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Abstract

Optimization models with non-convex constraints
arise in many tasks in machine learning, e.g.,
learning with fairness constraints or Neyman-
Pearson classification with non-convex loss. Al-
though many efficient methods have been devel-
oped with theoretical convergence guarantees for
non-convex unconstrained problems, it remains a
challenge to design provably efficient algorithms
for problems with non-convex functional con-
straints. This paper proposes a class of subgradi-
ent methods for constrained optimization where
the objective function and the constraint functions
are weakly convex and nonsmooth. Our methods
solve a sequence of strongly convex subproblems,
where a quadratic regularization term is added to
both the objective function and each constraint
function. Each subproblem can be solved by vari-
ous algorithms for strongly convex optimization.
Under a uniform Slater’s condition, we establish
the computation complexities of our methods for
finding a nearly stationary point.

1. Introduction
Continuous optimization models with nonlinear constraints
have been widely used in many disciplines including ma-
chine learning, statistics, and data mining with many real-
world applications. A general optimization problem with
inequality constraints is formulated as

f∗ ≡ min
x∈X
{f(x) ≡ f0(x)}

s.t. g(x) ≡ max
i=1,...,m

fi(x) ≤ 0
(1)
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Here, we assume that X ⊂ Rd is a compact convex set
that allows for a simple projection and fi for i = 0, . . . ,m
are weakly-convex (potentially non-smooth) functions. A
solution x̄ ∈ X is ε-optimal if f(x̄)−f∗ ≤ ε and ε-feasible
if x̄ ∈ X and g(x̄) ≤ ε. Many optimization models in
machine learning contain nonlinear constraints. Examples
include Neyman-Pearson classification (Rigollet & Tong,
2011) and learning with dataset constraints (Goh et al., 2016)
(e.g. fairness constraints and churn rate constraints).

Optimization problems with a convex objective function
and convex constraints have been well studied in litera-
ture with many efficient algorithms and their theoretical
complexity developed (Bertsekas, 2014; 1999; Nocedal &
Wright, 2006). However, the parallel development for op-
timization with non-convex objective functions and non-
convex constraints, especially for theoretically provable
algorithms, remains limited, restricting the practices of sta-
tistical modeling and decision making in many disciplines.
It is well-known that finding a global minimizer for a gen-
eral non-convex function without any constraints has been
intractable (Sahni, 1974). The difficulty will increase when
constraints appear and will increase even further when those
constraints are non-convex.

Therefore, when designing an algorithm for (1) with non-
convex objective and constraint functions, the first question
to be addressed is what kind of solutions can the algorithm
guarantees and what complexity the algorithm has in order
to find such solutions. In the recent studies on unconstrained
or simply constrained1 non-convex minimization (Davis &
Drusvyatskiy, 2018c;a;b; Davis & Grimmer, 2017; Drusvy-
atskiy, 2017; Drusvyatskiy & Paquette, 2018; Ghadimi &
Lan, 2013; 2016; Lan & Yang, 2018; Paquette et al., 2018;
Reddi et al., 2016a;b), algorithms have been proposed to find
a nearly stationary point, which is a feasible solution close
to another feasible solution where the subdifferential of the
objective function almost contains zero. However, these
methods and analysis cannot be applied to (1) as they re-
quire the exact projection to the feasible set which is hard to
perform for (1) due to the functional constraints. To address

1Here, being simply constrained means the feasible set is a
simple set, e.g., a box or a ball, that allows for a closed-form for
the projection mapping.
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this issue, in this work, we propose a class of first-order
methods for (1) where the objective function and the con-
straint functions are all weakly convex. Our methods solve
a sequence of strongly convex subproblems where, differ-
ent from the traditional proximal-point method, a quadratic
regularization term is also added to each constraint function
instead of just the objective function. Each subproblem can
be solved by an algorithm for strongly convex optimiza-
tion. Under a uniform Slater’s condition, we establish the
complexities of our methods for finding a nearly stationary
point. We will discuss some applications of (1) in machine
learning next.

1.1. Optimization Problems in Machine Learning with
Nonlinear Constraints

Multi-class Neyman-Pearson Classification: In multi-
class classification, there exist K classes of data, denoted
by ξk for k = 1, 2, . . . ,K, each of which has its own dis-
tribution. To classify each data into one of the K classes,
one can rely on K linear models xk, k = 1, 2, . . . ,K and
predict the class of a data point ξ as arg maxk=1,2,...,K x>k ξ.
To achieve a high classification accuracy, we would like
the value x>k ξk − x>l ξk with k 6= l to be positively
large (Weston & Watkins, 1998; Crammer & Singer, 2002),
which can be achieved by minimizing the expected loss
Eφ(x>k ξk − x>l ξk), where φ is a non-increasing potentially
non-convex loss function and E is the expectation taken over
ξk. When training these K linear models, one can prioritize
minimizing the loss on class 1 while control the losses on
other classes by solving

min
‖xk‖2≤λ,k=1,...,K

∑
l 6=1

E[φ(x>1 ξ1 − x>l ξ1)]

s.t.
∑
l 6=k

E[φ(x>k ξk − x>l ξk)] ≤ rk k = 2, 3, . . . ,K,

where rk controls the loss for class k and λ is a regulariza-
tion parameter. When ξ follows the empirical distribution
over a finite dataset, the expectations above are essentially
sample averages so that this problem becomes a determinis-
tic optimization problem.

