
Impact of Model Incoherence on Convergence of SGD with Random Reshuffle

A. Proof of Proposition 1
We first prove the item 1. If εi = 0 for certain i, we have that

sup
θ∈Θ∗

`i(θ) = `∗i .

Since `∗i is the global minimum of `i, we conclude from the above equality that Θ∗ ⊂ Θ∗i .

Next, we prove item 2. If εi = 0 for all i, by item 1 we know that Θ∗ ⊂ Θ∗i for all i, and hence Θ∗ ⊂
⋂n
i=1 Θ∗i . Now

suppose there exists θ ∈
⋂n
i=1 Θ∗i \Θ∗. Then, θ simultaneously minimizes all the sample losses and must be a minimizer of

the total loss, i.e., θ ∈ Θ∗, contradiction.

B. Connection between Minimizer Incoherence and other Loss Conditions
The notion of minimizer incoherence is related to other loss conditions that have been studied in the existing literature. We
outline their connections in this section.

I Bounded variance (Ghadimi & Lan, 2013): In stochastic optimization, it is standard to assume that the variance of the
stochastic gradients is bounded, i.e., for all θ ∈ Rd,

Eξ‖∇`ξ(θ)−∇f(θ)‖2 ≤ σ2. (5)

In particular, when the total loss f has a unique minimizer θ∗ and all sample losses {`i}ni=1 are 1-gradient dominated1, the
stochastic gradient variance at θ∗ satisfies

Eξ‖∇`ξ(θ∗)−∇f(θ∗)‖2 ≥ 1

n

n∑
i=1

(`i(θ
∗)− `∗i ).

in which the right hand side corresponds to the average minimizer incoherence 1
n

∑n
i=1 εi. Therefore, minimizer incoherence

provides an estimate of the stochastic gradient variance at the global minimum, and is weaker than the uniformly-bounded
variance condition in eq. (5).

I Second moment condition (Bottou et al., 2018): This condition generalizes the previous bounded variance condition as:
for some C ≥ 1 and all θ ∈ Rd,

Eξ‖∇`ξ(θ)‖2 ≤ σ2 + C‖∇f(θ)‖2. (6)

In particular, the bounded variance condition corresponds to the second moment condition with C = 1. In the special case
that σ2 = 0 and all the sample losses are convex, the second moment condition implies that ∇`i(θ∗) = 0 for all i and
all θ∗ ∈ Θ∗, i.e., every global minimizer of the total loss also minimizes all the sample losses, which further implies full
minimizer coherence.

I Interpolation (Ma et al., 2017): This condition assumes that the total loss f has a unique minimizer θ∗ such that

`i(θ
∗) = `∗i for all i = 1, ..., n.

It can be viewed a special case of the full minimizer coherence, in which the sample losses can share multiple minimizers.

I Growth condition: In (Tseng, 1998; Schmidt & Roux, 2013), the authors considered a strong growth condition: for
some C ≥ 1 and all θ ∈ Rd,

max
i
‖∇`i(θ)‖ ≤ C‖∇f(θ)‖. (7)

When all the sample losses are convex, the above condition implies full minimizer coherence. A relaxed version of this
condition has been proposed in (Vaswani et al., 2018) as the weak growth condition, which relaxes the maxi in eq. (7) to Ei.

I Expected smoothness (Gower et al., 2019): This condition generalizes the weak growth condition as: for some L > 0
all θ ∈ Rd,

Eξ
[
‖∇`ξ(θ)−∇`ξ(θ∗)‖2

]
≤ L

(
f(θ)− f∗

)
, (8)

1` is called 1-gradient dominated if `(θ)− `∗ ≤ ‖∇`(θ)‖2.
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where θ∗ is the unique minimizer of f . In the case of full minimizer coherence, (Gower et al., 2019) proved that expected
smoothness implies the weak growth condition.

C. Proof of Lemma 1
Consider the k-th iteration with sample ξ(k). By smoothness of `ξ(k), we obtain that

`ξ(k)(θk+1) ≤ `ξ(k)(θk) + 〈θk+1 − θk,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2.

