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Abstract give rise to a set of solutions, known as the Pareto set, with 

Tasks in multi-task learning often correlate, con-
fict, or even compete with each other. As a result, 
a single solution that is optimal for all tasks rarely 
exists. Recent papers introduced the concept of 
Pareto optimality to this feld and directly cast 
multi-task learning as multi-objective optimiza-
tion problems, but solutions returned by existing 
methods are typically fnite, sparse, and discrete. 
We present a novel, effcient method that gen-
erates locally continuous Pareto sets and Pareto 
fronts, which opens up the possibility of contin-
uous analysis of Pareto optimal solutions in ma-
chine learning problems. We scale up theoretical 
results in multi-objective optimization to mod-
ern machine learning problems by proposing a 
sample-based sparse linear system, for which stan-
dard Hessian-free solvers in machine learning can 
be applied. We compare our method to the state-
of-the-art algorithms and demonstrate its usage 
of analyzing local Pareto sets on various multi-
task classifcation and regression problems. The 
experimental results confrm that our algorithm 
reveals the primary directions in local Pareto sets 
for trade-off balancing, fnds more solutions with 
different trade-offs effciently, and scales well to 
tasks with millions of parameters. 

1. Introduction 
Conficting objectives are common in machine learning 
problems: designing a machine learning model takes into 
account model complexity and generalizability, training a 
model minimizes bias and variance errors from datasets, and 
evaluating a model typically involves multiple metrics that 
are, more often than not, competing with each other. Such 
trade-offs among objectives often invalidate the existence of 
one single solution optimal for all objectives. Instead, they 
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varying preferences on different objectives. 

In this paper, we are interested in the topic of recovering 
Pareto sets in deep multi-task learning (MTL) problems. 
Despite that MTL is inherently a multi-objective problem 
and trade-offs are frequently observed in theory and prac-
tice, most of prior work focused on obtaining one optimal 
solution that is universally used for all tasks. To solve this 
problem, prior approaches proposed new model architec-
tures (Misra et al., 2016) or developed new optimization 
algorithms (Kendall et al., 2018; Sener & Koltun, 2018). 
Work on exploring a diverse set of solutions with trade-
offs is surprisingly rare and limited to fnite and discrete 
solutions (Lin et al., 2019). In this work, we address this 
challenging problem by proposing an effcient method that 
reconstructs a frst-order accurate continuous approximation 
to Pareto sets in MTL problems. 

The signifcant leap from fnding a discrete Pareto set to dis-
covering a continuous one requires a fundamentally novel 
algorithm. Typically, generating one solution in a Pareto 
set is a time-consuming process that requires expensive 
optimization (e.g., training a neural network). In order to 
obtain an effcient algorithm for computing a continuous 
Pareto set, it is necessary to exploit local information. Our 
technical method is inspired by second-order methods in 
multi-objective optimization (MOO) (Hillermeier, 2001; 
Martı́n & Schütze, 2018; Schulz et al., 2018) which connect 
the local tangent plane, the gradient information, and the 
Hessian matrices at a Pareto optimal solution all in one con-
cise linear equation. This theorem allows us to construct a 
continuous, frst-order approximation of the local Pareto set. 
However, naively applying this method to deep MTL scales 
poorly with the number of parameters (e.g., the number of 
weights in a neural network) due to its need to compute full 
Hessian matrices. Motivated by other second-order methods 
in deep learning (Martens, 2010; Vinyals & Povey, 2012), 
we propose to resolve the scalability issue by using Krylov 
subspace iteration methods, a family of matrix-free, iter-
ative linear solvers, and present a complete algorithm for 
generating families of continuous Pareto sets in deep MTL. 

We empirically evaluate our method on fve datasets with 
various size and model complexity, ranging from Mul-
tiMNIST (Sabour et al., 2017) that consists of 60k images 
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and requires a network classifer with only 20k parameters, 
to UTKFace (Zhang et al., 2017), an image dataset with 3 
objectives and a modern network structure with millions of 
parameters. The code and data are available online1. Ex-
perimental results demonstrate that our method generates 
much denser Pareto sets and Pareto fronts than previous 
work with small computational overhead compared to the 
whole MTL training process. We also show in the experi-
ments the continuous Pareto sets can be reparametrized into 
a low dimensional parameter space, allowing for intuitive 
manipulation and traversal in the Pareto set. We believe 
that our effcient and scalable algorithm can open up new 
possibilities in MTL and foster a deeper understanding of 
trade-offs between tasks. 

2. Related work 
Multi-task learning (MTL) is a learning paradigm that 
jointly optimizes a set of tasks with shared parameters. It 
is generally assumed that information across different tasks 
can reinforce the training of shared parameters and improve 
the overall performance in all tasks. However, since MTL 
problems share some parameters, performances on different 
tasks compete with each other. Therefore, trade-offs be-
tween performances on different tasks are usually prevalent 
in MTL. A standard strategy to deal with these trade-offs is 
to formulate a single-objective optimization problem which 
assigns weights to each task (Kokkinos, 2017). Choos-
ing weights for each task is typically empirical, problem-
specifc, and tedious. To simplify the process of selecting 
weights, prior work suggests some heuristics on adaptive 
weights (Chen et al., 2018; Kendall et al., 2018). However, 
this family of methods aims to fnd one optimal solution for 
all tasks and is not designed for exploring trade-offs. 

