Normalized Loss Functions for Deep Learning with Noisy Labels

A. Proofs for Lemma 1, Lemma 2 and Lemma 3

Our proofs are inspired by (Ghosh et al., 2017).

Lemma 1. In a multi-class classification problem, any normalized loss function Ly, is noise tolerant under symmetric (or
uniform) label noise, if noise rate n < £=1

Proof. For symmetric label noise, the noise risk can be defined as:
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where the last equality holds due to Zszl Lyorm(f(x), k) = 1, following Eq. (1). Thus,
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RI(f*) =R (f)=(1- ﬁ)(R(f ) — R(f)) <0,
because 7 < £=1 and f* is a global minimizer of R(f). This proves f* is also the global minimizer of risk R"(f), that is,
L yorm 18 NOise tolerant to symmetric label noise. O

Lemma 2. In a multi-class classification problem, given R(f*) = 0 and 0 < Lyopm(f* (), k) < 5. any normalized
loss function L, is noise tolerant under asymmetric (or class-conditional) label noise, if noise rate n;;, <1 — 1.

Proof. For asymmetric or class-conditional noise, 1 — 1, is the probability of a label being correct (i.e., k = y), and the
noise condition 7, < 1 — 1, generally states that a sample « still has the highest probability of being in the correct class Y,
though it has probability of 7, being in an arbitrary noisy (incorrect) class k£ # y. Considering the noise transition matrix

between classes [1;,], Vi, j € {1,2,--- , K}, this condition only requires that the matrix is diagonal dominated by 7;; (i.e.,
the correct class probability 1 —ny). Following the symmetric case, here we have,
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As f, is the minimizer of R"(f), R"(f,;) — R"7(f*) < 0. So, from 7 above, we have,
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Next, we prove, fn = f* holds following Eq. (8). First, (1 — ny — nyx) > 0 as per the assumption that nyr < 1 — n,. Thus,
Lorm — Liorm < 0 for Eq. (8) to hold. Since we are glven R(f*) =0, we have L(f*(x),y) = 0. Thus, following the definition of

* L(f*(®)=0k) _ _1
Lnorm in Eq. (1) and assumption Loom (f* (), k) < we have Loorm (f* (), k) = SEZ(fr @) — KT for all k # y. Also,
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we have Lonorm (fy (x), k) = m < ﬁ, Vk # y. Thus, for Eq. (8) to hold (e.g. Lynorm (fy (), k) > Lunorm (f™ (), k)),

it must be the case that py, = 0, Vk # y, thatis, Loorm (fr (€), k) = Lnorm(f* (), k) forall k € {1,2,--- , K}, thus f; = f* which
completes the proof. O
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Lemma 3. Vo, V0, if Laciive and Lpaggive are noise tolerant, then Lapp = o - Lactive + B+ Lpassive 1S noise tolerant.

PFOOf: Let avﬂ S R’ then Zj( CAPL(f(a:)vj) =« Zj( CActive(f(w)vj) + ﬂ . ZJK 'CPassive(f(m)vj) = Q- CActive + ﬁ .
Cpassive = C. Following our proof for Lemma 1, for symmetric noise, we have,

R’?(f) = R(f) (1 — ’I7K ) + (a - Cactive + 6 . CPassive)n.
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Thus, R"(f*) — R"(f) = (1 — I?—I_(l)(R(f*) — R(f)) <0. Givenn < £=L and f* is a global minimizer of R(f),
R(f*) — R(f), that is, f* is also the global minimizer of risk R"(f). Thus, Lapy, is noise tolerant to symmetric label noise.

Following our proof for Lemma 2, for asymmetric noise, we have,

RY(f) = (@ Caaive + B+ Crusse)Eary (1= 1) = By | 3(1 = 1y = 1y) Lrorm (£ (@), 1) ©
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As fy is the minimizer of R"(f), R"(f;) — R"(f*) < 0. So, from 9 above, we can derive the same equation as Eq. (8),

Ew,y[Z(l — 0y — M) (Lare(f7(x), k) — Lar(fr (), k) )} <0 (10)
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Thus, we can follow the same proof from Eq. (8), to f;y = f*, that is, LapL is also noise tolerant to asymmetric noise. O