On the other hand, by restricted convexity of `ξ(k), we have: for all ω ∈ Θ∗ξ(k),

`ξ(k)(ω) ≥ `ξ(k)(θk) + 〈ω − θk,∇`ξ(k)(θk)〉.

Combining the above two inequalities yields that

`ξ(k)(θk+1) ≤ `ξ(k)(ω) + 〈θk − ω,∇`ξ(k)(θk)〉+ 〈θk+1 − θk,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2

= `∗ξ(k) + 〈θk+1 − ω,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2

= `∗ξ(k) + 〈θk+1 − ω,−
1

η
(θk+1 − θk)〉+

L

2
‖θk+1 − θk‖2

= `∗ξ(k) +
1

2η

[
‖θk − ω‖2 − ‖θk+1 − ω‖2 − ‖θk+1 − θk‖2

]
+
L

2
‖θk+1 − θk‖2

= `∗ξ(k) +
1

2η
[‖θk − ω‖2 − ‖θk+1 − ω‖2]−

( 1

2η
− L

2

)
‖θk+1 − θk‖2.

Rearranging the above inequality further yields that: for all ω ∈ Θ∗ξ(k),

‖θk+1 − ω‖2 ≤ ‖θk − ω‖2 − 2η[`ξ(k)(θk+1)− `∗ξ(k)]−
(
1− ηL

)
‖θk+1 − θk‖2. (9)

Choose η ≤ 1
L , we conclude that for all ω ∈ Θ∗ξ(k),

‖θk+1 − ω‖2 ≤ ‖θk − ω‖2 − 2η
(
`ξ(k)(θk+1)− `∗ξ(k)

)
.

D. Proof of Lemma 2
Note that by Lemma 1, we have that for all ω ∈ Θ∗ξ(k),

‖θk+1 − ω‖2 ≤ ‖θk − ω‖2 − η
(
`ξ(k)(θk+1)− `∗ξ(k)

)
≤ ‖θk − ω‖2.

In the case of full minimizer coherence, we have Θ∗ ⊂ Θ∗ξ(k). Therefore, the above result further implies that: for all k and
any fixed ω ∈ Θ∗,

‖θk+1 − ω‖ ≤ ‖θk − ω‖ ≤ · · · ≤ ‖θ0 − ω‖ < +∞,

where we have used the fact that both Θ∗ and θ0 are bounded. Further notice that ‖θk+1‖ ≤ ‖ω‖+‖θk+1−ω‖, we conclude
that the entire trajectory {θk}k is bounded.

E. Proof of Proposition 2
We first prove item 1. Note that by Proposition 1 we have Θ∗ =

⋂n
i=1 Θ∗i . In the proof of Lemma 1 we have shown in

eq. (9) that for any ω ∈ Θ∗ξ(k)

‖θk+1 − ω‖2 ≤ ‖θk − ω‖2 − 2η[`ξ(k)(θk+1)− `∗ξ(k)]−
(
1− ηL

)
‖θk+1 − θk‖2.



Impact of Model Incoherence on Convergence of SGD with Random Reshuffle

We can choose any ω ∈ Θ∗ and sum the above bound over the B-th epoch to obtain that

‖θn(B+1) − ω‖2 ≤ ‖θnB − ω‖2 − 2η

n(B+1)−1∑
k=nB

(
`ξ(k)(θk+1)− `∗ξ(k)

)
−
n(B+1)−1∑
k=nB

(
1− ηL

)
‖θk+1 − θk‖2.

Rearranging the above inequality yields that

n(B+1)−1∑
k=nB

[(
`ξ(k)(θk+1)− `∗ξ(k)

)
+
( 1

2η
− L

2

)
‖θk+1 − θk‖2

]
≤ 1

2η

(
‖θnB − ω‖2 − ‖θn(B+1) − ω‖2

)
.