Learning Data-Driven Constraints: Problem (1) also cov-
ers many machine learning models with data-driven con-
straints (Goh et al., 2016). The examples include the con-
straints that impose conditions on the coverage rates, churn
rates, or fairness of a predictive model. More details can be
found in (Goh et al., 2016). Here, we focus on learning a
classifier with parity-based fairness constraints (Goh et al.,
2016; Zafar et al., 2015; 2017). Suppose (a, b) is a point
from a distribution D where b ∈ {1,−1} is the label. Let
DM and DF be two different distributions of points (not
necessarily labeled), e.g., DM and DF may represent the
male and female groups. The training of a classifier with

fairness constraints can be formulated as

min
‖x‖2≤λ

E(a,b)∼D[φ(−ba>x)]

s.t. Ea∼DM [σ(a>x)] + βEa∼DF [σ(−a>x)] ≤ r
Ea∼DF [σ(a>x)] + βEa∼DM [σ(−a>x)] ≤ r

where φ is a non-increasing potentially non-convex loss
function, σ = exp(z)

1+exp(z) , λ is a regularization parameter, β is
a positive balance parameter and r is a constraint parameter.
The objective function is the training loss of x. The terms
σ(a>x) and σ(−a>x) represent the predicted probabilities
of a being in the positive and the negative class, respectively.
The left hand side of the first constraint will be large if the
model x is very “unfair” in the sense that it makes a>x very
negative for most of a from DM but very positive for most
of a from DF . The second constraint can be interpreted
similarly. Choosing appropriate r forces the left hand sides
of both constraints low so that the obtained model will be
fair to both DM and DF .

1.2. Contributions

We summarize our contributions as follows.

• We propose a class of algorithms (Algorithm 1) for (1)
when all fi are weakly convex. This method approxi-
mately solves a strongly convex subproblem (9) in each
main iteration with precision O(ε2) using a suitable
first-order method. We show that our method finds a
nearly ε-stationary point (Definition 1) for (1) in O( 1

ε2 )
main iterations.

• When each fi is a deterministic function, we de-
velop a new variant of the switching subgradient
method (Polyak, 1967) to solve (9). We show that
the complexity of Algorithm 1 for finding a nearly
ε-stationary point is O( 1

ε4 ).

• When each fi is given as an expectation of a stochastic
function, we directly use the stochastic subgradient
method by (Yu et al., 2017) to solve (9). We show
that the complexity of Algorithm 1 for finding a nearly
ε-stationary point is Õ( 1

ε6 ).2

2. Related Work
There has been growing interest in first-order algorithms
for non-convex minimization problems with no constraints
or simple constraints in both stochastic and deterministic
setting. Initially, the research in this direction mainly focus
on the problem with a smooth objective function (Ghadimi
& Lan, 2013; Yang et al., 2016; Ghadimi & Lan, 2016;
Reddi et al., 2016b;a; Lan & Yang, 2018; Allen-Zhu, 2017;

2In this paper, Õ(·) suppresses all logarithmic factors of ε.
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Allen-Zhu & Hazan, 2016; Lacoste-Julien, 2016). Recently,
more studies have been developed on the algorithms and
theories for non-convex minimization problems with non-
smooth objective functions after assuming the objective
function is weakly convex (Davis & Drusvyatskiy, 2018a;c;
Drusvyatskiy & Paquette, 2018; Davis & Grimmer, 2017;
Chen et al., 2018; Zhang & He, 2018). These works tackle
the non-smoothness of objective function by introducing
the Moreau envelope of objective function and analyze the
complexity of finding a nearly stationary point. However,
these methods are not directly applicable to (1) because of
the functional constraints.

The studies on convex optimization with functional con-
straints have a long history (Bertsekas, 2014; 1999; Nocedal
& Wright, 2006; Ruszczyński, 2006, and references therein).
The recent development in the first-order methods for con-
vex optimization with convex constraints include (Mahdavi
et al., 2012; Zhang et al., 2013; Chen et al., 2016; Yang
et al., 2017; Wei et al., 2018; Xu, 2018; 2017b;a; Yu et al.,
2017; Lin et al., 2018c;b; Bayandina et al., 2018; Fercoq
et al., 2019) for deterministic constraints and (Lan & Zhou,
2016; Yu & Neely, 2017) for stochastic constraints. (Wei
& Neely, 2018) propose a primal-dual Frank-Wolfe method
for (1) with non-convex f0 but linear fi for i = 1, 2, . . . ,m.
Different from these works, this paper study the problems
where the objective function and the constaints are all non-
convex. (Sahin et al., 2019) propose an inexact augmented
Lagrangian method for (1) with non-convex f0 and nonlin-
ear equality constraints. A complexity Õ( 1

ε3 ) is claimed in
Corollary 4.2 in (Sahin et al., 2019), but there is an error
in its proof. The authors claimed the complexity of solving

their subproblem is Õ(
λ2
βk
ρ2

εk+1
) but it should be Õ(

λ2
βk
ρ2

ε2k+1
).

(See (Sahin et al., 2019) for the definitions of λβk , ρ, and
εk+1). After correcting this error, following the same proof
they used gives a total complexity of Õ( 1

ε4 ). (Nguyen, 2018)
study the problem (1) with non-convex fi for i = 0, . . . ,m,
but only from the perspective of optimality conditions. Op-
timization algorithms and convergence analysis are not con-
sidered in their work.