Instead of solving a weighted sum of tasks as a single ob-
jective, some recent papers directly cast MTL as a multi-
objective optimization (MOO) problem and introduce mul-
tiple gradient-based methods (MGDA) (Fliege & Svaiter, 
2000; D´ eri, 2012; Fliege & Vaz, 2016) to MTL. Sener esid´ 
and Koltun (2018) formally formulate MTL as an MOO 
problem and propose to use MGDA for training a single 
optimal solution for all objectives. Another recent approach 
(Lin et al., 2019), which is the most relevant to our setting, 
pushes the frontier further by pointing out the necessity of 
exploring Pareto fronts in MTL and presents an MGDA-
based method to generate a discrete set of solutions evenly 
distributed on the Pareto front. Each solution in their method 
requires full training from an initial network, which limits 
its ability to generate a dense set of Pareto optimal solutions. 

All the methods discussed so far are based on frst-order 
algorithms in MOO and generate either one solution or a 
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fnite set of sparse solutions with trade-offs. A clear dis-
tinction between our paper and previous work is that we 
propose replacing discrete solutions with continuous solu-
tion families, allowing for a much denser set of solutions and 
continuous analysis on them. The advance from discrete 
to continuous solutions requires a second-order analysis 
tool in MOO (Hillermeier, 2001; Martı́n & Schütze, 2018; 
Schulz et al., 2018), which embeds tangent planes, gradi-
ents, and Hessians in one concise linear system. Our work 
is also related to Hessian-free methods in machine learning 
(Martens, 2010; Vinyals & Povey, 2012) which rely heavily 
on Hessian-vector products in neural networks (Pearlmutter, 
1994) to solve Hessian systems effciently. 

3. Preliminaries 
In this work, we consider an unconstrained multi-objective 
optimization problem described by f(x) : Rn → Rm 

where each fi(x) : Rn → R, i = 1, 2, · · · ,m represents 
the objective function of the i-th task to be minimized. For 
any x, y ∈ Rn , x dominates y if and only if f(x) ≤ f(y) 
and f(x) 6= f(y). A point x is said to be Pareto optimal 
if x is not dominated by any points in Rn . Similarly, x is 
locally Pareto optimal if x is not dominated by any points 
in a neighborhood of x. The Pareto set of this problem 
consists of all Pareto optimal points, and the Pareto front is 
the image of the Pareto set. In the context of deep MTL, x 
represents the parameters of a neural network instance and 
each fi(x) represents one learning objective, e.g., a certain 
classifcation loss. 

Similar to single-objective optimization, solving for local 
Pareto optimality is better established than global Pareto 
optimality. A standard way is to run gradient-based methods 
to solve for local Pareto optimality then prune the results. 
Hillermeier et al. (2001) describes the following necessary 
condition: 

Defnition 3.1 (Hillermeier et al. 2001). Assuming each 
fi(x) is continuously differentiable, a point x is called 
Pareto stationary if there exists α ∈ Rm such that αi ≥ 0,P Pm m

αi = 1, and αirfi(x) = 0.i=1 i=1 

Proposition 3.1 (Hillermeier et al. 2001). All Pareto opti-
mal points are Pareto stationary. 

Once a Pareto optimal solution x ∗ is found, previous papers 
(Hillermeier, 2001; Martı́n & Schütze, 2018; Schulz et al., 
2018) have proven a strong result revealing the frst-order 
approximation of the local, continuous Pareto set: 

Proposition 3.2 (Hillermeier 2001). Assuming that f(x) 
∗is smooth and x is Pareto optimal, consider any smooth 

∗ curve x(t) : (−�, �) → Rn in the Pareto set and passing x 
at t = 0, i.e., x(0) = x ∗, then ∃β ∈ Rm such that: 

H(x ∗ )x 0(0) = rf (x ∗ )>β (1) 
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where H(x ∗) is defned as Xm 
H(x ∗ ) = αir 2fi(x ∗ ) (2)

i=1 

and αi is given by Defnition 3.1. 

In other words, in the Pareto set, for any smooth curve pass-
∗ing x , H(x ∗) transforms its tangent at x ∗ to a vector in the 

space spanned by {rfi(x ∗)}. By gradually changing the 
curve, its tangent sweeps the tangent plane of the Pareto set 

∗at x . Essentially, the theorem states that H(x ∗) connects 
the whole tangent plane to the column space of rf(x ∗)> . 
Note that, however, this theorem is not directly applicable 
to MTL because of its requirement of full Hessians. 