Further summing the above bound over the epochs K = 0, ..., B − 1 yields that

B−1∑
K=0

n(K+1)−1∑
k=nK

[(
`ξ(k)(θk+1)− `∗ξ(k)

)
+
( 1

2η
− L

2

)
‖θk+1 − θk‖2

]
≤ 1

2η
‖θ0 − ω‖2. (10)

Note that `ξk(θk+1) − `∗ξk is non-negative, and
(

1
2η −

L
2

)
‖θk+1 − θk‖2 is also non-negative if we choose η ≤ 1

L . Also,

the left hand side of the above inequality is bounded above for all B. Therefore, it implies that `ξk(θk+1) − `∗ξk
k→ 0,

‖θk+1 − θk‖
k→ 0. In particular, for all subsequences {i(T )}T , i = 1, ..., n, we have `i(θi(T )+1)− `∗i

T→ 0. Therefore, by
continuity of the sample losses, we conclude that all the limit points of {θi(T )+1}T belong to the set Θ∗i for all i. Since

‖θk+1 − θk‖
k→ 0, we conclude that all the limit points Xi of {θi(T )}T belong to the set Θ∗i for all i, and item 1 is proved.

Next, we prove item 2. It suffices to show that Xi = Xj for all i 6= j. Consider any ω ∈ Xi with a corresponding

subsequence θi(Tk)
k→ ω. By the random reshuffle sampling, we have |i(Tk)− j(Tk)| ≤ n for all i, j, k. Also, note that

‖θk+1 − θk‖
k→ 0. We obtain that

‖θj(Tk) − ω‖ ≤ ‖θj(Tk) − θi(Tk)‖+ ‖θi(Tk) − ω‖
k→ 0. (11)

Therefore, we showed that every ω ∈ Xi is also in any other Xj . In summary, Xi = Xj = X. Moreover, since item 1 shows
that Xi ⊂ Θ∗i , we further obtain that X ⊂

⋂n
i=1 Θ∗i .

F. Proof of Theorem 1
We prove it by contradiction. Assume there exists ω1, ω2 ∈ X such that ω1 6= ω2. Let θq(k) → ω1 and θp(k) → ω2 be
two converged subsequences. Without loss of generality, we can always assume that p(k) > q(k) (if not, simply take a
subsequence of {p(k)}k such that this property is satisfied).

Apply the inequality in Lemma 1 with any ω ∈ X ⊂ Θ∗ and note that p(k) > q(k), we obtain that

‖θp(k) − ω‖ ≤ ‖θq(k) − ω‖. (12)

In particular, set ω = ω1, the right hand side of the above inequality converges to 0 because ω1 is the unique limit point of
θq(k) by our choice. Therefore, we conclude that ω1 is also a limit point of {θp(k)}k, and hence ω1 = ω2, contradiction.

G. Proof of Theorem 2
Consider the k-th iteration with sample ξ(k). By smoothness of `ξ(k), we obtain that

`ξ(k)(θk+1) ≤ `ξ(k)(θk) + 〈θk+1 − θk,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2.

On the other hand, by restricted strong convexity of `ξ(k), we have: for all ω ∈ Θ∗ξ(k),

`ξ(k)(ω) ≥ `ξ(k)(θk) + 〈ω − θk,∇`ξ(k)(θk)〉+
µξ(k)

2
‖θk − ω‖2. (13)
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Combining both inequalities above, we obtain that: for all ω ∈ Θ∗,

`ξ(k)(θk+1) ≤ `ξ(k)(ω) + 〈θk+1 − ω,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2 −

µξ(k)

2
‖θk − ω‖2

= `ξ(k)(ω) + 〈θk+1 − ω,
1

η
(θk − θk+1)〉+

L

2
‖θk+1 − θk‖2 −

µξ(k)

2
‖θk − ω‖2

= `ξ(k)(ω) +
1

2η
(‖θk − ω‖2 − ‖θk+1 − ω‖2)−

( 1

2η
− L

2

)
‖θk+1 − θk‖2 −

µξ(k)

2
‖θk − ω‖2.