We realize a paper by Boob et al. (Boob et al., 2019) was
posted online simultaneously as our paper. The main al-
gorithms (Algorithm 1 and 2 in (Boob et al., 2019)) they
proposed are similar to our Algorithm 1 in the sense that
a similar subproblem (9) is solved in each main iteration.
The main difference between our paper and (Boob et al.,
2019) is the assumptions made to ensure the boundness of
the dual variables of subproblem (9), which is critical to the
convergence analysis. The authors of (Boob et al., 2019)
establish convergence result under various constraint quali-
fication conditions including, Mangasarian-Fromovitz con-
straint qualification (MFCQ), strong MFCQ, and strong fea-
sibility while we only consider a uniform Slater’s condition

(Assumption 1B). Strong feasibility condition is stronger
than our uniform Slater’s condition but, on the other hand,
is easier to verify. The relative strength between (strong)
MFCQ and the uniform Slater’s condition is unknown. In
addition, we focus on the cases where the objective and con-
straint functions are either all deterministic or all stochastic
while (Boob et al., 2019) considers an additional case where
only the objective is stochastic. In the stochastic case, we
require the stochastic gradients to be bounded (Assump-
tion 2) while (Boob et al., 2019) assume the boundness of
the second moment of the stochastic gradients. The com-
plexities of our methods and theirs for finding an ε-nearly
stationary point are the same in the dependency on ε in the
dominating terms. Their complexity is more general in the
sense that it involves non-dominating terms that depend on
the smoothness parameters of the smooth components of
the functions which we do not consider.

3. Preliminaries
Let ‖ · ‖ be the `2-norm. For h : Rd → R ∪ {+∞}, the
subdifferential of h at x is

∂h(x) =
{
ζ ∈ Rd

∣∣h(x′) ≥ h(x) + ζ>(x′ − x)

+ o(‖x′ − x‖), x′ → x
}
,

where ζ ∈ ∂h(x) is a subgradient of h at x. We say h is
µ-strongly convex (µ ≥ 0) on X if

h(x) ≥ h(x′) + ζ>(x− x′) +
µ

2
‖x− x′‖2

for any (x,x′) ∈ X × X and any ζ ∈ ∂h(x′). We say h is
ρ-weakly convex (ρ ≥ 0) on X if

h(x) ≥ h(x′) + ζ>(x− x′)− ρ

2
‖x− x′‖22

for any (x,x′) ∈ X × X and any ζ ∈ ∂h(x′). We denote
the normal cone of X at x by NX (x) and the distance from
x to a set S by Dist(x, S) = miny∈S ‖x− y‖.

The following assumptions about (1) are made throughout
the paper:

Assumption 1. The following statements hold:

A. fi(x) is closed and ρ-weakly convex with ∂fi(x) 6= ∅
on any x ∈ X for i = 0, 1, . . . ,m.

B. min
y∈X
{g(y)+ ρ+ρε

2 ‖y−x‖
2} < −σε for any ε2-feasible

solution x (x ∈ X and g(x) ≤ ε2) for some positive
constants σε and ρε. We call this condition uniform
Slater’s condition.3

3The original Slater’s condition states that g(ȳ) < 0 for some
ȳ ∈ X . Here, our assumption is stronger because it includes
the term ρε‖ȳ − x‖2 and requires that inequality holds for any
ε2-feasible solution x.
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C. The domain X is compact such that maxx,x′∈X ‖x−
x′‖ ≤ D for some constant D.

D. flb ≡ minx∈X f(x) > −∞.

E. We have access to an initial ε2-feasible solution xfeas

with xfeas ∈ X and g(xfeas) ≤ ε2.

F. ‖ζ‖ ≤ M for a constant M for any ζ ∈ ∂fi(x), x ∈
X , and i = 0, . . . ,m.

A function is ρ-weakly convex if it is differentiable and the
gradient is ρ-Lipchitz continuous. Hence, the two applica-
tions given in Section 1.1 satisfy Assumption 1A when the
loss functions φ and σ are smooth. It is easy to show that g
defined in (1) is also ρ-weakly convex under Assumption 1A.
A discussion about Assumption 1E is given in Remark 1.

Under Assumption 1, (1) is a non-convex constrained opti-
mization problem so that even finding an ε-feasible solution
is difficult in general, let alone a globally optimal solution.
For a non-convex problem, one alternative goal is to find
a stationary point of (1), i.e., a point x∗ ∈ X that satis-
fies the following Karush-Kuhn-Tucker conditions (KKT)
conditions (Rockafellar, 1970, Theorem 28.3)

−ζ∗0 −
m∑
i=1

λ∗i ζ
∗
i ∈ NX (x∗), λ∗i fi(x∗) = 0,

fi(x∗) ≤ 0, λ∗i ≥ 0,

(2)

where λ∗i is the Lagrangian multiplier corresponding to the
constraint fi(x) ≤ 0 for i = 1, . . . ,m and ζ∗i ∈ ∂fi(x∗)
for i = 0, 1, . . . ,m. Since an exact stationary point is hard
to find with a finite number of iterations by many algorithms,
it is more common to aim at finding an ε-stationary point,
i.e., a point x̂ ∈ X satisfying

Dist
(
− ζ̂0 −

m∑
i=1

λ̂iζ̂i,NX (x̂)

