
Improved Communication Cost in Distributed PageRank Computation
– A Theoretical Study

Siqiang Luo 1

Abstract
PageRank is a widely used approach for measur-
ing the importance of a node in a graph. Due
to the rapid growth of the graph size in the real
world, the importance of computing PageRanks
in a distributed environment has been increas-
ingly recognized. However, only a few previ-
ous works can provide a provable complexity and
accuracy for distributed PageRank computation.
Given a constant d ≥ 1 and a graph of n nodes,
the state-of-the-art approach, Radar-Push, uses
O(log log n + log d) communication rounds to
approximate the PageRanks within a relative error
Θ( 1

logd n
) under a generalized congested clique

distributed computation model. However, Radar-
Push entails as large asO(log2d+3 n) bits of band-
width (e.g., the communication cost between a
pair of nodes per round). In this paper, we pro-
vide a new algorithm that uses asymptotically the
same communication round complexity while us-
ing only O(d log3 n) bits of bandwidth.

1. Introduction
A graph is used to model a set of instances (represented
as “nodes”) with the mutual relationship (represented as
“edges”) between some pairs of instances. For example, a
social network can be modeled as a graph where a node is a
user, and an edge indicates friendship (Fang et al., 2016); a
road network is also a graph with a node as a road junction
and an edge as a road segment (Luo et al., 2018; 2019a). In
these graphs, PageRank (Page et al., 1999) is an effective
approach in estimating the importance of the nodes, and
has been applied in numerous applications including data
mining, machine learning, distributed networks as well as
Web algorithms (Luo et al., 2019b;c; Das Sarma et al., 2015;
Florescu & Caragea, 2017; Fujiwara et al., 2013; Ahmadi

1Harvard University. Correspondence to: Siqiang Luo <siqian-
gluo@seas.harvard.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

et al., 2011; Neumann et al., 2011; Ponzetto & Strube, 2007).
Given a graph G of n nodes and a probability α ∈ (0, 1),
the PageRank vector of G is the stationary distribution π of
the following specific random walk with restart: a walker
initially starts at a node chosen uniformly at random; at
each step, with probability 1 − α the walker jumps to a
neighboring node chosen randomly, and with the remaining
α probability it restarts at a random node.

Computing PageRanks in a distributed environment has
been extensively studied (Luo, 2019; Guo et al., 2017;
Das Sarma et al., 2015; Zhu et al., 2005). Among them,
IPRA 1 (Das Sarma et al., 2015) and Radar-Push (Luo,
2019) provide provable complexity and accuracy in a vertex-
centric distributed computation model. Particularly, IPRA
is discussed under a communication-restricted variant con-
gested clique that initially each node only knows its neigh-
bors, whereas Radar-Push employs a bandwidth-generalized
congested clique model, which considers each graph node as
individuals and that the nodes communicate with each other
over a complete network (i.e., the clique on the n nodes of
the graph) in order to compute some function of their inputs.
The computation is performed in synchronous communica-
tion rounds and each pair of nodes can communicate at most
b bits per round, where b is known as the bandwidth of the
model. Radar-Push assumes that b can be Ω(log n), where
n is the number of nodes in the graph. Under the model,
Radar-Push is the state-of-the-art algorithm that gives the
best round complexity. For an undirected and connected
graph G of n nodes, Radar-Push approximates PageRank
vector with a relative error of Θ( 1

logd n
) in O(d log log n)

communication rounds with a bandwidth of O(log2d+3 n)
bits.

The congested clique model is a fundamental distributed
computation model, and it has received tremendous interest
in recent years. Under this model many important prob-
lems have been studied. Examples include computing graph
connectivity (Hegeman et al., 2015), computing Minimum
Spanning Tree (Ghaffari & Parter, 2016; Jurdziński & Now-
icki, 2018), as well as addressing the routing and sorting
problem (Lenzen, 2013). The congested clique model is

1Named “Improved-PageRank-Algorithm” in the original pa-
per.