4. Effcient Pareto Set Exploration 
Given an initial x0 ∈ Rn , our algorithm is executed in two 
phases: phase 1 uses gradient-based methods to generate a 

∗Pareto stationary solution x from x0. It then computes a0 
few exploration directions to spawn new {xi}. We execute 
phase 1 recursively by feeding it with a newly generated xi. 
Phase 2 constructs continuous Pareto sets: we frst build a 
local linear subspace at each Pareto stationary solution by 
linearly combining its exploration directions. We then check 
whether two local Pareto fronts collide and stitch them to 
form a larger continuous set. The major challenge brought 
by deep MTL is that Rn is the space of neural network 
parameters. Therefore, it is computationally prohibitive to 
explicitly calculate Hessian matrices. We describe phase 1 
below and phase 2 will be explained in Section 5. 

4.1. Gradient-Based Optimization 

Our algorithm is compatible with any gradient-based local 
optimization methods as long as they can return a Pareto 
stationary solution from any initial x ∈ Rn . A standard 
method in MTL is to minimize a weighted sum of objectives 
with stochastic gradient descent (SGD) (Kokkinos, 2017; 
Chen et al., 2018; Kendall et al., 2018). Recent papers 
(Sener & Koltun, 2018; Lin et al., 2019) also proposed to 
determine a gradient direction online by solving a small 
convex problem. Essentially, they minimize a loss by com-
bining gradients with fxed or adaptive weights. 

4.2. First-Order Expansion 
∗Once a Pareto stationary point x is found, we explore 0 

its local Pareto set by spawning new points {xi}. This is 
decomposed into two steps: computing α in Defnition 3.1 

∗at x and estimating {vi}, the basis directions of the tangent 
plane, from Proposition 3.2. The new points {xi} are then 

∗computed by xi = x0 + svi where s is an empirical step 
size whose choice will be discussed in our experiments. 

∗We acquire α at x by solving the following convex problem 0 

(D´ eri, 2012), as suggested by Sener and Koltun (2018):esid´ Xm ∗ min k αirfi(x0)k2 
α i=1 Xm (3) 
s.t. α ≥ 0, αi = 1 

i=1 

Note that the objective can be written as a quadratic form 
of dimension m. Since m is typically very small, solving it 
takes little time even for large neural networks. 

∗Given α, fnding {vi} on the tangent plane at x0 can be 
transformed to fnding a solution (v, β) from Equation (1): 

∗ ∗ H(x0)v = rf (x0)
>β (4) 

When n is small, we can apply classic O(n3) methods like 
Gram-Schmidt process or QR decomposition. However, 
directly applying them in deep MTL is diffcult for two 

∗reasons: frst, x is rarely a true Pareto stationary solution 0 
because of the early termination in training to avoid over-
ftting. Second, and more importantly, the large parameter 
space makes any O(n3) method prohibitive. 

To address the frst issue, we propose a variant to Problem 
(3) to fnd α as well as a correction vector c: 

min kck2 
α,c Xm 
s.t. α ≥ 0, αi = 1 (5)

i=1Xm ∗ αi(rfi(x0) − c) = 0 
i=1 

In other words, we seek the minimal modifcation to the 
∗gradients such that if we use rfi(x0) − c as if they were 

∗the true gradients, x would be Pareto stationary. It is easy 0 
to show that solving this new optimization problem brings 
little overhead to the original problem (see supplemental 
material for the proof): 

Proposition 4.1. Let α∗ be the solution to Problem (3), then 
∗the solution to Problem 5 is (α, c) = (α∗ , rf(x0)
>α∗). 

To address scalability, we consider the following sparse 
linear system with unknowns v: 

∗ ∗ H(x0)v = (rf (x0)
> − c1>)β (6) 

where 1 is an m-dimensional column vector with all ele-
ments equal to 1 and β ∈ Rm is randomly sampled. In other 
words, we solve a linear system with the right-hand side 

∗sampled from the space spanned by {rfi(x0) − c}. Solv-
ing such a large linear system in MTL requires an effcient 
matrix solver. We propose to use Krylov subspace iteration 
methods because they are matrix-free and iterative solvers, 
allowing us to solve the system without complete Hessians 
and terminate with intermediate results. In our experiment, 
we choose to use the minimal residual method (MINRES), 
a classic Krylov subspace method designed for symmetric 
indefnite matrices (Choi et al., 2011). 

0 



Effcient Continuous Pareto Exploration in Multi-Task Learning 

We now discuss MINRES in more detail to better explain 
why it is the right tool for this problem. The time complexity 
of MINRES depends on the time spent on each iteration and 
the number of iterations. The cost of each iteration is domi-
nated by calculating Hv for arbitrary v, which is in general 
O(n2). However, it is well known that Hessian-vector prod-
ucts can be implemented in O(n) time on computational 
graphs (Pearlmutter, 1994), giving us the frst strong reason 
to use MINRES. Analyzing the number of iterations is hard 
because it heavily depends on the rarely available eigenvalue 
distribution. In practice, MINRES is known to converge 
very fast for systems with fast decay of eigenvalues (Fong 
& Saunders, 2012). In our experiments, we specify a maxi-
mum number of iterations k. We observed that k = 50 was 
usually suffcient to generate good exploration directions 
even for networks with millions of parameters. Note that 
early termination in MINRES still returns meaningful re-
sults because the residual error is guaranteed to decrease 
monotonically with iterations. 