)
≤ ε, |λ̂ifi(x̂)| ≤ ε,

fi(x̂) ≤ ε, λ̂i ≥ 0,

(3)

where λ̂i is a Lagrangian multiplier corresponding to the
constraint fi(x̂) ≤ 0 for i = 1, . . . ,m and ζ̂i ∈ ∂fi(x̂)
for i = 0, 1, . . . ,m. However, there are two difficulties
that prevent algorithms from finding an ε-stationary: (i)
Non-smoothness: When f0 is non-smooth, computing an
ε-stationary point with finitely many iterations is challeng-
ing even if f0 is convex and there is no constraint, e.g.,
minx∈R |x|, where 0 is an exact stationary point while an
algorithm may still return an x ≈ 0 but 6= 0 which is not
ε-stationary for any ε < 1. (ii) Non-convex constraints:
When non-convex constraints appear, it is difficult to numer-
ically find a point x̂ that satisfies the third inequality in (3).
With a highly infeasible x̂, the other two inequalities in (3)
become less meaningful.

Therefore, to study (3) in a more tractable setting, we fol-
low (Davis & Drusvyatskiy, 2018a; Davis & Grimmer, 2017;
Davis & Drusvyatskiy, 2018b; Zhang & He, 2018) to make
the weak convexity assumption in Assumption 1A and con-
sider a function ϕρ̂ and a solution x̂ defined as

ϕρ̂(x) ≡ min
y∈X

{
f(y) +

ρ̂

2
‖y − x‖2,

s.t. g(y) +
ρ̂

2
‖y − x‖2 ≤ 0

}
,

(4)

x̂ ≡ arg min
y∈X

{
f(y) +

ρ̂

2
‖y − x‖2,

s.t. g(y) +
ρ̂

2
‖y − x‖2 ≤ 0

}
,

(5)

where ρ̂ ≥ 0 is a regularization parameter, g and f are
defined as in (1). It is important to point out that ϕρ̂ is
different from the Moreau envelope of the function4 f(x) +
1X ,g≤0(x) which is defined as

ϕ̃ρ̂(x) ≡ min
y∈X

{
f(y) +

ρ̂

2
‖y − x‖2, s.t. g(y) ≤ 0

}
. (6)

The function ϕ̃ρ̂ was considered in (Davis & Drusvyatskiy,
2018a; Davis & Grimmer, 2017; Davis & Drusvyatskiy,
2018b; Zhang & He, 2018; Rafique et al., 2018) and their
algorithm and analysis are based on the fact that (6) is a
convex minimization problem when there is no g, f is ρ-
weakly convex, and ρ̂ ≥ ρ. However, for our problem
(1) where g exists and is ρ-weakly convex, (6) is hard to
evaluate even only approximately. Therefore, we include
the term ρ̂

2‖y − x‖2 in the constraint of (4) and (5) so that
the minimization problem has a (ρ̂ − ρ)-strongly convex
objective function and (ρ̂− ρ)-strongly convex constraints
when ρ̂ ≥ ρ. As a result of strong convexity, the solution x̂
defined in (5) is unique and can be closely approximated by
solving (4) or (5).

As an extension to the findings in (Davis & Drusvyatskiy,
2018a; Davis & Grimmer, 2017; Davis & Drusvyatskiy,
2018b; Zhang & He, 2018; Rafique et al., 2018), the quantity
‖x− x̂‖ with x̂ defined in (5) can be used as a measure of
the quality of a solution x. More specifically, let λ̂ be
the Lagrangian multiplier that satisfies the following KKT
conditions together with x̂ in (5):

−ζ̂0 − ρ̂(x̂− x)− λ̂
(
ζ̂ + ρ̂(x̂− x)

)
∈ NX (x̂),

λ̂

(
g(x̂) +

ρ̂

2
‖x̂− x‖2

)
= 0,

g(x̂) +
ρ̂

2
‖x̂− x‖2 ≤ 0,

λ̂ ≥ 0

(7)

4Here, 1X ,g≤0(x) denotes the indicator function of the feasible
set {x ∈ X|g(x) ≤ 0}
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where ζ̂0 ∈ ∂f0(x̂) and ζ̂ ∈ ∂g(x̂). These conditions imply

Dist(−ζ̂0 − λ̂ζ̂,NX (x̂)) ≤ (1 + λ̂)ρ̂‖x̂− x‖,

|λ̂g(x̂)| = λ̂ρ̂

2
‖x̂− x‖2,

g(x̂) ≤ 0,

λ̂ ≥ 0.

Therefore, in the scenario where ‖x̂ − x‖ ≤ ε, ρ̂ = O(1)

and λ̂ = O(1), we have Dist(−ζ̂0 − λ̂ζ̂,NX (x̂)) = O(ε),
|λ̂g(x̂)| = O(ε2), and g(x̂) ≤ 0, which means x̂ is feasible
and satisfies the optimality conditions of the original prob-
lem (1) with O(ε) precision and x is only ε-away from x̂.
With this property, we can say x is near to an ε-stationary
point (i.e., x̂) of (1). In Lemma 1 below, we will show that
λ̂ = O(1) when ρ̂ ∈ (ρ, ρ+ ρε] and x is ε2-feasible under
Assumption 1B. We formally define the solution we want to
compute as follows.
Definition 1. A point x ∈ X is called a nearly ε-stationary
point of (1) if ‖x̂ − x‖ ≤ ε where x̂ is defined in (5) with
respect to x and ρ̂.