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

fundamental to other important distributed models such as
the k-machine model (Klauck et al., 2014) and MapRe-
duce model (Hegeman & Pemmaraju, 2015). As shown
in (Klauck et al., 2014; Hegeman & Pemmaraju, 2015), an
efficient algorithm designed for the congested clique model
can typically inspire an efficient algorithm on the k-machine
model and MapReduce model. In this paper, we general-
ize the standard congested clique model in that we allow
the bandwidth to go beyond O(log n), following the trend
of discussing the tradeoff between round complexity and
bandwidth-per-round (Beame et al., 2017). Also, discussing
a more flexible bandwidth can be interesting for modern
vertex-centric computation systems (Malewicz et al., 2010)
that employ node-to-node communication mechanism sim-
ilar to the congested clique model, because the bandwidth
between node pairs can be translated to the maximum al-
lowed communication between machines.

Our Contributions. We present an improved distributed
PageRank algorithm based on the bandwidth-generalized
congested clique model. In particular, given a constant
d ≥ 1, and a graph G (connected and undirected) of n
nodes, our algorithm approximates the PageRank values of
nodes in G within a relative error of Θ( 1

logd n
) for any node

with a probability at least 1− 1
n . Furthermore, our algorithm

finishes the computation in O(d log log n) communication
rounds with a bandwidth of O(d log3 n) bits in the worst
case. Our algorithm significantly improves the state of the
art, Radar-Push, which incurs a bandwidth of O(log2d+3 n)
bits.

2. Preliminaries
In this section we present the concepts and definitions that
are required to discuss the algorithm.

Bandwidth-Generalized Congested Clique Model. The
congested clique model is widely used in analyzing the effi-
ciency of distributed algorithms. Given an undirected and
connected simple graph G(V,E), where V is the node set
and E is the edge set, we consider the clique G′(V,E′),
which is a complete overlay network based on the node set
V . The overlay network is regarded to be the communica-
tion network that any pair of nodes can communicate with
each other. The nodes have unique identifiers 1 to n that are
known to all other nodes. The communication is conducted
in synchronized rounds. At each round, each node receives
messages from other nodes, performs arbitrary computa-
tions, and sends a message to other nodes. In particular,
if a message has been sent in round i from a node u to v,
then node v would receive the message when round i + 1
starts. Each node can perform unlimited computation. The
model also contains a bandwidth parameter b such that each
pair of nodes (u, v) can exchange at most messages of b
bits in each round. The standard congested clique model

receive send
compute

msg
…

Round 0 Round 1

Figure 1. Illustrating the communication rounds in the model.

often assumes b = O(log n). In contrast, in this paper, we
allow b = Ω(log n). At each round, each node of graph G
conducts local computation with the received messages, and
the task is to solve a graph problem (e.g., PageRank compu-
tation) related to G. An example computation in the model
is shown in Figure 1. Initially (in Round 0), each node
can communicate with some other nodes by sending them
messages. At the beginning of Round 1, the messages that
were sent by other nodes in Round 0 reach their destinations,
which are then processed locally at the destination nodes.
This process repeats similarly in the following rounds. In
this model, we focus on two important measures, which are
the round complexity (i.e., the number of rounds with regard
to n) and the bandwidth b.

α-Decay Random Walk. Given a graph G(V,E) and a
constant α ∈ (0, 1), an α-decay random walk (typically
starting from a certain node s chosen uniformly at random)
is a traversal on G such that at each step, it stops at the
current node with probability α; with the remaining 1− α
probability, it moves to a neighboring node chosen uni-
formly at random. Note that the complexities we give later
may hide an α related factor as we treat α as a constant.

Length-L Random Walk. A length-L random walk is a
0-decay random walk but stops immediately after moving
L steps. By definition, generating α-decay random walks
is equal to generating length-L random walks where L is
drawn from a geometry distribution Geom(α). This trans-
forms generating α-decay random walks to fixed-length
random walks.

The Problem of PageRank Approximation. Given an er-
ror bound ε, and a failure probability pf , an approximate
PageRank query returns an estimated PageRank π̂(v) for
every node v, such that

|π(v)− π̂(v)| ≤ ε · π(v) (1)

holds with a probability at least 1− pf . Here, π(v) denotes
the actual PageRank value of node v. Following the typical
definition of “high probability”, we set pf = 1

n . In this



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

paper, we are interested in the cases where ε = Θ( 1
logd n

)

for a constant d ≥ 1.

