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Appendix
The appendix has two major parts: proof for all the theo-
rems and more detailed experiments (Appendix E).

A. Proofs
Proposition 1. R(f) satisfies Assumption 1 if, and only if,
R(f) = supg∈S 〈f, g〉H, where S ⊆ H is bounded in the
RKHS norm and is symmetric (g ∈ S ⇔ −g ∈ S).

Recall

Assumption 1. We assume thatR : F → R is a semi-norm.
Equivalently, R : F → R is convex andR(αf) = |α|R(f)
for all f ∈ F and α ∈ R (absolute homogeneity). Further-
more, we assume R is closed (i.e., lower semicontinuous)
w.r.t. the topology in H.

Proposition 1 (in a much more general form), to our best
knowledge, is due to Hörmander (1954). We give a “mod-
ern” proof below for the sake of completeness.

Proof for Proposition 1.
The “if” part: convexity and absolute homogeneity are triv-
ial. To show the lower semicontinuity, we just need to show
the epigraph is closed. Let (fn, tn) be a convergent se-
quence in the epigraph of R, and the limit is (f, t). Then
〈fn, g〉H ≤ tn for all n and g ∈ S. Tending n to infinty, we
get 〈f, g〉H ≤ t. Take supremum over g on the left-hand
side, and we obtain R(f) ≤ t, i.e., (f, t) is in the epigraph
of R.

The “only if” part: A sublinear function R vanishing at
the origin is a support function if, and only if, it is closed.
Indeed, if R is closed, then its conjugate function

λR∗(f∗) = λ

(
sup
f
〈f, f∗〉H −R(f)

)
(38)

= sup
f
〈λf, f∗〉H −R(λf) (39)

= R∗(f∗), (40)

is scaling invariant for any positive λ, i.e., R∗ is an indica-
tor function. Conjugating again we have R = (R∗)∗ is a
support function. So, R is the support function of

S = dom(R∗) = {g : 〈f, g〉H ≤ R(f) for all f ∈ H},

which is obviously closed. S is also symmetric, because the
symmetry of R implies the same for its conjugate function
R∗, hence its domain S.

To see S is bounded, assume to the contrary we have
λngn ∈ S with ‖gn‖H = 1 and λn → ∞. Since R is
finite-valued and closed, it is continuous, see (e.g. Borwein
and Vanderwerff, 2010, Proposition 4.1.5). Thus, for any

δ > 0 there exists some ε > 0 such that ‖f‖H ≤ ε =⇒
R(f) ≤ δ. Choose f = εgn in the definition of S above
we have:

ελn = 〈εgn, λngn〉H ≤ R(εgn) ≤ δ, (41)

which is impossible as λn →∞.

Proof of Theorem 4.
a): since

∑
i αiG

∗
xi =

∑
j βjG

∗
zj , it holds that〈

h;
∑
i

αiG
∗
xi

〉
=

〈
h;
∑
j

βjG
∗
zj

〉
, ∀ h ∈ F (42)

which implies that∑
i

αih(xi) =
∑
j

βih(zj), ∀h ∈ F. (43)

Therefore ∑
i

αik(xi, ·) =
∑
j

βjk(zj , ·). (44)

Then apply the linear map T on both sides, and we imme-
diately get

∑
i αik̃xi =

∑
j βj k̃zj .

b): suppose otherwise that the completion of span{G∗x :
x ∈ X} is not B∗. Then by the Hahn-Banach theorem,
there exists a nonzero function f ∈ B such that 〈f ;G∗x〉 =
0 for all x ∈ X. By (8), this means f(x) = 0 for all x.
Since B is a Banach space of functions on X, f = 0 in B.
Contradiction.

The linearity of ι∗ follows directly from a) and b).