To summarize, the effciency of our exploration algorithm 
comes from two sources: exploration on the tangent plane 
and early termination from a matrix-free, iterative solver. 
The time cost of getting one tangent direction is O(kn), 
which scales linearly to the network size. 

4.3. The Full Algorithm 

We now state the complete algorithm for Pareto set explo-
ration in Algorithm 1. It takes as input a seed network 
and spawns N Pareto stationary networks in a breadth-
frst style. Any networks put in the queue are returned 
by ParetoOptimize (Section 4.1) and therefore Pareto 
stationary by design. When such a network is popped out 
from the queue, ParetoExpand generates K exploration 
directions (Section 4.2) and spawns K child networks. The 
algorithm then calls ParetoOptimize to refne these net-
works before appending them to the queue, and terminates 
after M Pareto stationary networks are collected. 

For each output network, we also return the objectives, the 
gradients, and a reference to its parent. This information 
is mostly used to construct a continuous linear subspace 
approximating the local Pareto set, which we will describe in 
Section 5. Another usage is to remove the sign ambiguity in 
vi: by defnition, both vi and −vi are on the tangent plane, 
and an arbitrary choice can lead to a retraction instead of the 
desired expansion in the Pareto set. In this case, one can use 

∗) ∗ ∗) ≈ srf(x ∗)vif(xi) − f(x = f(x + svi) − f(x 
to predict the changes in the objectives and rule out the 
undesired direction. 

When Algorithm 1 is applied to MTL, it is worth noting 
that ParetoOptimize and ParetoExpand rarely re-
turn the precise solutions because of stochasticity, early 
termination, and local minima. As a result, good choices 

Algorithm 1 Effcient Pareto Set Exploration 

Input: a random initial neural network x0 ∈ Rn 

Output: N Pareto stationary networks 
∗ x0 ←ParetoOptimize(x0) 

∗Initialize a queue q ← [x0] 
Initialize an empty list to store the output: output ← ∅ 
repeat 

Pop a neural network x ∗ from q 
for i = 1 to K do 
vi ←ParetoExpand(x ∗) 
vi/=kvik2 

∗ xi ← x + svi 
∗ x ←ParetoOptimize(xi)i 

∗if No points in output dominates x theni 
∗Append x to qi 
∗ ∗ ∗Append (xi , f(x ), rf(x ), x ∗) to outputi i 

end if 
end for 

until The size of output reaches N 

of hyperparameters plays an important role. We discussed 
in more detail two crucial hyperparameters (k and s) and 
reported the ablation study in Section 6. 

5. Continuous Parametrization 
In this section, we describe a post-processing step that builds 
a continuous approximation to the local Pareto set based on 

∗the discrete points {x } returned by Algorithm 1. For each i 
∗ ∗ ∗ xi , we collect its K children {x , · · · , x } and assign i1 iK 

a continuous variable ri→ij ∈ [0, 1] to a vector vi→ij = 
∗ ∗ ∗ x − x , j = 1, 2, · · · ,K. The local Pareto set at x isij i i 

then constructed by 

K KX X 
∗ ∗ S(xi ) = {xi + ri→ij vi→ij |ri→ij ≥ 0, ri→ij ≤ 1}

i=1 i=1 
(7) 

∗In other words, S(x ∗) is the convex hull of x and its chil-i 
∗ ∗dren {x , · · · , x }. This construction is justifed by the i1 iK 

fact that a linear combination of tangent vectors is still on 
the tangent plane. As a special case, when there are only 2 
objectives and K = 1, {x ∗} forms a chain, and therefore 

∗S = ∪iS(x ) becomes a piecewise linear set in Rn .i 

It is possible that two continuous families can collide in the 
objective space, creating a larger continuous Pareto front. 
In this case, we create a stitching point in both families and 
crop solutions dominated by the other family. By repeatedly 
applying this idea, a single continuous Pareto front covering 
all families can possibly be created, providing the ultimate 
solution to continuous traversal in the whole Pareto front. 
We illustrate this idea on MultiMNIST with our experimen-
tal results in Section 6.4. 
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Since the continuous approximation interpolates different 
tangent directions, having more directions can enrich the 
coverage of the continuous set and offer more options to 
users. It is therefore natural to ask whether the set of tangent 
directions discovered in the last section could be augmented 
even further by adding more directions without downgrading 
the quality of the Pareto front. For the special case of two 
objectives (m = 2), it turns out that we can augment the 
set of known tangent directions with a null vector of the 
Hessian matrix, as stated in the following proposition: 

Proposition 5.1. Assuming f(x) : Rn → R2 is suffciently 
∗smooth. Let x be a Pareto optimal point and consider a 

∗ curve cd(t) : R → R2 defned as cd(t) = f (x + td). If 
x(t) : (−�, �) → R2 is any smooth curve in Proposition 3.2 
that satisfes H(x ∗)x0(0) =6 0, then for any u ∈ Rn: 

1) cx0(0) and cx0(0)+u have the same value and tangent 
direction (−α2, α1) at t = 0; 

2) Furthermore, if u is a null vector of H(x ∗), i.e., 
H(x ∗)u = 0, then u is not parallel to x0(0), and cx0(0)(t) 
and cx0(0)+u(t) have the same curvature at t = 0. 

