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1. Proofs
1.1. Proof of Proposition 4.1

Proof. The last constraint establishes the connection be-
tween c and o

Zaini(:BS) = (Z a)c=c (D
i=1 i=1

The second equality comes from the sum of «; being 1.
Therefore, the optimal solution o* and ¢* must satisfy ¢* =
Vf(zy) " a*. Plugging c* back to Problem (5) reduces it
to Problem (3), showing that both problems share the same
optimal a*. O

1.2. Proof of Proposition 4.2

Proof. For simplicity, we let v = x’(0). We first prove
cy(t) = f(x* + tv) and cpiu(t) = flx* + t(v + w))
have the same value and tangent direction at ¢t = 0, i.e.,
¢y (0) = cy+u(0) and ¢, (0) = ¢, ,,,(0). The first equality
is trivial because both equals f(xz*). To show they have the

same tangent direction, note that

Copu(t) =(f1(2" + 1(v +u)), f5(&" +t(v + u)))

2
SV F (@ + (o +u))(o + u) @
Taking t = 0 gives
Cotu(0) = VF(2")(v + u) 3)
Since x* is Pareto optimal, we have o' Vf(z*) = 0
(Proposition 3.1). Therefore, the dot product between o
and ¢, ,,(0) is

a'c, ,0)=a ' VFfx*)(v+u)=0 4)

v+u

This indicates that c;,_,,, (0) is orthogonal to . Since m =
2, we conclude ¢/

v (0) is parallel to (—az, o1 ) no matter
how wu is chosen.
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We now prove the second part of the proposition. First,
v and w are not parallel because H(z*)u = 0 and
H(z*)v # 0. The implication is that adding w to the
Pareto set spanned by V f1(z*) and V f2(x*) indeed aug-
ments it by bringing a new dimension.

Second, we show ¢, (t) and ¢, (t) have the same curva-
ture at t = 0. To see this, note that the curvature of cq(t) at
t = 01is defined as:
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where f/ = f/(x* + td)|i—o and f!' = f/'(x* + td)|i=0.
i = 1, 2. It is now sufficient to show the denominators and
numerators are the same ford = vand d = v + u. We
prove the following equality to establish the denominators
are the same:

fi@* +tv)|i=o = fl(z* +t(v+u))|i=0, i=1,2 (6)

To see this, we expand the right-hand side:

fila +t(v +u)|imo =(v +u) "V fi(z*)
=v'Vf(z*) +u' Vfi(z*)
=fl(x* 4 tv)|i—o +u' Vf;(z*)
(N
It remains to show that u' V f;(x*) = 0, or these two
vectors are orthogonal. Recall that

Q1Vf1(113*) + OéQVfQ(CC*) =0 (8)

where «; comes from Proposition 3.1. Since a1 + ag = 1,
at least one of them is nonzero. Without loss of generality,
we assume o # 0, which gives us

Vh@ﬂ=—%vhw3 )

If Vfa(x*) = 0, Vfi(x*) has to be 0 as well, and
u' Vfi(x;) = 0is trivial. Below we assume V fo(z*) # 0.
Therefore, the space spanned by {V f1(x*), V fa(x*)} is ef-
fectively a one-dimensional line in the direction of V fo (x*).
Now consider applying Proposition 3.2 to v:

H(x*)v =V fo(x™)p (10)

where [ is some scalar whose exact value is determined
by Proposition 3.2. Note that the right-hand side has been
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simplified due to the fact that V f;(x*) and V fa(x*) are
parallel. Using the fact that w is a null vector of H (x*) and
H (x*) is a symmetric matrix, we establish the orthogonal-
ity between v and V fo(x*) 3 as follows:

w' V() =u' H(x")v=(H(x")u) v=0 (11)

Since H(x*)v # 0, (B is nonzero. We then con-
clude u"Vfy(z*) = 0. It follows that u ' Vfi(z*) =
—anu Vfy(x*)/a; = 0.