To prove Theorem 5, we first introduce five lemmas. To
start with, we set up the concept of polar operator that will
be used extensively in the proof:

POB̃(u) := arg max
v∈B̃
〈v, u〉 , ∀u ∈ Rd. (45)

Here the optimization is convex, and the argmax is
uniquely attained because B̃ is strictly convex. So ‖·‖B̃∗
is differentiable at all u, and the gradient is

∇‖u‖B̃∗ = POB̃(u). (46)

Lemma 1. Under Assumptions 2 and 3,

‖g‖B = ‖g∗‖B∗ = ‖ι∗(g∗)‖B̃∗ = ‖ι(g)‖B̃ , ∀ g ∈ B.
(47)

Proof. The first equality is trivial, and the third equality
is by the definition of ι(g) in (23). To prove the second
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equality, let us start by considering g∗ =
∑
i αiG

∗
xi . Then

‖ι∗(g∗)‖B̃∗ = max
v∈B̃
〈v, ι∗(g∗)〉 (48)

= max
v∈B̃

∑
i

αi

〈
v, k̃xi

〉
(49)

‖g∗‖B∗ = max
f∈B
〈f ; g∗〉 = max

f∈B

∑
i

αif(xi) (50)

= max
f∈B

∑
i

αi 〈f, k(xi, ·)〉H (51)

= max
f∈B

∑
i

αi

〈
f̃ , k̃xi

〉
, (52)

where the last equality is by Assumption 3. So it suffices
to show that B̃ = {f̃ : f ∈ B}.

“⊇” is trivial because for all f ∈ B, by Assumption 3,∥∥∥f̃∥∥∥2

+ max
z∈S

〈
z̃, f̃
〉2

= ‖f‖2H + max
z∈S
〈z, f〉2H ≤ 1. (53)

“⊆”: for any v ∈ B̃, Assumption 2 asserts that there exists
hv ∈ H such that h̃v = v. Then by Assumption 3,

‖hv‖2H + max
z∈S
〈z, hv〉2H = ‖v‖2 + max

z∈S
〈z̃, v〉2 ≤ 1.

(54)

Since both ‖·‖B∗ and ‖·‖B̃∗ are continuous, applying the
denseness result in part b) of Theorem 4 completes the
proof of the second equality in (47).

Lemma 2. Under Assumptions 2 and 3,

〈ι(f), ι∗(g∗)〉 = 〈f ; g∗〉 , ∀ f ∈ B, g∗ ∈ B∗. (55)

Proof.

〈f ; g∗〉 by (7)
= [g∗, f∗]B∗ (56)

= lim
t→0

1

2t

(
‖f∗ + tg∗‖2B∗ − ‖f

∗‖2B∗
)

(by Giles (1967))

(57)

= lim
t→0

1

2t

[
‖ι∗(f∗) + tι∗(g∗)‖2B̃∗ − ‖ι

∗(f∗)‖2B̃∗
]
, (58)

where the last equality is by Lemma 1 and Theorem 4. Now
it follows from the polar operator as discussed above that

〈f ; g∗〉 =
〈
‖ι∗(f∗)‖B̃∗ · POB̃(ι∗(f∗)), ι∗(g∗)

〉
(59)

= 〈ι(f), ι∗(g∗)〉 .

Lemma 3. Under Assumptions 2 and 3,

B̃ = ι(B) := {ι(f) : ‖f‖B ≤ 1}. (60)

Proof. “LHS ⊇ RHS”: by Lemma 1, it is obvious that
‖f‖B ≤ 1 implies ‖ι(f)‖B̃ ≤ 1.

“LHS ⊆ RHS”: we are to show that for all v ∈ B̃, there
must exist a fv ∈ B such that v = ι(f). If v = 0, then
trivially set fv = 0. In general, due to the polar operator
definition (45), there must exist u ∈ Rd such that

v/ ‖v‖B̃ = POB̃(u). (61)

We next reverse engineer a q∗ ∈ B∗ so that ι∗(g∗) = u.
By Assumption 2, there exists hu ∈ H such that h̃u = u.
Suppose hu =

∑
i αikxi . Then define q∗ =

∑
i αiG

∗
xi ,

and we recover u by

ι∗(q∗) =
∑
i

αik̃i = h̃u = u. (62)

Apply Lemma 1 and we obtain

‖q‖B = ‖ι∗(q∗)‖B̃∗ = ‖u‖B̃∗ . (63)

Now construct

fv =
‖v‖B̃
‖q‖B

q. (64)

We now verify that v = ι(fv). By linearity of ι∗,

ι∗(f∗v ) =
‖v‖B̃
‖q‖B

ι∗(q∗) =
‖v‖B̃
‖q‖B

u. (65)

So POB̃(ι∗(f∗v )) = v/ ‖v‖B̃ and plugging into (23),

ι(fv) = ‖ι∗(f∗v )‖B̃∗ POB̃(ι∗(f∗v )) (66)