Now let η = 1
L . We further obtain that: for all ω ∈ Θ∗,

‖θk+1 − ω‖2 ≤
(
1− µξ(k)η

)
‖θk − ω‖2 − 2η

(
`ξ(k)(θk+1)− `∗ξ(k)

)
≤
(
1−

µξ(k)

L

)
‖θk − ω‖2. (14)

Telescoping the above inequality over the B-th epoch and by sampling with random reshuffle, we conclude that: for all
ω ∈ Θ∗,

‖θn(B+1) − ω‖2 ≤
n∏
i=1

(
1− µi

L

)
‖θnB − ω‖2

= α‖θnB − ω‖2.

In particular, choose ω = arg minu∈Θ∗ ‖θnB − u‖, the above inequality further implies that

dist2
Θ∗(θn(B+1)) ≤ ‖θn(B+1) − ω‖2 ≤ α‖θnB − ω‖2 = αdist2

Θ∗(θnB).

The desired result follows by telescoping the above inequality over the epoch index B.

H. Proof of Proposition 3
One can check that eq. (14) still holds for SGD with random sampling, i.e.,

‖θk+1 − ω‖2 ≤
(
1−

µξ(k)

L

)
‖θk − ω‖2.

Taking expectation on both sides of the above inequality yields that

E‖θk+1 − ω‖2 ≤
(
1− µ̄

L

)
E‖θk − ω‖2,

where µ̄ := 1
n

∑n
i=1 µi. Telescoping the above inequality over the B epochs yields that

E‖θnB − ω‖2 ≤
(
1− µ̄

L

)nBE‖θ0 − ω‖2.

I. Proof of Lemma 3
Consider the k-th iteration with sample ξ(k). By smoothness of `ξ(k), we obtain that

`ξ(k)(θk+1) ≤ `ξ(k)(θk) + 〈θk+1 − θk,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2.

On the other hand, by restricted strong convexity of `ξ(k), we have for ω = projΘ∗(θk),

`ξ(k)(ω) ≥ `ξ(k)(θk) + 〈ω − θk,∇`ξ(k)(θk)〉+
µξ(k)

2
‖θk − ω‖2. (15)
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Combining both of the above inequalities, we obtain that

`ξ(k)(θk+1) ≤ `ξ(k)(ω) + 〈θk+1 − ω,∇`ξ(k)(θk)〉+
L

2
‖θk+1 − θk‖2 −

µξ(k)

2
‖θk − ω‖2

= `ξ(k)(ω) + 〈θk+1 − ω,
1

η
(θk − θk+1)〉+

L

2
‖θk+1 − θk‖2 −

µξ(k)

2
‖θk − ω‖2

= `ξ(k)(ω) +
1

2η
(‖θk − ω‖2 − ‖θk+1 − ω‖2)−

( 1

2η
− L

2

)
‖θk+1 − θk‖2 −

µξ(k)

2
‖θk − ω‖2.

Choose η = 1
L and rearrange the above inequality, we obtain that

‖θk+1 − ω‖2 ≤
(
1− µξ(k)η

)
‖θk − ω‖2 − 2η

(
`ξ(k)(θk+1)− `ξ(k)(ω)

)
≤
(
1−

µξ(k)

L

)
‖θk − ω‖2 − 2η

(
`ξ(k)(θk+1)− `∗ξ(k) + `∗ξ(k) − `ξ(k)(ω)

)
≤
(
1−

µξ(k)

L

)
‖θk − ω‖2 − 2η

(
`ξ(k)(θk+1)− `∗ξ(k) + `∗ξ(k) − sup

ω∈Θ∗
`ξ(k)(ω)

)
≤
(
1−

µξ(k)

L

)
‖θk − ω‖2 + 2ηε, (16)

where the last inequality uses the definition of minimizer incoherence, which is bounded by ε. Telescoping the above
inequality over the iterations of the B-th epoch, we obtain that