To show the numerators are the same, we first calculate the
second-order derivatives for d = v as follows:

fix* +tv) =v ' Vfi(x* + tv)
iz +tv) =v V2 fi(x* + tv)v (12)
(@ +tv)|img =v V2fi(z*)v

As aresult, when d = v, the numerator is (we simplified
the notation by ignoring =* in V f; and V2 ;)
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Replacing v with v + u in the last equation gives us the
numerator when d = v + u:

f1fs = Bl

=— ai(v +u) V(v +u) Hw+u)
1

=— aivTVfg(v +u) H(v+u)

1 (14)

1
=— —v Vv H(v+u)
ai

1
=— —v'Vfv' Hv
aq

where the second equality was derived with the fact
u'Vfy = 0 and the last two equalities used Hu = 0.
This shows that the two curves have the same numerators
at t = 0. Putting it together, we have proven ¢, () and
Cy+ () have the same curvature at t = 0 when w is a null
vector of H. O

2. Experimental Setup
2.1. ZDT2-variant

This example has an analytic f(x) : (21,72, 73) € R® —
(f1, f2) € R2, defined as follows:

_sin(zy + 23 +23) +1

Y 9
cos(z3 +z3) +1
Yo="""- 7"
2
Ys =Y
3 =Y2 . (15)
g=1+ §(y2 +y3)
fi(zy, w2, 23) =y
yi
fa(w1, 20, 03) =g — =
g
The Pareto front is given by
fo=1-ff fel01] (16)
and the analytic Pareto set is
2 +a2=02k+1)r, k=0,1,2,--- (17)

which is a family of concentric cylinders. In the paper,
we analyzed the innermost Pareto set 3 + 22 = 7. The
rightmost figure in Figure 2 in the paper was generated by
plotting f(x* + sd),s € [—0.1,0.1] with d being a unit
vector of V f1 (z*), V fa(2*), and the approximated tangent
directions after 2 iteration of MINRES respectively.

The experiments in Figure 3 of the main paper were set up
as follows: starting with a randomly chosen Pareto optimal
x*, we spawned a new x by computing * = x* + 0.1d
where d is a unit vector calculated from two methods: 1)
running MINRES for 2 iteration to get the approximated
tangent direction; 2) perturbing « at * to get o and letting
d = of(x*) + a4V fa(x*). The second method is the
WeightedSum baseline introduced in the main paper and
can be interpreted as exploring by running one iteration of
gradient-descent to minimize o f1 + o fo. We then used
MGDA (Désidéri, 2012) plus line search to push new x
back to the Pareto front. The step size in our line search was
initially 1 and decayed by 0.9 exponentially.

2.2. MultiMNIST Subset

We first generated the full MultiMNIST dataset (see Section
2.3) and picked a subset of 2048 images, downsampled from
28 x 28 to 14 x 14, as our MultiMNIST Subset example.
The two objectives are the cross entropy losses of classi-
fying the top-left and bottom-right digits evaluated on all
2048 images. Regarding the classifier, we used a modified
LeNet5 (LeCun et al., 1998) network, which has 1500 pa-
rameters. Our modified network starts with a convolutional
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layer with 10 channels, a 5 x 5 kernel, and a stride of 2
pixels, followed by a 2 x 2 max pooling layer. Next, the
results are fed into a fully connected layer of size 20 x 10
and then sent to two fully connected layers, one for each
task. We use ReLU as the nonlinear function in the net-
work. Essentially, this synthetic example attempts to use
a small network to overfit 2048 images. To generate the
Pareto front, we ran BFGS (Nocedal & Wright, 2006) to op-
timize w1 f1 + wo fo with wy = 0,0.01,0.02,--- ;1 from
the same random initial guess, which generated a list of
101 solutions x{, €7, T3, - - , T]p;. We then linearly inter-
polated f(x}),i =0,1,2,---,100 and treat the resulting
piecewise linear spline as the (empirical) Pareto front.

The experiment in Figure 4 of the main paper was con-
ducted as follows: starting with a randomly chosen 7,
we plotted f(x} + sd),s € [—0.5,0.5] where d is a unit
vector of the approximated tangent direction. We got the
tangent direction by running 50 MINRES iterations to solve
Equation (6) of the main paper with 3 sampled from a stan-
dard normal distribution. In particular, we found gradient
correction (Equation (5) of the main paper) useful in this
example. We then ran 50 iterations of gradient-descent (GD)
to minimize fy, fo, and wy f1 + wa fo respectively. Here
wj and wy are perturbed from the corresponding o vector
at ;. This shows how well gradient-descent can explore
the Pareto front within the time budget of 50 times of back-
propagation. We used 1/4/t + 1 where ¢ is the iteration
index to decay the learning rate in GD from 0.005.