=
‖v‖B̃
‖q‖B

‖u‖B̃∗
1

‖v‖B̃
v (67)

= v. (by (63))

Lemma 4. Under Assumptions 2 and 3,

B̃∗ = ι∗(B∗) := {ι∗(g∗) : ‖g∗‖B∗ ≤ 1}. (68)

Proof. “LHS ⊇ RHS”: By definition of dual norm, any
g∗ ∈ B∗ must satisfy

〈f ; g∗〉 ≤ 1, ∀ f ∈ B. (69)

Again, by the definition of dual norm, we obtain

‖ι∗(g∗)‖B̃∗ = sup
v∈B̃
〈v, ι∗(g∗)〉 (70)

= sup
f∈B
〈ι(f), ι∗(g∗)〉 (Lemma 3) (71)

= sup
f∈B
〈f ; g∗〉 (by Lemma 2) (72)

≤ 1. (73)

“LHS ⊆ RHS”: Any u ∈ Rd with ‖u‖B̃∗ = 1 must satisfy

max
v∈B̃
〈u, v〉 = 1. (74)
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Denote v = arg maxv∈B̃ 〈u, v〉 which must be uniquely
attained. So ‖v‖B̃ = 1. Then Lemma 3 implies that there
exists a f ∈ B such that ι(f) = v. By duality,

max
u∈B̃∗

〈v, u〉 = 1, (75)

and u is the unique maximizer. Now note

〈v, ι∗(f∗)〉 = 〈ι(f), ι∗(f∗)〉 = 〈f ; f∗〉 = 1, (76)

where the last equality is derived from Lemma 1 with

‖f‖B = ‖ι(f)‖B̃ = ‖v‖B̃ = 1. (77)

Note from Lemma 1 that ‖ι∗(f∗)‖B̃∗ = ‖f‖B = 1. So
ι∗(f∗) is a maximizer in (75), and as a result, u = ι∗(f∗).

If ‖u‖B̃∗ < 1, then just construct f as above for u/ ‖u‖B̃∗ ,
and then multiply it by ‖u‖B̃∗ . The result will meet our
need thanks to the linearity of ι∗ from Theorem 4.

Lemma 5. Under Assumptions 2 and 3,

max
v∈B̃
〈v, ι∗(g∗)〉 = max

f∈B
〈f ; g∗〉 , ∀g∗ ∈ B∗. (78)

Moreover, by Theorem 3, the argmax of the RHS is uniquely
attained at f = g/ ‖g‖B, and the argmax of the LHS is
uniquely attained at v = ι(g)/ ‖ι(g)‖B̃.

Proof. LHS ≥ RHS: Let fopt be an optimal solution to the
RHS. Then by Lemma 3, ι(fopt) ∈ B̃, and so

RHS =
〈
fopt; g∗

〉
(79)

=
〈
ι(fopt), ι∗(g∗)

〉
(by Lemma 2) (80)

≤ max
v∈B̃
〈v, ι∗(g∗)〉 (81)

= LHS. (82)

LHS ≤ RHS: let vopt be an optimal solution to the LHS.
Then by Lemma 3, there is fvopt ∈ B such that ι(fvopt) =
vopt. So

LHS =
〈
vopt, ι∗(g∗)

〉
(83)

= 〈ι(fvopt), ι∗(g∗)〉 (84)
= 〈fvopt ; g∗〉 (by Lemma 2) (85)
≤ max

f∈B
〈f ; g∗〉 (since fvopt ∈ B) (86)

= RHS.

Proof of Theorem 5. Let f ∈ B and α ∈ R. Then (αf)∗ =
αf∗, and by (23) and Theorem 4,

ι(αf) = ‖ι∗(αf∗)‖B̃∗ · POB̃(ι∗(αf∗)) (87)
= |α| ‖ι∗(f∗)‖B̃∗ · POB̃(αι∗(f∗)). (88)

By the symmetry of B̃,

ι(αf) = |α| ‖ι∗(f∗)‖B̃∗ · sign(α) POB̃(ι∗(f∗)) (89)
= α ι(f). (90)

Finally we show ι(f1 +f2) = ι(f1) + ι(f2) for all f1, f2 ∈
B. Observe

〈ι(f1) + ι(f2), ι∗((f1 + f2)∗)〉 (91)
= 〈ι(f1), ι∗((f1 + f2)∗)〉+ 〈ι(f2), ι∗((f1 + f2)∗)〉

