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1. Appendix

In this section, we provide the proofs for the theoretical results in the paper.

1.1. Proof of Lemmalll
Proof. By KKT conditions, it holds that \; > 0 and )\, (g(ﬁt) + §H§t — xt||2) = 0. If \; = 0, there is nothing to show.

So, we focus on the case that \; > 0 and g(X;) + §||§t — x¢||? = 0. Note that xg is an e2-feasible solution. Using the
definitions of A(x;, §, €,6/T') and ¢ and the union bound, we can show that the iterate x; generated by Algorithm I]is an
€2-feasible solution for any ¢ with a probability of at least 1 — §.

Let X; = argmin{g(x) + §||x — x¢|?}. According to Assumption , the fact that x; is e>-feasible, and the fact that
xEX

p < p+ pe, we have

—0 2 min g() + L — x| 2 min g(x) + £ x = xal12 = g(&e) + L5 — x| M

As aresult, the Lagrangian multiplier )\; is well-defined and satisfies the optimality condition below together with X;:
0 € Of(Re) + p(Re — %) + M(09(Re) + p(Fe — x0)) + C1, (2)
for some C; € Ny (Xy).

Since g(x) + &x — x¢||2 + 1x(x) is (5 — p)-strongly convex in x and % € Nx(X:) = 01x(X:), we have

~

p=p
2

9(%) + BlI%e = x:])* 2 g®0) + DR — x|* + (9g(Re) + p(%e — 1) + §—x — %)+
t

1% — %]

= (9g(%e) + p(Re = x0) + G/, %o = Re) + L LI — .
Applying (T) to the inequality above and arranging terms give

A < <12
— X — X ~ oS = S e
—0e — (? p)H; dl > (0g(X¢) + p(Xe — x¢) + Ce/Aiy Xo — Xy)

o _109(e) +p(e = x4) + GNP (p— )R — %
- 2(p—p) 2 ’
which implies [|0g(X:) + p(Re — x¢) + Co/A||2 = 20(p — p).
Using this lower bound on [|0g(X;) + p(X; — x¢) + Ce/A¢||? and (@), we have that

= Nor&)+p&e=x)ll M+ pD
109(Xe) + p(Re — x2) + Ce/Mel| — /20e(p— p)

for all ¢ with a probability of at least 1 — §, where we have uied Assumption[I[C and Assumption[IF in the inequality. [



1.2. Proof of Theorem[I]

Proof. Since X411 = A(Xt, p, €,6/T), the definition of A and the union bound imply that the following inequalities hold
fort =0,...,7 — 1 with a probability of at least 1 — .

Foein) + Sl =xal® = F&) = El%e =P < €, glxisn) + Elxein —xif* < & 3)

Let A; be the optimal Lagrangian multiplier corresponding to X;. Then X; is also the optimal solution of the Lagrangian
function £(x) = f(x) + &||x — x¢[|* + Ae(g(x) + &]|x — x¢[|?). Since L(x) is (1 + A¢)(p — p)-strongly convex, we have

14+ 2)(p — - b b
UEACZP s -2 < pa)+ 2l =l 4 Auloxa) + Dl — )

— &) + EI%e = el 4+ Ae(g(Re) + D% — o)

= Fxe) — fR) + Auglx) — D%~ xal, @

where we use the complementary slackness, i.e., A\:(g(X:) + §||5Et — x;||?) = 0 in the equality above. Organizing the terms
in the first inequality of (3), we get

fxe1) < f&)+E+ §||§t —x|* - gHXtJrl —xe|?

= R ~ 14+ X)(p— =
< FE) + &+ Flo) — 1) + Mgloe) - CEAO e e
1+ M)(p— - A
= 10+ Mg - APy e
where second inequality is because of (@). The inequality above can be written as
1+ M)(p— S s
AP0 e, 312 < o) — flxe) + Aeglox) + & ®)
Summing up inequality () from ¢ = 0,1,...,7 — 1, we have
T-1 T-1
14+ X)(p— = 2
2O e, )1 < fx0) — fo + 3 Meglox) + T2
2
t=0 t=0

where f, is introduced in Assumption . Note that g(x:) < g(x¢) + ngt — x;_1]|? < €2 because of the property of A.
So we have
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H— . 1+ XM)(p— ~ A s
(p 5 p) ||Xt _ XtH2 < wnxt _ Xt||2 < f(Xo) _ flb + Z )\t62 + TEQ.
t=0 t=0 t=0
Dividing both sides by T'(p — p)/2, we have
T-1 T-1
- 1 - 2(f (x0) — fu) 2 2
Erllxr — %r|* = = x: — %||? < — + - 1+ X
R” R RH T ; || t t” = T(p—p) T(p—p) t:O( t)e

2(f(x0) — fin) 2¢* M + pD
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with a probability of at least 1 — &, where the second inequality is by Lemma|I]and the last inequality follows the definitions
of T" and €. O



1.3. Proof of Theorem

Proof. For simplicity of notation, we defined p1 := p—p. Let J := {0,1,..., K —1}\I where I is generated in Algorithm
when it terminates.