Next, we propose a numerical method for finding a nearly
ε-stationary point of (1) with theoretical complexity anal-
ysis. The proofs for all theoretical results are given in the
supplementary file.

4. Inexact Quadratically Regularized
Constrained Method

The method we proposed is motivated by the recent stud-
ies on the inexact proximal methods by (Davis & Grim-
mer, 2017; Rafique et al., 2018; Lin et al., 2018a) which
originates from the proximal point method (Rockafellar,
1976). The authors of (Davis & Grimmer, 2017) consider
minx∈X f(x) with a ρ-weakly convex and non-smooth
f(x). In their approach, given the iterate xt ∈ X , they
generate the next iterate xt+1 by approximately solving the
following convex subproblem

xt+1 ≈ arg min
y∈X

f(y) +
ρ̂

2
‖y − xt‖22 (8)

using the standard stochastic subgradient (SSG) method.
Then, xt+1 will be used to construct the next subproblem
in a similar way. Similar approaches have been developed
for solving non-convex non-concave min-max problems by
(Rafique et al., 2018; Lin et al., 2018a).

Similar to their approaches, we will generate xt+1 from xt
by approximately solving

xt+1 ≈ x̂t ≡ arg min
y∈X

{
f(y) +

ρ̂

2
‖y − xt‖2,

s.t. g(y) +
ρ̂

2
‖y − xt‖2 ≤ 0

}
.

(9)

Algorithm 1 Inexact Quadratically Regularized Con-
strained (IQRC) Method

1: Input: An ε2-feasible solution x0 = xfeas (As-
sumption 1E), ρ̂ > ρ, δ ∈ (0, 1), ε̂ =

min
{

1,
√

ρ̂−ρ
4

(
M+ρ̂D√
2σε(ρ̂−ρ)

+ 1
)− 1

2
}
ε, the number of

iterations T , and an oracle A for (9).
2: for t = 0, . . . , T − 1 do
3: xt+1 = A(xt, ρ̂, ε̂,

δ
T )

4: end for
5: Output: xR where R is a random index uniformly

sampled from {0, . . . , T}.

However, the SSG method cannot be directly applied to (9)
due to the constraints g(y) + ρ̂

2‖y − xt‖2 ≤ 0. Thanks to
the recent development in the first-order methods for non-
linear constrained convex optimization, there are existing
techniques that can potentially be used as a subroutine to
solve (9) in our main algorithm. To facilitate the description
of our main algorithm and its anlaysis, we formally define
the subroutine with the property we need as follows.

Definition 2. An algorithm A is called an oracle for (9) if,
for any t ≥ 0, ρ̂ > 0, ε̂ > 0, δ ∈ (0, 1), and xt ∈ X , it
finds (potentially stochastic)5 xt+1 ∈ X such that, with a
probability of at least 1− δ,

f(xt+1) +
ρ̂

2
‖xt+1 − xt‖2 − f(x̂t)−

ρ̂

2
‖x̂t − xt‖2 ≤ ε̂2,

g(xt+1) +
ρ̂

2
‖xt+1 − xt‖2 ≤ ε̂2

where x̂t is defined in (9). We denote the output of A by
xt+1 = A(x, ρ̂, ε̂, δ).

Before we discuss which algorithms to use as the orcale, we
first present the main algorithm, the inexact quadratically
regularized constrained (IQRC) method, in Algorithm 1 and
analyze the number of iterations it needs for finding a nearly
ε-stationary point.

The following lemma shows that the optimal Lagrangian
multiplier of (9) is uniformly bounded for all t under As-
sumption 1. This is critical for establishing the convergence
of Algorithm 1.

Lemma 1. Suppose ρ̂ ∈ (ρ, ρ+ρε]. Let xt be generated by
Algorithm 1, x̂t be defined in (9), and λt be the Lagrangian
multiplier in the KKT conditions (7) of (9) satisfied by x̂t.
We have λt ≤ M+ρ̂D√

2σε(ρ̂−ρ)
for t = 0, 1, 2, . . . , T − 1 with a

probability of at least 1− δ.

Theorem 1. Under Assumption 1, Algorithm 1 guarantees
ER‖xR − x̂R‖2 ≤ ε2 with a probability of at least 1− δ if
T ≥ 4(f(x0)−flb)

ε2(ρ̂−ρ) , where the expectation is taken over R.
5Here, we allow A to be a stochastic algorithm.
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Remark 1. Algorithm 1 requires the access to an ε2-
feasible solution x0 = xfeas (Assumption 1E). When solving
(1) without an initial feasible solution, a typical guarantee
of an algorithm (e.g. (Cartis et al., 2011; 2014)) is that
it either finds an ε-feasible and ε-stationary point of (1)
or finds a point which is an ε-stationary point of g but in-
feasible to (1). In the later case, the solution is typically
trapped in a local minimum of g where g(x) is not small,
which can happen due to non-convexity of g. Therefore,
when xfeas is not available, our method will have such type
of guarantee as long as a subgadient method (e.g. (Davis &
Drusvyatskiy, 2018a)) is first applied to minx∈X g(x) with
O( 1

ε4 ) iterations, which will return a nearly ε-stationary
point of g, denoted by xtemp. Then if g(xtemp) ≤ ε2, we start
Algorithm 1 with x0 = xtemp. If not, we are in the second
case mentioned above, namely, we have found a nearly ε-
stationary point of g which is infeasible to (1), and xtemp is
returned as the final output. Adding this step to our method
does not change the order of magnitude of its complexity.