Our Goal: Distributed PageRank Approximation. We
aim to design distributed algorithms based on the bandwidth-
generalized congested clique model to approximate the
PageRanks of nodes in G, with the approximation guar-
antee shown in Equation 1.

3. Main Competitors
IPRA (Das Sarma et al., 2015) and Radar-Push (Luo, 2019)
are the closest works that also study the distributed compu-
tation of PageRank in a vertex-centric model, and these two
algorithms can be applied in the model in this paper.

IPRA. Let π(u) be the PageRank value of node u and n
be the number of nodes in the graph. IPRA approximates
the PageRank values by simulating a number of α-decay
random walks. Each α-decay random walk starts from a
node uniformly chosen at random, and with a probability
α ∈ (0, 1) it stops at the current node, while with a probabil-
ity 1− α it jumps to a random neighbor. It can be shown 2

that if we simulate K = O(n log2d+1 n) random walks and
Ku of them stop at node u, then with a probability at least
1− 1

n , π̂(u) = Ku
K is an unbiased estimate of π(u) within a

Θ( 1
logd n

) relative error. Directly using such random walk
simulation method will achieve, with a probability at least
1− 1

n , a round complexity ofO( logn
α ) = O(log n) since the

longest random walk is of length O( logn
α ) with high proba-

bility. To improve the round complexity to O(
√

log n), the
IPRA algorithm employs a two-phase approach. The first
phase spends O(

√
log n) rounds to compute some random

walks of length O(
√

log n) from each node. The second
phase, using O(

√
log n) rounds, computes every random

walk of length O(
√

log n) by stitching O(
√

log n) precom-
puted random walks in the first phase. The bandwidth of
the algorithm can be shown to be O(log2d+3 n) bits. We
note that IPRA’s model imposes a constraint that initially
each node only communicates with its neighboring nodes,
whereas in this paper we assume each node knows all the
node IDs initially.

Radar-Push. The Radar-Push algorithm presented in (Luo,
2019) significantly improves the round complexity, giving
a round complexity of O(log log n) rounds with a band-
width of O(log2d+3 n) bits. Radar-Push achieves better
round complexity by recursively stitching the shorter walks
to generate a longer random walk with a doubled length.

2By the Chernoff bound, it can be shown that using 6 log (2n)

ε2α
=

O(n logn
ε2

) random walks gives us a relative estimate error ε
(see (Luo, 2019) for more details). We then can easily extend
the analysis by setting ε = Θ( 1

logd n
) and obtain the number of

walks as K = O(n log2d+1 n).

Algorithm 1 Estimating PageRanks based on Unit Task

ε∗ ← ε
2 , k ← 6 log (2n)

ε∗2α
for u ∈ V do

π̂(u)← 0
end
Parallel for L = 0 to log 1

1−α
( 1
ε∗ ·

n
α ) do

invoke dk · (1− α)L · αe unit tasks for length L simul-
taneously
for each walk from node v to node u do

π̂(u)← π̂(u) + k·(1−α)L·α
n·k·d(v)·dk·(1−α)L·αe

end
end

For example, a length-16 random walk can be computed
by connecting two length-8 random walks, each can then
be connected by two length-4 random walks, and so on.
Based on this process, generating a length-L walk requires
O(logL) rounds. Radar-Push gives a new PageRank es-
timator that is based on the unit task, which is defined as
follows.

Definition 1. A unit task for length L is about generating
d(u) (the degree of node u) length-L random walks from
each node u.

The algorithm that estimates PageRanks based on the unit
task is described in Algorithm 1, which has been shown to
give a desirable relative error guarantee in terms of PageR-
ank estimation. To generate k random walks, the idea of
Algorithm 1 is to accomplish k · (1− α)L · α length-L unit
tasks for L, as a length-L α-decay random walk happens
with probability (1−α)L ·α. Note that it is sufficient to only
consider L ∈ [0, log 1

1−α
( 1
ε∗ ·

n
α )] for a desirable accuracy,

since
∑
L∈[0,log 1

1−α
( 1
ε∗ ·

n
α )](1 − α)Lα = 1 − α·(1−α)

n · ε∗.