Suppose k € I, namely, G(z;,) < é? is satisfied in iteration . Algorithmwill update zy1 using F”(zy). Following the
standard analysis of subgradient decent method, we can get

Flow) — FR) < w(M? 1 2D + (2 — Bl — g2 — 12 =%l
29 2 27k
2M? +p*D?) | p(k+2)  2p ~ 2 bk +2) S
= Sy = Pl - = - e - %
2(M? + p°D?) | pk 2 Mk+2) S
= WJFIHZk*XtH *THZ/@H — X (6)
Multiplying & + 1 to the both sides of[6] we can get
~ 2(M? + p°D?)(k+1 k(k+1 ~ k+1)(k+2 ~
(k+1)(F(zr) — F(Xt)) < ( Z(plc—k 2))( +1) + £ (4+ )HZk - %) - WHZI@JA - %7
2(M? + p>D? k(k+ 1 - k+1)(k+2 -
< ( —;p ) _’_:u’ (4+ )sz_XtH2_ :u’( + i( + )||Zk+1_Xt||2 (7

Suppose k € J, namely, G(z;) < €2 is not satisfied in iteration . Algorithmwill update zy 1 using G’(zy). Similarly,
we can get

2(M? + p°D?) N pk(k +1)
o 4

pk +1)(k +2)

. lzr+1 — e ®)

2k — %) —

(k+1)(G(zr) — G(x)) <

Summing up inequalities (7) and (8) from &k = 0, ..., K — 1 and dropping the non-negative terms, we obtain

Sk 4 D(F(ze) — F&)) + Yk + D)(Glaw) - G < KO +7DY ©

kel keJ H
Because G(zy) > ¢ when k € J and G(X;) < 0, the inequality above implies
~ R 2K (M? + p*D?
Sk + D(F) - FE)+ 3 (k+ et < 2D

kel kedJ

10)

Rearranging terms gives

K—1 2 ~2 M2
Sk 4+ 1)(Flaw) — F&) < Sk + 1)é = 3 (k+ 1)e 4 20D
kel kel k=0 H
<> (k+1)E - KK+ 2, 2K(M” + p"D%)
B kel 2 H

/I 2 52 2 . . . . . ..
Given that K > %, the summation of the last two terms in the inequality above is non-positive. As a result, we
have

Y (ke D)(Flzi) - F(%) <Y (k+1)&
kel kel

Dividing both sides by >_, ., (k + 1) and using the convexity of F', we obtain F'(x41) — F(X;) < é2. As the same time,
rer(k+1)G(zR) _ 22
S TanEny =€

Hence, Algorithm 2]can be used as an oracle to solve (9) and the complexity of Algorithm [T will be

— ((f(x@ — fi) (M2 + 3°D?) ( M + jpD - 1)> .

the convexity of G ensures G(x;41)

et(p—p)? oe(p—p

Note that, Algorithm 2]is deterministic so that the complexity above does not depend on 4. O



1.4. Proof of Theorem

Proof. According to Assumption [IB and the factor that x; is e2-feasible with a high probability, Assumption 2 (The Slater’s
condition) in (Yu et al.,[2017) holds for the subproblem (E[) with a high probability. According to Theorem 4 in (Yu et al.|
2017), Algorithm [3| guarantees

F(x41) — F(X) < By(D, My, My, m, 0., K, ) (1)

with a probability of at least 1 — §, where

Bl(D,Mo,M1,m, O'E,K, 5) (12)
D? + M} /4 + (Mo + /mM:1D)?/2 + 1og”® () MoA(D, Mo, My, m, o, K, 5)
= NG ,
2 7 7 v 2
(D, Mo, 1,m, 00, K,0) = %+ (Mo + V/mdL D) + ? 42D+ (M(;+ vmM D) (13)
Y Y 2
FA(D, o, N1y, m o, K, 8) + SO ENIMDY o 2y 10g /),
and
v Y 2 v v 2
]\(DvMO;Ml?m?UE:Kvé) = 8(M0+mM1D) log |:1+ 32(M0+@M1D) €xp ( Y N Y ):| .
Oc o¢ 8(Mo + +/mM; D)
According to equation (22) in (Yu et al.,[2017)), Algorithm|§| guarantees
~ ~o K—1
Fi(xet1) < +—=+ > @k QR QI (14)
K VK 2K? =
fori=1,...,m. Itis also shown in Theorem 3 in (Yu et al.,2017) that
H(Q}in,,Q?)” S \/?A(DaM(LMl,maUﬂK?a) (15)
for k =0,1,..., K with a probability of at least 1 — §. Applying (I3) to (T4) and organizing terms, we obtain
Fi(xi41) < Ba(D, Mo, My, m, 0., K, 0) (16)
with a probability of at least 1 — §, where
BQ(D7MO7M17m3067K7 6) (17)
— A(D7M07M17m7U€7K7 6) + M12 + A(D7M07M17m7U€7K’ 6)\/EM12/2
B VK

To ensure Algorithm [3]is an oracle for (9), it suffices to choose the K large enough so that the left hand sides of (TT) and (T6)
are both no more than é2. Because A(D, My, M1, m, 0., K,6) = O(log(K/4)). It suffices to choose K = O(7r log(5)).
Hence, Algorithm 3]can be used as an oracle to solve (9) and the complexity of Algorithm[T]will be

TK—O(lﬁ).
€
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