According to Theorem 1, in order to find an nearly ε-
stationary point in expectation, we have to call the oracle A
O(1/ε2) times. Therefore, the totally complexity of Algo-
rithm 1 highly depends on the complexity of A for a given
ε. In the next sections, we will discuss the methods that can
be used as A when fi have different properties.

4.1. Oracle for Deterministic Problem

In this section, we assume that we can calculate any ζ ∈
∂fi(x) for any x ∈ X . We define

F (x) := f(x) +
ρ̂

2
‖x− xt‖2,

G(x) := g(x) +
ρ̂

2
‖x− xt‖2

(10)

so that problem (9) becomes minx∈X F (x) s.t. G(x) ≤ 0.
We define F ′(x) and G′(x) as any subgradient of F and G,
respectively. Under Assumption 1C and Assumption 1F, we
have ‖F ′(x)‖ ≤M + ρ̂D and ‖G′(x)‖ ≤M + ρ̂D for any
x ∈ X .

Because problem (9) is non-smooth, we consider the
Polyak’s switching subgradient method (Polyak, 1967),
which is also analyzed in (Nesterov, 2013) and recently
extended by (Bayandina et al., 2018; Lan & Zhou, 2016).
The method we propose here is a new variant of that method
for a strongly convex problem. The details are given in
Algorithm 2 where ProjX (x) represents the projection of
x to X . Different from (Bayandina et al., 2018), our Algo-
rithm 2 only uses a single loop instead of double loops. It
is also different from (Lan & Zhou, 2016) in the sense that
our method keeps every intermediate solution ε-feasible for
(4) while the method in (Lan & Zhou, 2016) only ensures
ε-feasibility after a fixed number of iterations. Moreover,

Algorithm 2 Switching subgradient method for the subprob-
lem (9)

1: Input: z0 = xt ∈ X , ρ̂ > ρ and ε̂ > 0.
2: Set I = ∅ and F and G as in (10).
3: Set K =

⌈
4(M2+ρ̂D2)

(ρ̂−ρ)ε̂2

⌉
4: for k = 0, . . . ,K − 1 do
5: γk = 2

(ρ̂−ρ)(k+2)

6: if G(zk) ≤ ε̂2 then
7: I ← I ∪ {k}.
8: zk+1 = ProjX (zk − γkF ′(zk))
9: else

10: zk+1 = ProjX (zk − γkG′(zk))
11: end if
12: end for
13: Output: xt+1 =

∑
k∈I(k+1)zk∑
k∈I(k+1) .

(Lan & Zhou, 2016) requires knowing the total number of
iterations before hand in order to design the step size γk
while our method does not.

The convergence of Algorithm 2 is given below whose proof
follows the idea of Section 3.2 in (Lacoste-Julien et al.,
2012). However, the original analysis in (Lacoste-Julien
et al., 2012) is for the subgradient method applied to uncon-
strained problems while our analysis is for the switching
subgradient method applied to constrained problems.

Theorem 2. Under Assumption 1, Algorithm 2 guarantees
F (xt+1)−F (x̂t) ≤ ε̂2 andG(xt+1) ≤ ε̂2 deterministically
and can be used as an oracle A for (9). The complexity
of Algorithm 1 using Algorithm 2 as an oracle is therefore
O( 1

ε4 ).

Remark 2. Although the main focus of this paper is the
case when fi is non-smooth in (1) for i = 0, . . . ,m, our
results can be easily extended to the case where each fi is
differentiable with an L-Lipschitz continuous gradient. In
this case, the subproblem (9) is written as computing

xt+1 ≈ x̂t ≡ arg min
y∈X

{
f0(y) +

ρ̂

2
‖y − xt‖2,

s.t. fi(y) +
ρ̂

2
‖y − xt‖2 ≤ 0, i = 1, . . . ,m

}
.

Since the objective function and constraint functions here
are all strongly convex and smooth, there exist some
algorithms that can be used as an oracle for (9) sat-
isfying Definition (2). The examples include the level-
set method (Lin et al., 2018c) and the augmented La-
grangian method (Xu, 2017b) whose complexity for com-
puting xt+1 = A(x, ρ̂, ε̂, δ) is O( 1

ε̂ ). Since ε̂ = O(ε), the
complexity of Algorithm 1 using (Lin et al., 2018c) or (Xu,
2017b) as the oracle is O( 1

ε2 )×O( 1
ε̂ ) = O( 1

ε3 ).
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4.2. Oracle for Stochastic Problem
In this section, we consider the scenario where only a
stochastic unbiased estimation for the subgradient of fi
is available. In addition to Assumption 1, we make the
following assumption.

Assumption 2. For any x ∈ X and any i = 0, 1 . . . ,m, we
can compute a stochastic estimation θi(x) and a stochas-
tic gradient ζi(x) of fi such that Eθi(x) = fi(x) and
Eζi(x) ∈ ∂fi(x). Moreover, there exist constants M0

and M1 such that ‖(θ1(x), θ2(x), . . . , θm(x))‖ ≤M0 and
‖ζi(x)‖ ≤M1 for any x almost surely.