In this proposition, cd(t) is a parametrized 2D curve: it 
∗considers a straight-line trajectory in Rn that passes x 

in the direction of d and uses f to map this trajectory to 
the space of R2 , generating a 2D curve. This proposition 
states that if a tangent direction v is known and if we also 
have a null vector u, then the two curves cv and cv+u are 

∗ very similar at x in the sense that they share the same 
value, gradients, and curvature. This means that for each 
tangent direction v found in the previous section, v + u 
can also be used as a backbone direction together with v 
for continuous parametrization without downgrading the 
quality of the reconstructed Pareto front. 

While this proposition is generally not applicable to real 
problems due to its need for null vectors, it still has inter-
esting theoretical implications: the fact that cv+u and cv 

share the same gradients should not be surprising as v + u 
also satisfes Equation (4), but it is less obvious to see that 
they actually share the same curvature at f(x ∗), which we 
illustrate in Section 6.4 and will prove in our supplemen-
tal material. In practice, we observed that neural networks 
typically have a Hessian matrix with a null space whose 
dimension is much higher than m. This means a very large 
set of bases, while not often accessible in real problems, can 
in theory be used to greatly enrich the Pareto set. 

6. Experimental Results 
6.1. Datasets, Metrics, and Baselines 

We applied our method to fve datasets in three categories: 
1) MultiMNIST (Sabour et al., 2017) and its two variants 
FashionMNIST (Xiao et al., 2017) and MultiFashionM-

NIST, which are medium-sized datasets with two classi-
fcation tasks; 2) UCI Census-Income (Kohavi, 1996), a 
medium-sized demographic dataset with three binary pre-
diction tasks; 3) UTKFace (Zhang et al., 2017), a large 
dataset of face images. We used LeNet5 (LeCun et al., 
1998) (22,350 parameters) for MultiMNIST and its variants, 
two-layered multilayer perceptron (158,598 parameters) for 
UCI Census-Income, and ResNet18 (He et al., 2016) (tens 
of millions of parameters) for UTKFace. Please refer to our 
supplemental material for more information about the net-
work architectures, task descriptions, and implementation 
details in each dataset. 

We measure the performance of a method by two metrics: 
the time cost and the hypervolume (Zitzler & Thiele, 1999). 
We measure the time cost by counting the evaluations of 
objectives, gradients, and Hessian-vector products. The hy-
pervolume metric, explained in Figure 1, is a classic MOO 
metric for measuring the quality of exploration. More con-
cretely, this metric takes as input a set of explored solutions 
in the objective space and returns a score. Larger hyper-
volume score indicates a better Pareto front. Using the 
two metrics, we defne that a method is more effcient if, 
within the same time budget, it generates a Pareto front with 
a larger hypervolume, or equivalently, if it generates the 
Pareto front with a similar hypervolume but within shorter 
time. For all fgures in this section, we use the same ran-
dom seed whenever possible and report results from more 
random seeds in the supplemental material. 

Our method is not directly comparable to any baselines be-
cause no prior work aims to recover a continuous Pareto 
front in MTL. Instead, we devised two experiments, which 
we call the suffciency and necessity tests, to show its effec-
tiveness (Section 6.3). In the suffciency test, we consider 
four previous methods: GradNorm (Chen et al., 2018), Un-
certainty (Kendall et al., 2018), MGDA (Sener & Koltun, 
2018), and ParetoMTL (Lin et al., 2019). These methods 
aim at pushing an initial guess to one or a few discrete 
Pareto optimal solutions. For them, we show that our Pareto 
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Figure 1. Defnition of hypervolume. Given a set of sample points 
(red circles) in Rm , the hypervolume is computed by picking a 
reference point (orange star), creating axis-aligned rectangles from 
each point, and calculating the size of their union (orange polygon). 
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Figure 2. Comparisons of different exploration directions at a 
Pareto optimal solution x ∗ (red circle). Left: the analytic Pareto set 
(the cylindrical surface) of ZDT2-variant, the gradients rf1(x ∗ ) 
(blue) and rf2(x ∗ ) (green), and our exploration directions {vi}
(orange) predicted by MINRES. Middle: a top-down view to show 
ours are almost tangent to the Pareto set. Right: plots of f(x ∗ +sd) 
where s ∈ [−0.1, 0.1] and d is rf1(x ∗ ) (blue circles), rf2(x ∗ ) 
(green squares), and our directions (orange stars). 

expansion procedure is a fast yet powerful complement by 
comparing the time and hypervolume before and after run-
ning it as a post-processing step. We call this experiment 
the suffciency test as it demonstrates our method is able to 
quickly explore Pareto sets and Pareto fronts. 

