P. Why ran-
dom reshuffling beats stochastic gradient descent. arXiv
preprint arXiv:1510.08560, 2015.

HaoChen, J. Z. and Sra, S. Random shuffling beats sgd after
finite epochs. arXiv preprint arXiv:1806.10077, 2018.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 795–811. Springer, 2016.

Lan, G. An optimal method for stochastic composite opti-
mization. Mathematical Programming, 133(1):365–397,
Jun 2012.

Li, X., Ling, S., Strohmer, T., and Wei, K. Rapid, robust, and
reliable blind deconvolution via nonconvex optimization.
Applied and Computational Harmonic Analysis, 2018.

Ma, S., Bassily, R., and Belkin, M. The power of in-
terpolation: Understanding the effectiveness of sgd in
modern over-parametrized learning. arXiv preprint
arXiv:1712.06559, 2017.

Nagaraj, D., Jain, P., and Netrapalli, P. Sgd without replace-
ment: Sharper rates for general smooth convex functions.
In International Conference on Machine Learning, pp.
4703–4711, 2019.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Ro-
bust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradi-
ent descent optimal for strongly convex stochastic opti-
mization. In Proc. International Coference on Machine
Learning (ICML), pp. 1571–1578, 2012.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, 22(3):
400–407, Sep 1951.

Schmidt, M. and Roux, N. L. Fast convergence of stochastic
gradient descent under a strong growth condition. arXiv
preprint arXiv:1308.6370, 2013.

Shamir, O. Without-replacement sampling for stochastic
gradient methods. In Advances in neural information
processing systems, pp. 46–54, 2016.

Solodov, M. V. Incremental gradient algorithms with step-
sizes bounded away from zero. Computational Optimiza-
tion and Applications, 11(1):23–35, 1998.

Tseng, P. An incremental gradient (-projection) method
with momentum term and adaptive stepsize rule. SIAM
Journal on Optimization, 8(2):506–531, 1998.

Tu, S., Boczar, R., Simchowitz, M., Soltanolkotabi, M.,
and Recht, B. Low-rank solutions of linear matrix equa-
tions via Procrustes flow. In Proc. 33rd International
Conference on Machine Learning (ICML), pp. 964–973,
2016.

Vaswani, S., Bach, F., and Schmidt, M. Fast and faster
convergence of sgd for over-parameterized models and an
accelerated perceptron. arXiv preprint arXiv:1810.07288,
2018.

Ying, B., Yuan, K., Vlaski, S., and Sayed, A. H. Stochastic
learning under random reshuffling with constant step-
sizes. IEEE Transactions on Signal Processing, 67(2):
474–489, 2018.

Zhang, H., Zhou, Y., Liang, Y., and Chi, Y. A nonconvex
approach for phase retrieval: reshaped Wirtinger flow and



Impact of Model Incoherence on Convergence of SGD with Random Reshuffle

incremental algorithms. Journal of Machine Learning
Research (JMLR), 18(141):1–35, 2017.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neural
networks. In Proc. 34th International Conference on
Machine Learning (ICML), volume 70, pp. 4140–4149,
Aug 2017.

Zhou, Y. and Liang, Y. Characterization of gradient dom-
inance and regularity conditions for neural networks.
ArXiv:1710.06910v2, Oct 2017.

Zhou, Y., Zhang, H., and Liang, Y. Geometrical properties
and accelerated gradient solvers of non-convex phase
retrieval. In Proc. 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp.
331–335, 2016.