A typical situation where this assumption holds is the
stochastic optimization where fi ≡ EFi(x, ξ) and ξ is a
random variable. In that case, we can sample ξ and compute
θi(x) = Fi(x, ξ) and compute ζi(x) as a subgradient of
Fi(x, ξ) with respect to x.

Under this setting, when solving the subproblem (9), it is
not possible to construct an unbiased stochastic subgradient
for g in (1) or G in (10) due to the maximization operator
in their definitions. Hence, we treat each fi as an individual
function and define

Fi(x) := fi(x) +
ρ̂

2
‖x− xt‖2 for i = 0, 1, . . . ,m

so that problem (9) becomes minx∈X F (x) s.t. Fi(x) ≤ 0
for i = 0, 1, . . . ,m. Note that Fi is still (ρ̂−ρ)-strongly con-
vex. Its stochastic estimation is θi(x) + ρ̂

2‖x− xt‖2 which
satisfies ‖(θi(x) + ρ̂

2‖x − xt‖2)mi=1‖ ≤ ‖(θi(x))mi=1‖ +
ρ̂
√
m

2 ‖x− xt‖2 ≤M0 + ρ̂
√
mD2

2 ≡ M̃0. Its stochastic gra-
dient is ζi(x) + ρ̂(x− xt) which satisfies ‖ζi(x) + ρ̂(x−
xt)‖ ≤M1 + ρ̂D ≡ M̃1.

The switching subgradient method (Algorithm 2) and its
variants (Bayandina et al., 2018; Lan & Zhou, 2016) can-
not handle stochastic constraints functions unless a large
high-cost mini-batch is used per iteration (Lan & Zhou,
2016). Therefore, we consider using the online stochatsic
subgradient method by (Yu et al., 2017) which allows for
both stochastic objective function and stochastic constraints.
We present their method in Algorithm 3 and analyze the
complexity of Algorithm 1 when using their method as the
oracle.

Theorem 3. Under Assumption 1 and 2, Algorithm 3 guar-
antees F (xt+1) − F (x̂t) ≤ B1(D, M̃0, M̃1,m, σε,K, δ)
and Fi(xt+1) ≤ B2(D, M̃0, M̃1,m, σε,K, δ) for func-
tions B1(D, M̃0, M̃1,m, σε,K, δ) = O( log(K/δ)√

K
) and

B1(D, M̃0, M̃1,m, σε,K, δ) = O( log(K/δ)√
K

) with a prob-
ability of at least 1 − δ. As a consequence, when K is
large enough (i.e. K = Õ( 1

ε̂4 log( 1
δ ))) so that B1 ≤ ε̂2

and B2 ≤ ε̂2, Algorithm 3 can be used as an oracle A for
(9). The complexity of Algorithm 1 using Algorithm 3 as an
oracle is therefore Õ( 1

ε6 ).

Algorithm 3 Online stochastic subgradient method by (Yu
et al., 2017) for the subproblem (9)

1: Input: z0 = xt ∈ X , ρ̂ > ρ, ε̂ > 0, and the number of
iterations K.

2: Set V =
√
K and α = K.

3: Set Qi0 = 0 for i = 1, . . . ,m.
4: for k = 0, . . . ,K − 1 do
5: θ̃ki = θi(zk) + ρ̂

2‖zk − xt‖2 and ζ̃ki = ζi(zk) +
ρ̂(zk − xt) for i = 0, 1, 2, . . . ,m.

6: zk+1 = arg min
z∈X


(
V ζk0 +

m∑
i=1

Qikζ
k
i

)>
(z− zk)

+α‖z− zk‖2


7: Qik+1 = max{Qik + θ̃ki + (ζ̃ki )>(zk+1 − zk), 0} i =

1, 2, . . . ,m.
8: end for
9: Output: xt+1 = 1

K

∑K−1
k=0 zk.

Since functions B1 and B2 are complicated, we put them in
(12) and (17) in the supplementary file.

5. Numerical Experiments
In this section, we evaluate the numerical performance of
the proposed methods on a multi-class Neyman-Pearson
classification (mNPC) problem with nonconvex loss. Let
ξk for k = 1, 2, . . . ,K denote K classes of data, each of
which belongs to a subset of training data Dk. We train
K linear models xk, k = 1, 2, . . .K, and then predict the
class of data ξ by arg maxk=1,2,...,K x>k ξ. To achieve a
high classification accuracy, the value x>k ξk − x>l ξk needs
to be positively large for any k 6= l and ξk ∈ Dk (Weston
& Watkins, 1998; Crammer & Singer, 2002), which can be
achieved by minimizing the following loss

1

|Dk|
∑
l 6=k

∑
ξk∈Dk

φ(x>k ξk − x>l ξk),

where φ is a non-increasing potentially non-convex loss
function. mNPC prioritizes minimizing the loss on one
class, which is class 1 in our formulation, and then controls
the loss on all other classes by solving

min
‖xk‖2≤λ,k=1,...,K

1

|D1|
∑
l 6=k

∑
ξ∈D1

φ(x>k ξ − x>l ξ),

s.t.
1

|Dk|
∑
l6=k

∑
ξ∈Dk

φ(x>k ξ − x>l ξ) ≤ rk, k = 2, 3, . . . ,K,

(11)
where rk controls the loss of class k and λ is the regulariza-
tion parameter. In the experiment, the function φ in (11) is
chosen as the sigmoid function 1/(1 + exp(z)).