2.3. MultiMNIST and Its Variants

Dataset and Task Description We followed Sabour et
al. (2017) to generate MultiMNIST, FashionMNIST, and
MultiFashionMNIST. We first created 36 x 36 images by
placing two 28 x 28 images from MNIST or FashionMNIST
(Xiao et al., 2017) in the upper-left and lower-right corner
with a random shift of up to 2 pixels in each direction. The
synthesized images were then resized to 28 x28 and nor-
malized with a mean of 0.1307 and a standard deviation
of 0.3081. No data augmentation was used for training or
testing. Following ParetoMTL (Lin et al., 2019), we built
MultiMNIST from MNIST, MultiFashion from FashionM-
NIST, and MultiFashionMNIST from both (Figure 1). Each
dataset has 60,000 training images and 10,000 test images.
The objectives are the cross entropy losses of classifying the
upper-left and lower right items in the image.

Network Architecture The backbone network is a mod-
ified LeNet (LeCun et al., 1998). Our network starts from
two convolutional layers with a 5 x 5 kernel and a stride of 1
pixel. The two layers have 10 and 20 channels respectively.
A fully connected layer of 50 channels appends the convo-
lutional layers, which is then followed by two 10-channel
fully connected layers, one for each task. We add a 2 x 2

L: 9 L:1
R: 8 R: 7
L: ankle boot L: trouser L: t-shirt

R: dress R: ankle boot

=] LI

R: bag R: pullover R: shirt

BB E

Figure 1. Sample images from MultiMNIST (top), MultiFashion
(middle), and MultiFashionMNIST (bottom). Above each image
are the labels of the upper-left (L) and lower-right (R) items.

R: trouser

L]

max pooling layer right after each convolutional layer and
use ReLLU as the nonlinear function. The network contains
22,350 trainable parameters.

Training We trained all baselines for 30 epochs of SGD.
We used 256 as our mini-batch size and set the momentum
to 0.9. The learning rate started from 0.01 and decayed with
a cosine annealing scheduler.

For our method, we used 50 iterations of MINRES to solve
Equation (4) of the main paper with the right-hand side
sampled between V f1 (z) and V f2(xf). We did not cor-
rect the gradients (Equation (5) of the main paper) in this
example as we found using the original gradients were more
effective.

2.4. UCI Census-Income

Dataset and Task Description UCI Census-Income (Ko-
havi, 1996) is a demographic dataset consisting of informa-
tion about around 300,000 adults in the United States. Lin
et al. (2019), one of the state-of-the-art baselines, proposed
three tasks on this dataset: 1) whether the person’s income
exceeds $50K/year, 2) whether the person’s education level
is at least college, and 3) whether the person is never mar-
ried. We did not use their first task because the results are
highly imbalanced (93.8% of the dataset would have the



Efficient Continuous Pareto Exploration in Multi-Task Learning

same label). Instead, our first task is whether the person’s
age is greater than or equal to 40. The tasks were evaluated
by cross-entropy losses. We converted all categorical data
into one-hot vectors and concatenated them along with con-
tinuous data into a 487 dimensional feature vector. After
removing invalid data, training and test sets have 199,523
and 99,762 samples respectively.

Network Architecture We used a multilayer perceptron
(MLP) with two hidden layers of 256 and 128 channels as
the shared feature extractor and a fully connected layer as
the classifier for each task. We chose ReLLU as the nonlinear
activation function. This network contains 158,598 trainable
parameters in total.

Training We trained all baselines with 30 epochs of SGD
and used a mini-batch of size 256 and a momentum of 0.9.
The learning rate started from 0.001 and decayed with a
cosine annealing scheduler.

For our method, we used 100 iterations of MINRES to solve
the tangent direction and gradient correction was not used.
The right-hand side of Equation (4) was sampled as follows:
for each task f;, we flipped a coin to determine a binary label
l; € {0,1}. The right-hand side was then the sum of all
V fi(xg) with [; = 1. We skipped a sample if [; = I = 5.