‖θn(B+1) − ω‖2 ≤
n∏
i=1

(
1− µi

L

)
‖θnB − ω‖2 + 2ηε

n(B+1)−1∑
k=nB

n(B+1)−1∏
s=k+1

(
1−

µξ(s)

L

)
, (17)

where we define
∏n(B+1)−1
s=n(B+1)

(
1− µξ(s)

L

)
= 1 by default. Note that the above inequality is an epochwise contraction with a

bounded error term ηε
∑n(B+1)−1
k=nB

∏n(B+1)−1
s=k+1

(
1− µξ(s)

L

)
, we conclude that ‖θn(B+1) − ω‖2 is bounded for all B and

hence {θk}k is bounded.

J. Proof of Theorem 3
Note that eq. (17) further implies that

dist2
Θ∗(θn(B+1)) ≤ ‖θn(B+1) − ω‖2

≤
n∏
i=1

(
1− µi

L

)
‖θnB − ω‖2 + 2ηε

n(B+1)−1∑
k=nB

n(B+1)−1∏
s=k+1

(
1−

µξ(s)

L

)

=

n∏
i=1

(
1− µi

L

)
dist2

Θ∗(θnB) + 2ηε

n(B+1)−1∑
k=nB

n(B+1)−1∏
s=k+1

(
1−

µξ(s)

L

)
. (18)

Next, denote σB as the random shuffle permutation performed in epoch B and define the quantity

M(σB) :=

nB−1∑
k=n(B−1)

nB−1∏
s=k+1

(
1−

µξ(s)

L

)
.

It is clear that M(σB) is a random variable that depends on the permutation σB . We define its expectation as EσM(σB) :=
M , which is a fixed constant for every epoch B. Then, taking expectation on both sides of eq. (17) yields that

Edist2
Θ∗(θn(B+1)) ≤ αEdist2

Θ∗(θnB) + 2ηεM.

Rearranging the above inequality further yields that

Edist2
Θ∗(θn(B+1))−

2ηεM

1− α
≤ α

(
Edist2

Θ∗(θnB)− 2ηεM

1− α

)
,
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which, after telescoping over B, further gives that: for all B,

Edist2
Θ∗(θnB) ≤ αB

(
dist2

Θ∗(θ0)− 2ηεM

1− α

)
+

2ηεM

1− α
.

Lastly, note that we choose η = 1
L .

K. Proof of Corollary 2
The proof is similar to that of Theorem 3. The only difference is that the sampling order of the index {σ(k)}k is now
deterministic.

One can check that eq. (18) is valid for SGD with incremental sampling by replacing ξ(s) with σ(s), and we have

dist2
Θ∗(θn(B+1)) ≤

n∏
i=1

(
1− µi

L

)
dist2

Θ∗(θnB) + 2ηε

n(B+1)−1∑
k=nB

n(B+1)−1∏
s=k+1

(
1−

µσ(s)

L

)
def
:=

n∏
i=1

(
1− µi

L

)
dist2

Θ∗(θnB) + 2ηεM̃.

Then, the desired result follows from a standard telescoping over B and η = 1
L .

L. Proof of Proposition 4
One can check that eq. (16) still holds for SGD with random sampling and step size η = 1

L . Taking expectations on both
sides of the inequality and simplifying yields that

Edist2
Θ∗(θk+1) ≤

(
1− µ

L

)
Edist2

Θ∗(θk) + 2ηε, (19)

Rearranging and simplifying the above inequality yields that

Edist2
Θ∗(θk+1)− 2ηε

1− (1− µ/L)
≤
(
1− µ

L

)(
Edist2

Θ∗(θk)− 2ηε

1− (1− µ/L)

)
,

which, after telescoping over k, further gives that: for all k = nB,

Edist2
Θ∗(θnB) ≤

(
1− µ

L

)nB(
dist2

Θ∗(θ0)− 2ηεL

µ

)
+

2ηεL

µ
.