We compare our IQRC method to the exact penalty method
proposed in (Cartis et al., 2011). Both methods are imple-
mented in Matlab on a 64-bit MacOS Catalina machine
with a 2.90 Ghz Intel Core i7-6920HQ CPU and 16GB
of memory. We conduct experiments on three LIBSVM
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multi-class classification datasets pendigits, segment, and
usps. pendigits dataset has 7494 instances and 10 classes,
while each instance is represented by a feature vector of
dimension 16. segment dataset has 2310 instances and 7
classes, and each instance is represented by a feature vector
of dimension 7. usps dataset has 7291 instances and 10
classes while each instance has 256 number of features. We
choose rk = 4.5, k = 2, . . . ,K for pendigits and usps, and
rk = 3, k = 2, . . . ,K for segment. λ is selected to be 0.1
for all datasets. For both algorithms in comparison, the ini-
tial solution x = 0 is chosen. It is easy to verify that x = 0
is a feasible solution given the λ and rk we choose. For
both algorithms, we tune hyper-parameters from a discrete
set of choices.

To simplify notations, let f0(x) denote the objective func-
tion of problem (11). Similarly, let fi(x) ≤ 0 for i =
1, . . . , 2K− 1 denote all constraints of problem (11) includ-
ing both functional constraints and compact set constraints.
Then exact penalty method proposed by (Cartis et al., 2011)
first derives a direction sk by solving

sk ∈ arg min
‖s‖≤∆k

{
f0(xk) +∇f0(xk)>s

+p

2K−1∑
i=1

∣∣∣max{0, fi(xk) +∇fi(xk)>s}
∣∣∣ },

(12)
where p > 0 is the penalty parameter and ∆k > 0 is the
radius. When sk is derived, a trust region method is used
to update the current solution xk by performing xk+1 =
xk + sk if this update can significantly reduce the value of
the function

f0(x)+p

2K−1∑
i=1

|max{0, fi(x)}| .

In our implementation, we reformulate problem (12) as a
linear programming problem and then use the Matlab built-
in solver to obtain sk. The exact penalty method in (Cartis
et al., 2011) requires several hyper-parameters including
a steering parameter ξ, an increase factor τ to update the
penalty parameter, an initial penalty parameter p−1, and the
tolerance ε. After tunning ξ and τ , we set ξ = 0.1, τ =
100, p−1 = 1/ξ, and ε = 0.001 for pendigits and segment.
For usps, we choose ξ = 0.02, τ = 100, p−1 = 1/ξ, and
ε = 0.001. The trust-region algorithm in (Cartis et al., 2011)
specifies only the interval in which the trust-region radius
should fall in, and there are many possible choices. In the
experiment, we specifically follow the rule that ∆k+1 = ∆k

if rk ≥ η2, ∆k+1 = γ2∆k if rk ∈ [η1, η2], and ∆k+1 =
γ1∆k if rk < η1. The trust region subproblem also requires
several control parameters. For all datasets, we use ∆0 =
1, η1 = 0.3, η2 = 0.7, γ1 = 0.5, γ2 = 1. (See (Cartis et al.,
2011) for the definitions of ∆0, η1, η2, γ1, and γ2).

For our proposed method, the subproblem in the IQRC
method is solved using the switching subgradient method
(Algorithm 2). After tunning regularization parameter ρ̂ and
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Figure 1. Comparison between the IQRC method and the exact
penalty method by (Cartis et al., 2011) for solving multi-class
Neyman-Pearson classification problem (11).

inner iteration number K, we set ρ̂ = 1, K = 20000, and
tolerance ε = 0.001 for all datasets.

The numerical results are presented in Figure 1. The
x-axis represents the CPU time that each algorithm
took. The y-axis on left column of Figure 1 rep-
resents the objective value of (11) and the y-axis on
right column of Figure 1 represents infeasibility, i.e.,
max{maxi=1,...,m fi(x),maxk=1,...,K ‖xk‖−λ, 0}, of the
iterates. The red line shows the performance of the outer
iteration solution xt in Algorithm 1, which is the solution
users need in practice. The blue line evaluates the perfor-
mance of inner iteration zt in Algorithm 2. We show it
here only for reader’s curiosity. The black line represents
the performance of the exact penalty method proposed by
(Cartis et al., 2011). We conclude from Figure 1 that, for
these three instances, the IQRC method outperformed the
exact penalty method in terms of the capability of reducing
the objective value and infeasiblity.

6. Conclusion
Continuous optimization models with nonlinear constraints
have been widely used in many areas including machine
learning, statistics and operations research. When non-
convex functional constraints appear, even finding a feasible
solution is challenging. In this paper, we proposed a class
of quadratically regularized subgradient method which can
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find a nearly stationary point for functional constrained non-
convex problems. The complexity to find a nearly stationary
point for both deterministic case and stochastic case are
derived: (i) when each function fi is a deterministic func-
tion, we proposed a new variant of switching subgradient
to solve strongly convex subproblem and the total complex-
ity of Algorithm 1 for finding a nearly ε-stationary point is
O( 1

ε4 ), (ii) when each function fi is given as an expectation
of a stochastic function, we analyzed stochastic subgradient
method by (Yu et al., 2017) for solving subproblem and
the total complexity of Algorithm 1 for finding a nearly
ε-stationary point is Õ( 1

ε6 ).
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