Our necessity test, which focuses on the value of the tangent 
directions in exploring Pareto fronts, deserves some discus-
sions on its baselines. There is a trivial baseline for Pareto 
expansion: rerunning an SGD-based method from scratch 
to optimize a perturbed weight combination of objectives. 
Since each new run requires full training, our method clearly 
dominates this baseline (30 times faster on MultiMNIST). 
Another trivial baseline is to use a random direction instead 
of the tangent direction for Pareto expansion. We tested this 
idea but do not include it in our experiments as its perfor-
mance is signifcantly worse than any other methods, which 
is understandable due to the high dimensionality of neural 
network parameters: with the increase of dimensionality, 
the chance of a random guess still staying on the tangent 
plane decays exponentially. The baseline we considered in 
this experiment is WeightedSum, which runs SGD from the 
last Pareto optimal solution but with weights on objectives 
different from the weights used in training. Specifcally, we 
choose weights from one-hot vectors for each task as well 
as a vector assigning equal weights to every task. We call 
this experiment the necessity test as we use this experiment 
to establish that the choice of expansion strategies is not 
arbitrary, and tangent directions are indeed the source of 
effciency in our method. 

6.2. Synthetic Examples 

6.2.1. ZDT2-VARIANT 

Our frst example, ZDT2-variant, was originated from ZDT2 
(Zitzler et al., 2000), a classic benchmark problem in multi-
objective optimization with n = 3 and m = 2. Both the 
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Figure 3. Comparisons of two expansion strategies in Algorithm 
1. Starting with a given Pareto optimal point (red circle), the 
algorithm iteratively calls ParetoExpand (orange arrows from 
circles to stars) and ParetoOptimize (red arrows from stars to 
circles), generating a series of explored points (orange stars) and 
Pareto optimal solutions (red circles). Arrow thickness indicates 
the time cost of each function. Top row: expansion using our 
predicted tangent directions (top left) versus using gradients (top 
right). Bottom row: running both strategies until 10 Pareto optimal 
points were collected. 

Pareto set and the Pareto front of this example can be com-
puted analytically. This makes ZDT2-variant an ideal exam-
ple for visualizing Proposition 3.2 and Algorithm 1. Figure 
2 compares the gradients to our tangent directions when 
used to explore the Pareto front. We used MINRES with 
k = 1 to solve 5 tangent directions. It can be seen that our 
directions are much closer to the Pareto set and tracked the 
true Pareto front much better than the gradients. We further 
compare their performances in Algorithm 1 with MGDA 
(D´ eri, 2012; Sener & Koltun, 2018) as the optimizer in esid´ 
Figure 3. This fgure shows that the gradients expanded the 
neighborhood not on the Pareto set but to the dominated 
interior, resulting in a much more expensive correction step 
to follow. On the other hand, expanding with our predicted 
tangents steadily grew the solution set along the Pareto front. 

6.2.2. MULTIMNIST SUBSET 

To understand the behavior of our algorithm when neural 
networks are involved, we picked a subset of 2048 images 
from MultiMNIST and trained a simplifed LeNet (LeCun 
et al., 1998) with 1500 parameters to minimize two clas-
sifcation errors. We generated an empirical Pareto front 
by optimizing the weighted sum of the two objectives with 
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varying weights. We then picked a Pareto optimal x ∗ and vi-
sualized trajectories generated by traversing along gradients 
and the approximated tangents after 10, 20, and 50 iterations 
of MINRES (Figure 4 left). Just as in ZDT2-variant, our 
approximated tangents tracked the Pareto front much more 
closely. We then compared using approximated tangents 
after 50 iterations of MINRES (MINRES-50) to the Weight-
edSum baseline (Section 6.1) after 50 iterations of SGD. 
The two methods had roughly the same time budgets, and 
MINRES-50 outperformed the WeightedSum baseline in 
that it explored a much wider Pareto front (Figure 4 middle). 
Specifcally, its advantage comes from a much larger step 
size enabled by the approximated tangents (Figure 4 right). 
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Figure 4. Comparisons of expansion strategies on MultiMNIST 
subset. Left: trajectories of different expansion strategies in the ob-
jective space. Curves closer to the Pareto front mean better expan-
sion. Middle: trajectories generated by running SGD to minimize 
f1 (blue circles), f2 (green squares), or a weighted combination 
(pink triangles) within the same time budget as MINRES-50 (red). 
Right: a zoom-in version showing that tiny step sizes have to be 
used by SGD to avoid deviating from the Pareto front too much. 

6.3. Pareto Expansion 

We frst conducted the suffciency test described in Section 
6.1 to analyze Pareto expansion, the core of our algorithm. 
We ran ParetoMTL, the state of the art, on all datasets to 
generate discrete seeds for Pareto expansion. Moreover, for 
smaller datasets (MultiMNIST and its variants), we also ran 
the other baselines for a more thorough analysis. Compared 
to the time cost of generating discrete solutions (Table 1 
column 2), our Pareto expansion only used a small fraction 
of the training time (Table 1 column 4) but generated much 
denser Pareto fronts (Figure 5 and Table 1 column 5). This 
experiment, as a natural extension to the synthetic experi-
ments, confrms the effcacy of Pareto expansion on large 
neural networks and datasets. 