(92)

= 〈f1; (f1 + f2)∗〉+ 〈f2; (f1 + f2)∗〉 (93)
= 〈f1 + f2; (f1 + f2)∗〉 . (94)

Therefore

〈v, ι∗((f1 + f2)∗)〉 =

〈
f1 + f2

‖f1 + f2‖B
; (f1 + f2)∗

〉
, (95)

where v =
ι(f1) + ι(f2)

‖f1 + f2‖B
. (96)

We now show ‖v‖B̃ = 1, which is equivalent to

‖ι(f1) + ι(f2)‖B̃ = ‖f1 + f2‖B . (97)

Indeed, this can be easily seen from

LHS = sup
u∈B̃∗

〈ι(f1) + ι(f2), u〉 (98)

= sup
g∗∈B∗

〈ι(f1) + ι(f2), ι∗(g∗)〉 (Lemma 4) (99)

= sup
g∗∈B∗

〈f1 + f2; g∗〉 (by Lemma 2) (100)

= RHS. (101)

By Lemma 5,

max
v∈B̃
〈v, ι∗((f1 + f2)∗)〉 = max

f∈B
〈f ; (f1 + f2)∗〉 . (102)

Since the right-hand side is optimized at f = (f1 +
f2)/ ‖f1 + f2‖B, we can see from (95) and ‖v‖B̃ = 1 that
v = POB̃(ι∗((f1 + f2)∗)). Finally by definition (23), we
conclude

ι(f1 + f2) = ‖ι∗((f1 + f2)∗)‖B̃∗ · POB̃(ι∗((f1 + f2)∗))
(103)

= ‖f1 + f2‖B v (by Lemma 1) (104)
= ι(f1) + ι(f2).

Proof of Theorem 7. We assume that the kernel k is smooth
and the function

zij(λ) = ∂
∂λk((x̃λ, ỹλ), (·, ·)).
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is in Lp so that Rij is well-defined and finite-valued.

Clearly, using the representer theorem we can rewrite

Rij(f) = ‖ 〈f, zij(λ)〉
H
‖p. (105)

Thus, Rij is the composition of the linear map f 7→
g(λ; f) := 〈f, zij(λ)〉

H
and the Lp norm g 7→ ‖g(λ)‖p.

It follows from the chain rule thatRij is convex, absolutely
homogeneous, and Gâteaux differentiable (recall that the
Lp norm is Gâteaux differentiable for p ∈ (1,∞)).

B. Analysis under Inexact Euclidean
Embedding

We first rigorously quantify the inexactness in the Eu-
clidean embedding T : H → Rd, where Tf = f̃ . To this
end, let us consider a subspace based embedding, such as
Nyström approximation. Here let T satisfy that there exists
a countable set of orthonormal bases {ei}∞i=1 of H, such
that

1. Tek = 0 for all k > d,

2. 〈Tf, Tg〉 = 〈f, g〉H, ∀f, g ∈ V :=span{e1, . . . , ed}.

Clearly the Nyström approximation in (20) satisfies these
conditions, where d = n, and {e1, . . . , ed} is any or-
thornormal basis of {kz1 , . . . , kzd} (assuming d is no more
than the dimensionality of H).

As an immediate consequence, {Te1, . . . , T ed} forms an
orthonormal basis of Rd: 〈Tei, T ej〉 = 〈ei, ej〉H = δij
for all i, j ∈ [d]. Besides, T is contractive because for all
f ∈ F,

‖Tf‖2 =

∥∥∥∥∥
d∑
i=1

〈f, ei〉H Tei

∥∥∥∥∥
2

(106)

=

d∑
i=1

〈f, ei〉2H ≤ ‖f‖
2
H . (107)

By Definition 5, obviously kzi is 0-approximable un-
der the Nyström approximation. If both f and g are ε-
approximable, then f + g must be (2ε)-approximable.

Lemma 6. Let f ∈ H be ε-approximable by T , then for
all u ∈ H,

|〈u, f〉H − 〈Tu, Tf〉| ≤ ε ‖u‖H . (108)

Proof. Let f =
∑∞
i=1 αiei and u =

∑∞
i=1 βiei. Then

|〈u, f〉H − 〈Tu, Tf〉| (109)

=

∣∣∣∣∣∣
∞∑
i=1

αiβi −

〈
d∑
i=1

αiTei,

d∑
j=1

βjTej

〉∣∣∣∣∣∣ (110)

=

∣∣∣∣∣
∞∑

i=d+1

αiβi

∣∣∣∣∣ (111)

≤

( ∞∑
i=d+1

α2
i

)1/2
 ∞∑
j=d+1

β2
j

1/2

(112)

≤ ε ‖u‖H .