2.5. UTKFace

Dataset and Task Description UTKFace (Zhang et al.,
2017) is a dataset of over 20,000 face images. Each image
has 200 x 200 pixels and 3 color channels. We considered
three tasks on this dataset: 1) predicting the age of each
face, 2) classifying the gender, and 3) classifying the race.
We used the Huber loss with § = 1 for task 1 and cross
entropy losses for task 2 and 3. We preprocessed the age
information by normalizing it to the standard normal dis-
tribution. Moreover, each image was resized to 64 x 64
and each pixel was further normalized with mean values
and standard deviations from ImageNet (Deng et al., 2009).
We created the training and test set with an 80/20 split of
UTKFace. After data cleaning, our training and test sets
have 18,964 and 4,741 images respectively.

Network Architecture Our network was built upon a
standard ResNet18 (He et al., 2016) by appending a fully
connected layer to it for each task. Batch normalization
(Ioffe & Szegedy, 2015) was used with a momentum of 0.1.
The network contains 11,180,616 trainable parameters.

Training We ran all baseline experiments with 30 epochs
of SGD and a mini-batch size 256. We used a weight decay
of 1le—5 and a momentum of 0.9. The learning rate started
from 0.01 and decayed with a cosine annealing scheduler.
Batch normalization was frozen when we were expanding

the Pareto front from a Pareto optimal network.

For our method, the training process was the same as in UCI
Census-Income except that we used 50 MINRES iterations
instead of 100.

3. Synthetic Examples
3.1. ZDT2-variant

Here we present more experimental results on ZDT2-variant
from multiple random seeds. Figure 2 left shows 40 random
Pareto optimal solutions and expansions from them with
tangent directions and gradients. This essentially repeated
Figure 2 in the main paper 40 times. It can be seen that
tangent directions behave consistently better than gradients
in terms of exploring the Pareto front across all random
samples. Figure 2 middle and right implemented Algorithm
1 from 10 random seeds and collected 10 Pareto optimal
solutions each time. This experiments duplicated Figure 3
in the main paper with 10 different random seeds, and they
show that using tangent directions allows us to slide on the
Pareto front closely as expected. It is worth noting that part
of the solutions optimized by MGDA clustered along the
line segment f; = 0, fo > 1. Due to the design of ZDT2-
variant, solutions like these are not Pareto optimal but Pareto
stationary, and thus MGDA could not make further progress
from them. Moreover, we report the time cost in Table 1,
which confirms that the time saving mostly comes from the
near-optimal inputs to ParetoOptimize.

) a— --- Pareto front
X

. fx)

-~ Pareto front \ 04 0.4
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02 . A N
Vix") \ 0.2 \ 0.2{ --— Pareto front
(') \ \

x;
ool - Pareto optimal fix") N 00 A 0of - X))

00 02 04 _ 06 08 10
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fi fi
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Figure 2. More experimental results on ZDT2-variant. Left: plot-
ting f(z* + sd), s € [—0.1,0.1] with 40 random =™ (red) and d
being tangent directions (orange) and gradients (blue and green);
Middle and right: running Algorithm 1 with MGDA as the opti-
mizer and comparing two expansion strategies: moving along the
tangent directions from MINRES after 2 iterations (middle) and
walking along the perturbed weighted sum of gradients (right). The
experiments were repeated on 10 random seeds, and all explored
points on the Pareto front are colored in red. Results returned by
ParetoExpand are colored in orange.

3.2. MultiMNIST Subset

We now present more results on MultiMNIST Subset in
Figure 3 as we extended the experiments in Figure 4 of the
main paper. We sampled 26 Pareto optimal points {x; }
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Figure 3. Comparisons of three Pareto expansion strategies on Mul-
tiMNIST Subset. The empirical Pareto front is plotted in black
with Pareto optimal solutions @™ drawn as 26 red dots. The red
curves in both figures show f(z* + sv), s € [—0.5,0.5] where v
is the tangent from 50 iterations of MINRES. We used 50 iterations
of GD (left) and BFGS (right) to minimize f; and fs from x*,
with intermediate solutions shown in blue and green respectively.

evenly distributed on the empirical Pareto front. For each
of them, we depicted f(z} + sv),s € [—0.5,0.5] (red)
where v is returned by running MINRES after 50 iterations.
Furthermore, we minimized f; and fy from a} with 50
iterations of GD and BFGS and plotted the trajectory of
intermediate solutions at each iteration (blue and green).
It can be seen from Figure 3 that the tangent directions
expanded the empirical Pareto front more accurately and
clearly dominated the region explored by GD or BFGS.