The suffciency test has established that our expansion 
method has a positive effect on discovering more solutions. 
However, one can still argue there could be simpler expan-
sion strategies that are as good as ours. It remains to show 
that the beneft indeed comes from approximated tangent di-
rections. We verifed this with the necessity test described in 
Section 6.1, which directly compared our Pareto expansion 
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Figure 5. Using Pareto expansion to grow dense Pareto fronts (col-
orful circles) from discrete solutions generated by baselines on 
MultiMNIST and its variants (top row), UCI Census-Income (bot-
tom left), and UTKFace (bottom right). Points expanded from the 
same discrete solution have the same color. 

to the WeightedSum expansion strategy. Starting with the 
same seed solution, we gave both methods the same time 
budget, so the area of their expansions directly refected 
their performances. We display the results on MultiMNIST, 
UCI Census-Income, and UTKFace in Figure 6. New so-
lutions were generated after each run of MINRES in our 
method and after each epoch in WeightedSum. We provide 
more results in the supplementary material. We see from 
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Figure 6. Comparisons of two expansion methods (ours and run-
ning SGD with a weighted sum) from a given Pareto optimal 
network. We display results on MultiMNIST (left), UCI Census-
Income (middle), and UTKFace (right). In all fgures, lower left 
regions mean better solutions. All SGD methods are labeled with 
preference on task 1/the type of learning rates (large or small). 
UCI Census-Income and UTKFace have three objectives and we 
show results from considering f1 and f2 only. Results on Fash-
ionMNIST and MultiFashionMNIST and other combinations of 
objectives in UCI Census-Income and UTKFace can be found in 
our supplemental material. 
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Table 1. A summary of the improvement brought by calling Pareto 
expansion from solutions generated by baselines. TRAIN: the 
training time used by each baseline, measured by the aggregated 
number of evaluations of objectives, gradients, and Hessian-vector 
products; HV: the hypervolume of the solution at the end of train-
ing; EXPAND: the time cost of our Pareto expansion; NEW HV: 
the hypervolume after expansion. Larger hypervolume is better. 

MULTIMNIST TRAIN HV EXPAND NEW HV 

GRADNORM 21150 7.463 4520 7.628 
UNCERTAINTY 21150 7.615 4520 7.756 

MGDA 21150 7.831 4520 7.896 
WEIGHTEDSUM 70500 8.019 22600 8.034 

PARETOMTL 106281 8.025 22600 8.046 

UCI TRAIN HV EXPAND NEW HV 

WEIGHTEDSUM 467400 5.685 165600 5.725 
PARETOMTL 934888 5.642 165600 5.675 

FACE TRAIN HV EXPAND NEW HV 

PARETOMTL 35568 2.257 9920 5.030 

these experiments that our method discovered solutions that 
clearly dominated what WeightedSum returned on 4 out 
of the 5 datasets except UCI Census-Income. From this 
experiment, we conclude the tangent directions in Pareto ex-
pansion are indeed the core reason for the good performance 
of our algorithm. 

The effectiveness of our Pareto expansion method can also 
be understood by noticing it uses higher-order derivatives 
than previous work for determining the optimal expansion 
directions. Consider the three possible methods for the task 
of expanding the local Pareto set from a known Pareto opti-
mal solution x ∗: simply retraining the neural network from 
scratch with a different initial guess reuses nothing from x ∗; 

∗rerunning SGD from x leverages the frst-order gradient 
information at x ∗; our method exploits both the frst-order 
and the second-order information at x ∗ and therefore is the 
most effective among the three. 

It is worth mentioning that our Pareto expansion strategy is 
still a local optimization method, meaning that it inevitably 
suffers from being trapped in local minima. As a result, 
there is no theoretical guarantee on the resulting Pareto 
fronts being globally Pareto optimal. We alleviate this is-
sue by exploring from multiple Pareto optimal solutions 
returned by previous methods and stitching them together, 
which we will explain shortly in the next section. 

6.4. Continuous Parametrization 

From discrete solutions returned by Algorithm 1, our con-
tinuous parametrization creates low-dimensional, locally 
smooth Pareto sets. Moreover, we stitch them together when 
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Figure 7. Illustrations of the continuous parametrization. Left: 
Continuous Pareto fronts grown from 4 Pareto optimal solutions 
(orange stars) on MultiMNIST. Curve colors indicate the value 
of t from −1 (dark blue) to 1 (dark red) and the thin gray lines 
indicated dominated solutions. Middle: larger approximations 
were formed by stitching 10 Pareto fronts. Right: comparisons 
between expansions with three directions: a tangent v (red and 
solid), v plus a null vector u (red and dash), and v plus a random 
direction (pink triangles). 

their Pareto fronts collide, forming a larger continuous ap-
proximation. We illustrate this idea in Figure 7: we ran 
Algorithm 1 on MultiMNIST with K = 2 and N = 10 for 

∗each Pareto stationary solution x , generating two chains 
of solutions favoring small f1 and small f2 respectively. As 
described in Section 5, we then constructed a piecewise 
linear curve parametrized by t ∈ [−1, 1]. By continuously 
varying t, we explore a diverse set of solutions from favor-
ing small f1 to small f2. We highlight this mapping from 
a single control variable to a wider-range Pareto front be-
cause it demonstrates the real advantage of a continuous 
reconstruction over discrete solutions. As a straightforward 
application, one can analyze this mapping by running single-
variable gradient-descent to pick an optimal solution, which 
would be impossible if only discrete solutions were pro-
vided. We give more results in the supplemental material. 