Proof of Theorem 6. We first prove (30). Note for any u ∈
F,

〈u; g∗〉 = [u, g] (113)

= lim
t→0

1

2

[
‖tu+ g‖2B − ‖g‖

2
B

]
(114)

=
〈
u, g +∇R2(g)

〉
H
. (115)

The differentiability of R2 is guaranteed by the Gâteaux
differentiability. Letting g∗ =

∑
i αiG

∗
vi , it follows that

〈u; g∗〉 =
∑
i

αiu(vi) =

〈
u,
∑
i

αikvi

〉
H

. (116)

So
∑
i αikvi = g +∇R2(g), and by the definition of ι∗

ι∗(g∗) =
∑
i

αiTkvi = Tag (117)

where ag :=
∑
i

αikvi = g +∇R2(g). (118)

Similarly,

ι∗(f∗) = Taf , where af := f +∇R2(f). (119)

By assumption arg maxh∈S 〈h, g〉H is ε-approximable,
and hence ag is O(ε)-approximable. Similarly, af is also
O(ε)-approximable.

Now let us consider

v◦ := arg max
v∈Rd:‖v‖2+suph∈S〈v,Th〉2≤1

〈v, Taf 〉 (120)

u◦ := arg max
u∈F:‖u‖2H+suph∈S〈u,h〉2H≤1

〈u, af 〉H . (121)

By definition, ι(f) = v◦. Also note that u◦ = f because
〈u, af 〉H = 〈u; f∗〉 for all u ∈ F. We will then show that

‖ι(f)− Tf‖ = ‖v◦ − Tu◦‖ = O(
√
ε), (122)
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which allows us to derive that

〈f ; g∗〉 = 〈f, ag〉H (123)
= 〈Tf, Tag〉+O(ε) (by Lemma 6) (124)
= 〈Tu◦, Tag〉+O(ε) (125)

= 〈v◦, Tag〉+O(
√
ε) (by (122)) (126)

= 〈ι(f), ι∗(g∗)〉+O(
√
ε). (by (117)) (127)

Finally, we prove (122). Denote

w◦ := arg max
w∈F:‖w‖2H+suph∈S〈Tw,Th〉2≤1

〈w, af 〉H .

(128)

We will prove that ‖v◦ − Tw◦‖ = O(ε2) and
‖u◦ − w◦‖H = O(

√
ε). They will imply (122) because

by the contractivity of T , ‖T (u◦ − w◦)‖ ≤ ‖u◦ − w◦‖H.

Step 1: ‖v◦ − Tw◦‖ = O(ε2). Let w = w1 + w2 where
w1 ∈ V and w2 ∈ V ⊥. So Tw = Tw1 and ‖Tw‖ =
‖w1‖H. Similarly decompose af as a1 + a2, where a1 =
Taf ∈ V and a2 ∈ V ⊥. Now the optimization over w
becomes

max
w1∈V,w2∈V ⊥

〈w1, a1〉H + 〈w2, a2〉H (129)

s.t. ‖w1‖2H + ‖w2‖2H + sup
h∈S
〈Tw1, Th〉2 ≤ 1. (130)

Let ‖w2‖2 = 1 − α where α ∈ [0, 1]. Then the optimal
value of 〈w2, a2〉H is

√
1− α ‖a2‖H. Since 〈w1, a1〉H =

〈Tw1, Ta1〉, the optimization over w1 can be written as

min
w1∈V

〈Tw1, Ta1〉 (131)

s.t. ‖Tw1‖2 + sup
h∈S
〈Tw1, Th〉2 ≤ α. (132)

Change variable by v = Tw1. Then compare with the
optimization of v in (120), and we can see that v◦ =
Tw◦1/

√
α. Overall the optimal objective value of (129) un-

der ‖w2‖2 = 1 − α is
√

1− α ‖a2‖H +
√
αp where p is

the optimal objective value of (120). So the optimal α is
p2

p2+‖a2‖2H
, and hence

‖v◦ − Tw◦‖ = ‖v◦ − Tw◦1‖ =
∥∥v◦ −√αv◦∥∥ (133)