4. Pareto Expansion

In this section, we repeated the two experiments described
in Section 6.3 of the main paper on all five datasets with
more random seeds. Essentially, the results in this sections
extend Figure 5 and Figure 6 of the main paper. To recap,
the first experiment uses our Pareto expansion method to
grow dense Pareto fronts from known Pareto optimal so-
lutions, and the second experiment compares our method
to the WeightedSum baseline to establish the necessity of
using tangent directions. For simplicity, we will call them
sufficiency and necessity experiments respectively.

Table 1. The number of evaluations of objectives (f), gradi-
ents (Vf), and Hessian-vector products (V? f) in Figure 2
middle (ours) and right (WeightedSum). The abbreviation
EXP and OPT means the time cost from ParetoExpand and
ParetoOptimize respectively.

METHOD  #f  #Vf #V°f
OURS (Exp) 0 50 300
OURS (OPT) 100 100 0
WEIGHTEDSUM (EXP) 0 50 0
WEIGHTEDSUM (OPT) 17931 1818 0

4.1. MultiMNIST and Its Variants

Figure 4 displays the results of our sufficiency experiment
on MultiMNIST and its two variants. We grew Pareto fronts
from 5 seeds optimized by two baselines: WeightedSum
and ParetoMTL. This figure is an extension to Figure 5 in
the main paper. We stress again that growing such dense
Pareto fronts only took a fraction of the training time spent
on getting one Pareto optimal solution from baselines.

Similarly, we reran the necessity experiment and summa-
rized the results in Figure 5. For each dataset, we repeated
the experiment on 5 different Pareto optimal solutions found
by ParetoMTL (squares and triangles in Figure 4). We
second that in all figures, lower left indicates better perfor-
mances, and the region expanded by our method (orange
lines) dominates SGD with various learning rates and weight
combinations.

4.2. UCI Census-Income

Figure 6 displays the result of the sufficiency experiment.
Note that this dataset has three objectives. We repeated
this experiment with 5 random seeds. For each random
seed, we ran SGD 10 times with different weight combi-
nations to generate 10 Pareto optimal solutions that are
evenly distributed on the Pareto front, which is roughly a
concave surface viewed from the camera position. Points
with smaller values (farther away from the camera in the
figure) are preferred.

Furthermore, Figure 7 summarizes the necessity experi-
ment on this dataset. We first ran SGD to minimize a
combination of three objectives with a preference vec-
tor (1/3,1/3,1/3) to obtain a Pareto optimal solution z*.
We then considered three pairs of losses (f;, f;) where
(i.4) € {(1,2),(2,3),(3,1)}. For cach (f;, f;) pair, we
ran MINRES from «* and compared it to SGD baselines
with different weight combinations and learning rates. For
all figures, lower left region is Pareto optimal. In most cases,
Pareto fronts revealed by our method dominate SGD results.

4.3. UTKFace

The sufficiency experiment is reported in Figure 8. We
randomly picked 5 initial networks and ran SGD to mini-
mize a combination of three objectives with a weight vector
(1/3,1/3,1/3). We then expanded the local Pareto front
with our method by running 50 MINRES iterations 6 times,
generating 6 trajectories from the Pareto optimal solution.
The choice of 6 comes from the fact that three objectives
have 8 possible combinations of binary labels (see Section
2.4) and we skipped combinations of all-zero or all-one
labels in the sufficiency experiment.

We present the necessity experiment in Figure 9. Since both
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Figure 5. Comparisons of two expansion methods (ours and running SGD with a weighted sum) from a given Pareto optimal solution (red
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different Pareto optimal solutions found by ParetoMTL. In all figures, lower left means better solutions. All SGD methods are labeled
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Figure 6. Expanding the Pareto front with our method on UCI Census-Income from 10 Pareto optimal seeds generated by the WeightedSum
baseline. Five random initial guesses (left to right) were used to generate these results.