We conclude our discussion on continuous parametrization 
by demonstrating Proposition 5.1 on MultiMNIST subset in 
Figure 7. We precomputed its full null space and revealed 
over 600 bases. We then expanded the Pareto set at a Pareto 

∗optimal x with three directions: a tangent direction v, v 
plus a null vector u, and v plus a random direction. As 
expected, expanding with the frst two directions led to 

∗trajectories sharing the same gradient and curvature at x , 
showing that we can enrich the Pareto set by adding null 
space bases without degrading its quality. 

6.5. Ablation Study 

Finally, we conducted ablations tests on two crucial hy-
perparameters in our algorithm: the maximum number of 
iterations k in MINRES and the step size s that controls the 
expansion speed. We started with a random Pareto station-

∗ary point x returned by ParetoMTL, followed by running 
Algorithm 1 with fxed parameters K = 1 and N = 5 on 



Effcient Continuous Pareto Exploration in Multi-Task Learning 

0.37 0.38 0.39 0.40 0.41
f1

0.350

0.355

0.360

0.365

0.370

0.375

f 2

20
30
50
100
500
Start

0.37 0.38 0.39 0.40 0.41
f1

f 2

0.05
0.1
0.25
0.5
Start

Figure 8. Pareto expansion from a Pareto optimal solution (red star) 
on MultiMNIST by various k and s. Left: expansion with fxed s 
and k ∈ {20, 30, 50, 100, 500}. Lower curves are more dominant. 
Right: expansion with fxed k and s ∈ {0.05, 0.1, 0.25, 0.5}. The 
number of runs was chosen such that its product with s equals 1. 

MultiMNIST and its two variants. The results are summa-
rized in Figure 8, Table 2, and the supplemental material. 

To see the infuence of k, we fxed s = 0.1 and ran exper-
iments with k ∈ {20, 30, 50, 100, 500}, whose trajectories 
are in Figure 8. Between k = 20 and 50, the trajectories 
were pushed towards its lower left, indicating a better ap-
proximated Pareto front. This is as expected since more 
iterations in MINRES were consumed. This trend plateaued 
between k = 50 and 100. Moreover, the tail of the trajectory 
drifted away after k = 500 iterations. We hypothesized that 
the tangent after 500 iterations explored a new region in Rn 

where the constant step size s = 0.1 was not proper. Based 
on these observations, we used k = 50 in all experiments. 

To understand how s affects expansion, we reran the same 
experiments with a fxed k = 50 and chose s from 
{0.05, 0.1, 0.25, 0.5}. For each s, we set the number of 
points to be generated to 1/s, i.e., the product of the step 
size and the step number is constant. From Figure 8 right, 
we noticed a conservative s was likely to follow the Pareto 
front more closely while an aggressive step size quickly led 
the search to the dominated interior. This is consistent with 
the fact that our tangents are a frst-order approximation to 
the true Pareto set. 

7. Conclusions 
We presented a novel, effcient method to construct continu-
ous Pareto sets and fronts in MTL. Our method is originated 
from second-order analytical results in MOO, and we com-
bined it with matrix-free iterative linear solvers to make it a 
practical tool for large-scale problems in MTL. We analyzed 
thoroughly the source of effciency with demonstrations on 
synthetic examples. Moreover, experiments showed our 
method is scalable to modern machine learning datasets and 
networks with millions of parameters. 

Table 2. Hypervolumes (HV) from the ablation study on hyperpa-
rameters k and s. The time cost of experiments is proportional to 
k and inverse proportional to s. Best results are in bold. 

k 20 30 50 100 500 

HV 7.731 7.739 7.734 7.727 7.669 

s 0.05 0.10 0.25 0.50 

HV 7.741 7.733 7.728 7.712 

While the majority of work in MTL aims to fnd one near-
optimal solution, we believe conficting objectives in MTL 
are common and the full answer should be a wide range of 
candidates with varying trade-offs. Although we are not the 
frst to explore Pareto fronts in MTL or apply second-order 
techniques to neural networks, we are, to our best knowl-
edge, the frst to introduce second-order analysis to Pareto 
exploration in MTL and the frst to propose a continuous 
reconstruction. We believe our work enables lots of oppor-
tunities that would otherwise be impossible if only fnite, 
sparse, and discrete solutions were given, for example, re-
vealing the dimensionality and underlying structure of local 
Pareto sets, developing interpretable analysis tools for deep 
MTL networks, and encoding dense Pareto sets and fronts 
with limited storage. 
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