= (1−
√
α) ‖v◦‖ ≤ 1−

√
α. (134)

Since af is O(ε)-approximable, so ‖a2‖H = O(ε) and

1−
√
α =

1− α
1 +
√
α

= O(‖a2‖2H) = O(ε2). (135)

Step 2: ‖u◦ − w◦‖H = O(
√
ε). Motivated by Theorem 8,

we consider two equivalent problems:

û◦ = arg max
u∈F:〈u,af 〉H=1

{
‖u‖2H + sup

h∈S
〈u, h〉2H

}
(136)

ŵ◦ = arg max
w∈F:〈w,af 〉H=1

{
‖w‖2H + sup

h∈S
〈Tw, Th〉2

}
.

(137)

Again we can decompose u into U := span{af} and its
orthogonal space U⊥. Since 〈u, af 〉H = 1, the component
of u in U must be āf := af/ ‖af‖2H. So

û◦ = āf + arg max
u⊥∈U⊥

{∥∥u⊥∥∥2

H
+ sup
h∈S

〈
u⊥ + āf , h

〉2
H

}
.

(138)

Similarly,

w◦ = āf + arg max
w⊥∈U⊥

{∥∥w⊥∥∥2

H
(139)

+ sup
h∈S

〈
T (w⊥ + āf ), Th

〉2
H

}
.

(140)

We now compare the objective in the above two argmax
forms. Since any h ∈ S is ε-approximable, so for any
x ∈ F:

|〈x, h〉H − 〈Tx, Th〉H| = O(ε). (141)

Therefore tying u⊥ = w⊥ = x, the objectives in the
argmax of (138) and (139) differ by at most O(ε). There-
fore their optimal objective values are different by at most
O(ε). Since both objectives are (locally) strongly convex
in U⊥, the RKHS distance between the optimal u⊥ and the
optimal w⊥ must be O(

√
ε). As a result ‖û◦ − ŵ◦‖H =

O(
√
ε).

Finally to see ‖u◦ − w◦‖H = O(ε), just note that by The-
orem 8, u◦ and w◦ simply renormalize û◦ and ŵ◦ to the
unit sphere of ‖·‖B, respectively. So again ‖u◦ − w◦‖H =
O(
√
ε).

In the end, we prove (31). The proof of ι(αf) = αι(f) is
exactly the same as that for Theorem 4. To prove (31), note
that f + g is (2ε)-approximable. Therefore applying (122)
on f , g, f + g, we get

‖ι(f)− Tf‖ = O(
√
ε), (142)

‖ι(fg)− Tg‖ = O(
√
ε), (143)

‖ι(f + g)− T (f + g)‖ = O(
√
ε). (144)

Combining these three relations, we conclude (31).
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C. Solving the Polar Operator
Theorem 8. Suppose J is continuous and J(αx) =
α2J(x) ≥ 0 for all x and α ≥ 0. Then x is an optimal
solution to

P : max
x

a>x, s.t. J(x) ≤ 1, (145)

if, and only if, J(x) = 1, c := a>x > 0, and x̂ := x/c is
an optimal solution to

Q : min
x
J(x), s.t. a>x = 1. (146)

Proof. We first show the ”only if” part. Since J(0) = 0
and J is continuous, the optimal objective value of P must
be positive. Therefore c > 0. Also note the optimal x for P
must satisfy J(x) = 1 because otherwise one can scale up
x to increase the objective value of P . To show x̂ optimizes
Q, suppose otherwise there exists y such that

a>y = 1, J(y) < J(x̂). (147)

Then letting

z = J(y)−1/2y, (148)

we can verify that

J(z) = 1, (149)

a>z = J(y)−1/2a>y = J(y)−1/2 (150)

> J(x̂)−1/2 = cJ(x)−1/2 = c = a>x. (151)

So z is a feasible solution for P , and is strictly better than
x. Contradiction.

We next show the “if” part: for any x, if J(x) = 1, c :=
a>x > 0, and x̂ := x/c is an optimal solution to Q, then
x must optimize P . Suppose otherwise there exists y, such
that J(y) ≤ 1 and a>y > a>x > 0. Then consider z :=
y/a>y. It is obviously feasible for Q, and

J(z) = (a>y)−2J(y) < (a>x)−2J(y) (152)

≤ (a>x)−2J(x) = J(x̂). (153)

This contradicts with the optimality of x̂ for Q.