This indicates that a significant 1 − α·(1−α)
n · ε∗ portion

of unit tasks have been conducted if we discard the range
L ∈ [log 1

1−α
( 1
ε∗ ·

n
α ),∞]. We refer interesting readers to the

appendix for more details on why this cut-off is acceptable.

The Reason of Using Unit Tasks. One major challenge ad-
dressed by Radar-Push is evaluating the number of shorter
random walks that are required to be stitched for the longer
ones. In particular, Radar-Push employs a shuffle-and-send
steps for simultaneously generating the random walks from
each node, and it has been shown that the random walks
such generated will not worsen the PageRank estimation.
When multiple random walks reach a node u during the
random walk process, the shuffle-and-send mechanism re-
quires that the walks are extended to u’s neighboring nodes
as evenly as possible, in contrast to independently choosing
random neighbors for each walks. As such, in a unit task,
the random walks received and sent by node u at each round



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

Algorithm 2 Estimating PageRanks based on Simple Unit
Task
ε∗ ← ε

2 , k ← 6 log (2n)
ε∗2α

for u ∈ V do
π̂(u)← 0

end
Parallel for L = 0 to log 1

1−α
( 1
ε∗ ·

n
α ) do

invoke dk · (1− α)L · αe simple unit tasks for length L
simultaneously
for each walk from node v to node u do

π̂(u)← π̂(u) + k·(1−α)L·α
n·k·d(v)·dk·(1−α)L·αe

end
end

is exactly d(u). This property allows a precise prediction
of how many shorter random walks need to be generated
beforehand. Particularly, if we want to perform a unit task
for length 2L, then we can perform two unit tasks of length
L and concatenate them together as there are exactly d(u)
length-L walks starting and ending at u.

The main result of Radar-Push is given as follows.

Lemma 1. Radar-Push requires O(logL) rounds and a
bandwidth of O(log2 n) bits to compute a unit task for
length-L walks.

We use Lemma 1 to analyze the bandwidth of Algorithm 1.
Assuming α is a constant and setting ε = Θ( 1

logd n
) (and

therefore ε∗ = ε
2 = Θ( 1

logd n
)) bounds the number of unit

tasks as follows.

∑
L∈[0,log 1

1−α
( 1
ε∗ ·

n
α )]

dk · (1− α)L · αe

≤
∑

L∈[0,log 1
1−α

( 1
ε∗ ·

n
α )]

(k · (1− α)L · α+ 1)

≤k + 1 + log 1
1−α

(
1

ε∗
· n
α

)

=O(log2d+1 n) (2)

Then, by Lemma 1 the bandwidth isO(log2d+1 n·log2 n) =
O(log2d+3 n) bits. We can further show that in this case the
round complexity is O(log log n + log d), and we discuss
in detail in Appendix.

4. Our Idea: Fractional-Push + Radar-Push
We present a new algorithm that significantly improves the
bandwidth from O(log2d+3 n) bits to O(d log3 n) bits.

4.1. Main Algorithm and Correctness

We introduce two types of push steps for computing PageR-
ank. One, as described in Section 3, is the shuffle-and-send
operation in Radar-Push (in what follows, we will also refer
to this operation as Radar-Push when the context is clear).
Suppose there are k random walks currently reach at a node
u, then Radar-Push will distribute the random walks to
the neighbors of u as evenly as possible. For example, if
k = 10 and the node u has a degree d(u) = 4, then there
are 2 neighbors that will receive 2 walks from u and the
other 2 neighbors will receive 3 walks. The other type of
push is called Fractional-Push (also known as the forward
push (Berkhin, 2006; Andersen et al., 2006)). The main
idea of the Fractional-Push is to conceptually fractionalize
the number of walks to be extended to each neighbor. In
particular, it retains α portion of random walks at the current
node, and for the remaining 1− α portion it distributes to
each of its neighbors the same number of walks. Using the
aforementioned example and suppose α = 0.1, it retains
10 · 0.1 = 1 random walks at the current node u and dis-
tributes each neighbors of u a number 9

4 (= 2.25) of random
walks. Although it is practically impossible to conduct 0.25
random walks, we can regard 0.25 as a conceptual number
without really doing the random walk simulations (namely,
recording the number of walks staying/passing through at
each node).