UTKFace and UCI Census-Income have three objectives,  comparably in the remaining experiments.

we inherited the same experiment setup from UCI Census-

In(:f)me. Methods that can explore towards Fhe lower left 5. Continuous Parametrization

region are preferred. Among the 15 experiments and 4

SGD baselines reported in Figure 9, we summarize that our  In this section, we present results that extend Figure 8 of
method almost dominated all SGD baselines in 5 experi-  the main paper. The main idea we want to demonstrate
ments (row 1 column 4, row 2 column 3, and the rightmost is twofold: locally, we show that Pareto optimal solutions
column), was clearly outperformed by one SGD baseline in found by our method can be used as backbones to grow
our experiment (purple in row 2 column 4), and performed a continuous, approximated Pareto front; Globally, such
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Figure 7. Comparisons of two expansion methods (ours and running SGD with a weighted sum) from a given Pareto optimal solution (red
star) on UCI Census-Income. Left to right: we started the experiments from five different Pareto optimal solutions found by SGD with
weights (1/3,1/3,1/3). In all figures, lower left means better solutions. All SGD methods are labeled with preference on task of the

horizontal axis/learning rate.
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Figure 8. Expanding the Pareto front with our method on UTKFace from five random initializations. We grew our solutions from a seed
(red star) to 6 directions (colorful circles) computed by 50 MINRES iterations.

Pareto fronts can be stitched together to cover a wide range Pareto front (a curve in this 2D case) from each seed. It

of solutions with varying trade-offs. can be seen that as we added more seeds, the continuous
Pareto fronts became more connected. By stitching them to-
5.1. MultiMNIST and Its Variants gether, we have created a union of continuous Pareto fronts

. . . o that offers very diverse choices of trade-offs. We further
Elgure 10 dep%cts the COI'ItlnuOUS parametrization on Mul- reparametrized it with a single scalar for easy manipulation
tiMNIST and its two variants. For each dataset, we gradu- . 4 ihtvitive visualization.
ally increased the number of Pareto optimal seeds from 3
to 25 and reconstructed a continuous approximation of the
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Figure 9. Comparisons of two expansion methods (ours and running SGD with a weighted sum) from a given Pareto optimal solution (red
star) on UTKFace. Left to right: we started the experiments from five different Pareto optimal solutions found by SGD with weights
(1/3,1/3,1/3). In all figures, lower left means better solutions. All SGD methods are labeled with preference on task of the horizontal

axis/learning rate.

5.2. UCI Census-Income

We display the continuous parametrization results on UCI
Census-Income in Figure 11. We started with 36 Pareto
optimal seeds, densely sampled the continuous Pareto set
grown from each seed to evaluate their performances, and

labeled samples from the same patch with a unique color.

We gradually increased the number of samples in order to
show how our continuous Pareto fronts were constructed
progressively. Additionally, we reconstructed a 3D surface
mesh from the Pareto fronts for better visualization.

5.3. UTKFace

Figure 12 shows the continuous parametrization results on
UTKFace. The setup and visualization is the same as in UCI
Census-Income except that the continuous Pareto front was
reconstructed from only 1 Pareto optimal seed. Therefore, a
single color was used for all samples.

6. Ablation Study

Finally, we present more results of ablation study on Mul-
tiMNIST and its two variants in Figure 13. For each dataset,
we ran ParetoMTL to generate 5 Pareto optimal solutions
that are evenly distributed on the Pareto front. From each
solution, we conducted the ablation study on hyperparam-
eters k and s as described in the main paper and produced
one column of Figure 13. It can be seen that our claims in
the main paper on the influence of k and s are consistently
observed across these 5 solutions with various trade-offs on
these datasets.
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Figure 13. Ablation study on the maximum number of MINRES iterations k and the step size s on MultiMNIST (top two rows),
MultiFashion (middle two rows), and MultiFashionMNIST (bottom two rows). We repeated the experiments from different Pareto optimal
solutions returned by ParetoMTL (left to right).