Projection to hyperplane To solve problem (28), we use
LBFGS with each step projected to the feasible domain, a
hyperplane. This requires solving, for given c and a,

min
x

1

2
‖x− c‖2 , s.t. a>x = 1. (154)

Write out its Lagrangian and apply strong duality thanks to
convexity:

min
x

max
λ

1

2
‖x− c‖2 − λ(a>x− 1) (155)

= max
λ

min
x

1

2
‖x− c‖2 − λ(a>x− 1) (156)

= max
λ

1

2
λ2 ‖a‖2 − λ2 ‖a‖2 − λa>c+ λ, (157)

where x = c+ λa. The last step has optimal

λ = (1− a>c)/ ‖a‖2 . (158)

D. Gradient in Dual Coefficients
We first consider the case where S is a finite set, and denote
as zi the RKHS Nyström approximation of its i-th element.
When f∗ has the form of (12), we can compute ι(f) by
using the Euclidean counterpart of Theorem 3 as follows:

arg max
u

u>
∑

j
cjkj (159)

s.t. ‖u‖2 + (z>i u)2 ≤ 1, ∀ i, (160)

where kj the the Nyström approximation of k(xj , ·).

Writing out the Lagrangian with dual variables λi:

u>
∑
j

cjkj +
∑
i

λi

(
‖u‖2 + (z>i u)2 − 1

)
, (161)

we take derivative with respect to u:

X>c+ 21>λu+ 2ZΛZ>u = 0. (162)

where X = (k1, k2, . . .), Z = (z1, z2, . . .), λ =
(λ1, λ2, . . .), Λ = diag(λ1, λ2, . . .) (diagonal matrix), and
1 is a vector of all ones. This will hold for c+ ∆c, λ+ ∆λ

and u+ ∆u:

X>(c+ ∆c) + 21>(λ+ ∆λ)(u+ ∆u) (163)

+ 2Z(Λ + ∆Λ)Z>(u+ ∆u) = 0. (164)

Subtract it by (162), we obtain

X>∆c + 2(1>∆λ)u+ 2(1>λ)∆u (165)

+ 2Z∆ΛZ
>u+ 2ZΛZ>∆u = 0. (166)

The complementary slackness writes

λi(‖u‖2 + (z>i u)2 − 1) = 0. (167)

This holds for λ+ ∆λ and u+ ∆u:

(λi + ∆λi)(‖u+ ∆u‖2 + (z>i u+ z>i ∆u)2 − 1) = 0.
(168)
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Subtract it by (167), we obtain

∆λi(‖u‖
2

+ (z>i u)2 − 1) + 2λi(u+ (z>i u)zi)
>∆u = 0.

(169)

Putting together (165) and (169), we obtain

S

(
∆u

∆λ

)
=

(
−X>∆c

0

)
, (170)

where S is(
2(1>λ)I + 2ZΛZ> 2u1> + 2Z diag(Z>u)

2Λ(1u> + diag(Z>u)Z>) diag(‖u‖2 + (z>i u)2 − 1)

)
.

(171)

Therefore

du

dc
=
(
I 0

)
S−1

(
−X>

0

)
. (172)

Finally we investigate the case when S is not finite. In such
a case, the elements z in S that attain ‖u‖2 + (z>u)2 = 1
for the optimal u are still finite in general. For all other
z, the complementary slackness implies the corresponding
λ element is 0. As a result, the corresponding diagonal
entry in the bottom-right block of S is nozero, while the
corresponding row in the bottom-left block of S is straight
0. So the corresponding entry in ∆λ in (170) plays no role,
and can be pruned. In other words, all z ∈ S such that
‖u‖2 + (z>u)2 < 1 can be treated as nonexistent.

The emprirical loss depends on f(xj), which can be com-
puted by ι(f)>kj . Since ι(f) = (u>

∑
j cjkj)u, (172)

allows us to backpropagate the gradient in ι(f) into the gr-
dient in {cj}.