Our main idea is to combine these two types of pushes for
PageRank computation, with the purpose of reducing the
bandwidth while still giving the same theoretical guarantee
in PageRank approximation. As shown in Figure 2, when
doing multiple unit tasks in parallel, the bottleneck of band-
width exists in the initial communication rounds. To explain,
in these rounds, a large number of short random walks are
created for later use and thus piling up the messages trans-
mitted between nodes. This issue can be addressed by using
Fractional-Push in the initial rounds. When doing t unit
tasks simultaneously, for example, simply conducting Radar-
Push costs O(t log2 n) bits of bandwidth because each unit
task requires O(log2 n) bits of bandwidth. However, if in
the first few rounds we use Fractional-Push, then at every
round, it is sufficient for each pair of nodes only to commu-
nicate a float number that is the number of random walks
distributed from one node to the other. Transmitting a float
number can be relatively small compared with O(t log2 n)
bits, and we will give a more detailed analysis shortly. The
main idea is illustrated in Figure 2. A thicker link between
nodes refers to a higher communication cost. On the left of
the figure, we illustrate parallel processing two unit tasks.
In the first two rounds, the communication cost is the bottle-
neck. This communication cost is significantly reduced if
Fraction-Push is applied.

Following this line of thought, there are several challenges.



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

Unit task

Unit task

Initial rounds Later rounds

Bandwidth bottleneck

Initial rounds Later rounds

Changed to Fractional-Push Radar-Push

Figure 2. Illustrating the main idea of our algorithm.

First, based on Fractional-Push it is difficult to trace the
source node of each walk which is required if the estimation
is based on the unit task; second, it is not clear how many
rounds we should use for Fractional-Push and how many
for Radar-Push, as well as how to combine them; third,
encoding a float number always introduces rounding error
and thus we need new analysis for estimating the number
of bits required to encode a float number for an acceptable
rounding error. Below we discuss in detail how we address
the challenges.

Tracing Source Node is Not Necessary. We address the
source-node trace problem by using the standard Monte-
Carlo method for the Fractional-Push phase. This standard
method does not require to trace the source nodes of the
walks. Instead, it only simulates one walk from each node,
and it has been shown to be sufficient to achieve the desir-
able PageRank estimation guarantee. In particular, if we
define the following simple unit task (Definition 2) and re-
place it with the unit task in Algorithm 1, we still get the
desirable guarantee as in Equation 1 as long as we change
the estimation accordingly.

Definition 2. (Simple Unit Task) A simple unit task for
length-L walks simulates from each node a random walk of
length L.

The revised algorithm is given in Algorithm 2, with two
modifications compared with Algorithm 1: 1) we use the
simple unit task instead of the unit task; 2) we modify the
estimation of the PageRank values. The estimation follows
the classic Monte Carlo approach that approximates the
PageRank of a node by the proportion of the walks that end
at that node.

Combining Fractional-Push with Radar-Push. We mod-
ify Algorithm 2 as follows to combine the two types
of pushes. In the first log k(= O(log(log2d+1 n)) =
O(d log log n)) rounds we use Fractional-Push that con-
ducts the simple unit tasks. Since initially the total num-
ber of walks is k · n and Fractional-Push is α-decay, after
O(log k) rounds the number of the active random walks (i.e.,

those walks have not stopped) remains to be only O(n), and
these walks will be conducted with Radar-Push. Our algo-
rithm is described in Algorithm 3, which is divided into
three phases: 1) Initialization Phase; 2) Fractional-Push
Phase; and 3) Radar-Push Phase. In Initialization Phase,
two types of variables, π̂ and τ are initialized. π̂(u) records
the portion of walks that have been terminated at node u.
π̂(u) is progressively updated during the Fractional-Push
phase and Radar-Push phase, and it is the final estimation of
PageRank value of u when the algorithm terminates. τ(u)
records the portion of walks that currently reside at node u
but have not been terminated. We note that the idea of using
these two types of variables has also been employed in (An-
dersen et al., 2006; Wang et al., 2017). Fractional-Push
operations are described in Lines 5-14. Radar-Push phase
(Lines 15-20) conducts multiple unit tasks and updates π̂
values.