E. Experiments
E.1. Additional experimental results on mixup

Results. We first present more detailed experimental re-
sults for the mixup learning. Following the algorithms de-
scribed in Section 7.2, each setting was evaluated 10 times
with randomly sampled training and test data. The mean
and standard deviation are reported in Table 2. Since the
results of Embed and Vanilla have the smallest difference
under n = 1000, p = 4n, for each dataset, we show scatter
plots of test accuracy under 10 runs for this setting. In Fig-
ure 2, the x-axis represents accuracy of Embed method,
and the y-axis represents the accuracy of Vanilla. Obvi-
ously, most points fall above the diagonal, meaning Em-
bed method outperforms Vanilla most of the time.

Visualization. To show that Embed learned better rep-
resentations in mixup, we next visualized the impact of the

two different methods. Figure 3 plots how the loss value of
three randomly sampled pairs of test examples changes as
a function of λ in (32). Each subplot here corresponds to a
randomly chosen pair. By increasing λ from 0 to 1 with a
step size 0.1, we obtained different mixup representations.
We then applied the trained classifiers on these represen-
tations to compute the loss value. As shown in Figure 3,
Embed always has a lower loss, especially when Vanilla is
at its peak loss value. Recall in (33), Embed learns repre-
sentations by considering the λ that maximizes the change;
this figure exactly verified this behavior and Embed learns
better representation.

E.2. Additional experiments for structured multilabel
prediction

Here, we provide more detailed results for our method ap-
plied to structured multilabel prediction, as described in
Section 6.

Accuracy on multiple runs. We repeated the experi-
ment, detailed in Section 7.3 and tabulated in Table 3 ten
times for all the three algorithms. Figures 4,5,6 show the
accuracy plot of our method (Embed) compared with base-
lines (ML-SVM and HR-SVM) on Enron (Klimt and Yang,
2004), WIPO (Rousu et al., 2006), Reuters (Lewis et al.,
2004) datasets with 100/100, 200/200, 500/500 randomly
drawn train/test examples over 10 runs.

Comparing constraint violations. In this experiment,
we demonstrate the effectiveness of the model’s ability to
embed structures explicitly. Recall that for the structured
multilabel prediction task, we wanted to incorporate two
types of constraints (i) implication, (ii) exclusion. To test
if our model (Embed) indeed learns representations that
respect these constraints, we counted the number of test
examples that violated the implication and exclusion con-
straints from the predictions. We repeated the test for ML-
SVM and HR-SVM.

We observed that HR-SVM and Embed successfully mod-
eled implications on all the datasets. This is not surprising
as HR-SVM takes the class hierarchy into account. The
exclusion constraint, on the other hand, is a “derived” con-
straint and is not directly modeled by HR-SVM. Therefore,
on datasets where Embed performed significantly better
than HR-SVM, we might expect fewer exclusion violations
by Embed compared to HR-SVM. To verify this intuition,
we considered the Enron dataset with 200/200 train/test
split where Embed performed better than HR-SVM. The
constraint violations are shown as a line plot in Figure 7,
with the constraint index on the x-axis and number of ex-
amples violating the constraint on the y-axis.

Recall again that predictions in Embed for multilabel pre-
diction are made using a linear classifier. Therefore the
superior performance of Embed in this case, can be at-
tributed to accurate representations learned by the model.
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Figure 2: Scatter plot of test accuracy for mixup: n = 1000, p = 4n

Figure 3: Plots of three different pairs of test examples, showing how loss values change as a function of λ

(a) 100/100 train/test split (b) 200/200 train/test split (c) 500/500 train/test split

(d) 100/100 train/test split (e) 200/200 train/test split (f) 500/500 train/test split

Figure 4: Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed (bottom row) 10 runs on the Reuters
dataset
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(a) 100/100 train/test split (b) 200/200 train/test split (c) 500/500 train/test split

(d) 100/100 train/test split (e) 200/200 train/test split (f) 500/500 train/test split

Figure 5: Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed (bottom row) 10 runs on the WIPO
dataset

(a) 100/100 train/test split (b) 200/200 train/test split (c) 500/500 train/test split

(d) 100/100 train/test split (e) 200/200 train/test split (f) 500/500 train/test split

Figure 6: Test accuracy of ML-SVM vs Embed (top row) and HR-SVM vs Embed (bottom row) 10 runs on the ENRON
dataset
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Figure 7: The number of violations for each exclusion constraint on the test set by (from top) ML-SVM, HR-SVM, and
Embed on the Enron dataset with 200/200 train/test examples.
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