Correctness. We now prove that the estimation accumu-
lated by Line 18 of Algorithm 3, in expectation, gives a
desirable estimation of π(u). We first give the following
lemma (rephrased based on the results in (Andersen et al.,
2006)).

Lemma 2. At any state of the Fractional-Push phase of
Algorithm 3, the PageRank of u can be computed by π(u) =
π̂(u) +

∑
v∈V τ(v) · π(v, u), where π(v, u) denotes the

probability that an α-decay random walk starting from v
ends at u.

We apply Lemma 2 by letting π̂(u) be the values after the
termination of Fractional-Push phase. The computation of
π(u) in Algorithm 3 is divided into two parts. The first
part, π̂(u), is computed by the Fractional-Push phase of
Algorithm 3 (Lines 5-14), and the second part is estimated
by the Radar-Push phase in Algorithm 3 (Lines 15-20).
Hence, it is sufficient to show that the increment of π̂(u)
by Line 18 sums up to

∑
v∈V τ(v) · π(v, u). Let us fix

two nodes v and u, and let Iα(v, u) be the indicator of the
event that an α-decay random walk that starts from v ends
at u. Further, let I ′L(v, u) be the indicator of the event that



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

Algorithm 3 Estimating PageRanks with Improved Band-
width
/* Initialization Phase */

1 ε← 1
logd n

k ← (2ε/3+2) log (2n)
ε2α

2 for u ∈ V do
3 τ(u)← 1

n π̂(u)← 0
4 end
/* Fractional-Push Phase */

5 for L = 1 to log 1
1−α

k/* One round per loop */

6 do
7 for u ∈ V do
8 π̂(u)← π̂(u) + τ(u) · α
9 for v that is a neighbor of u do

10 τ(v)← τ(v) + (1− α) · τ(u)d(u)

11 end
12 τ(u)← 0

13 end
14 end
/* Radar-Push Phase */

15 Parallel for L = 0 to 2d log 1
1−α

n do
16 invoke d(1−α)L ·αe unit tasks for length-L simultane-

ously
17 for each walk from node v to node u do
18 π̂(u)← π̂(u) + τ(v) · (1−α)L·α

d(v)·d(1−α)L·αe
19 end
20 end

a length-L walk that starts from v terminates at u. Also,
we let Pr[L, v, u] be the probability that a length-L random
walk that starts from node v ends at u. We have

∑
v∈V

τ(v) · π(v, u) =
∑
v∈V

τ(v)E[Iα(v, u)]

=
∑
v∈V

τ(v)EL∼Geom(α)[I
′
L(v, u)]

=
∑

L∼Geom(α)

∑
v∈V

τ(v) Pr[L, v, u]

=
∑
L≥0

∑
v∈V

τ(v)(1− α)LαPr[L, v, u]

=
∑

L∈[0,2d log 1
1−α

n]

∑
v∈V

τ(v)(1− α)LαPr[L, v, u]

︸ ︷︷ ︸
denoted as A

+

∑
L>2d log 1

1−α
n

∑
v∈V

τ(v)(1− α)LαPr[L, v, u]

︸ ︷︷ ︸
denoted as B

(3)

We show that part A in Equation 3 is unbiasedly estimated

by the accumulated increment in Line 18 of Algorithm 3,
and part B is an acceptable rounding error. Let us first focus
on part A and see how Pr[L, v, u] can be estimated with the
unit task for length L. Note that a unit task simulates d(u)
Length-L random walks from every node u ∈ V . If we let
a length-L walk from v to u contribute 1

d(v) to estimating
Pr[L, v, u], then Pr[L, v, u] can be unbiasedly estimated
by incrementing 1

d(v) once a length-L walk from v to u is
observed. One issue is that for each length-L unit tasks we
round the number (1− α)Lα to d(1− α)Lαe because the
number of unit tasks must be an integer. To achieve an unbi-
ased estimation we need a rescale factor (1−α)Lα

d(1−α)Lαe for the
contribution from all the length-L walks. Since the probabil-
ity of a length-L walk happens with probability (1− α)Lα,
summing up τ(v) · (1−α)Lα

d(v)·d(1−α)Lαe for each observation of
a length-L walk from v to u gives an unbiased estimation
of

∑
v∈V τ(v)(1− α)LαPr[L, v, u], and further summing

over L forms part A.

As for part B, we have∑
L>2d log 1

1−α
n

∑
v∈V

τ(v)(1− α)LαPr[L, v, u]

=
∑

L>2d log 1
1−α

n

(1− α)Lα ·
∑
v∈V

τ(v) Pr[L, v, u]

≤
∑

L>2d log 1
1−α

n

(1− α)Lα ·
∑
v∈V

τ(v)

≤
∑

L>2d log 1
1−α

n

(1− α)Lα · 1

≤ 1

n2d
(4)

Since G is undirected and connected, π(u) is at least α
n

(consider that there is 1
n portion of α-decay walks starting

at u and at least α portion of them stop at u), neglecting
O( 1

n2d ) does not hurt the Θ( 1
logd n

) relative error guarantee
for d ≥ 1.

Accuracy. Further, we show that the estimation by Algo-
rithm 3 gives the desirable guarantee shown in Equation 1.
For this purpose, we first construct a relevant algorithm A
which gives a desirable estimation of the PageRanks (i.e.,
satisfying Equation 1), and then show that Algorithm 3 gives
at least the same accuracy guarantee as A. A is constructed
by replacing the Radar-Push phase in Algorithm 3 with pure
α-decay random walks. As shown in (Luo, 2019), Radar-
Push gives a better concentration than pure α-decay random
walks in estimating PageRanks. Hence, it is sufficient to
show that A gives the desirable accuracy. Our analysis is
based on the following lemma.

Lemma 3. In Algorithm 3, after the Fractional-Push phase,



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

(2ε/3+2)n log (2n)
ε2α · τ(u) ≤ d(u) for every node u ∈ V .

Proof. Suppose initially we increase the initial value of
τ(u) to be d(u)

n (instead of 1
n ). Then, after the Fractional-

Push phase, the τ values computed by the original algorithm
should be at most those corresponding τ values computed by
the modified algorithm (hereinafter we refer to as τ ′ values).
Thus it is sufficient to show that after the Fractional-Push
phase, (2ε/3+2)n log (2n)

ε2α ·τ ′(u) = d(u) holds for every node
u ∈ V . To compute the τ ′ values after the Fractional-Push
phase, we note that 1) initially

∑
v∈V τ

′(v) =
∑
v∈V d(v)

n ;
2) each loop (Line 5) reduces

∑
v∈V τ

′(v) by α portion.
Let k = (2ε/3+2) log (2n)

ε2α and consider the case after the
Fractional-Push phase, we have

∑
v∈V

(2ε/3 + 2)n log(2n)

ε2α
· τ ′(v)

=
∑
v∈V

(2ε/3 + 2)d(v) log(2n)

ε2α
· (1− α)

log 1
1−α

k

=
∑
v∈V

d(v) (5)

As the initial values of τ ′ are degree proportional, τ
′(v)
d(v) =

τ ′(u)
d(u) holds for any two nodes v and u after each loop in

Line 5. Hence, we have (2ε/3+2)n log (2n)
ε2α · τ ′(v) = d(v) for

every node v ∈ V after the Fractional-Phase phase. This
implies Lemma 3 holds.

In the Radar-Push phase of Algorithm A, a combination of
performing d(1−α)L ·αe unit tasks for length L (for all L)
gives a better PageRank concentration than directly doing 1
unit task, i.e., performing d(u) α-decay random walks from
each node u. Lemma 3 immediately implies that the Radar-
Push phase would also give a better PageRank concentration
than conducting (2ε/3+2)n log(2n)

ε2α · τ(u) α-decay random
walks from each node u. To analyze the estimation accuracy
of Algorithm A, a natural question arises: if we replace the
Radar-Push phase with performing (2ε/3+2)n log (2n)

ε2α · τ(u)
α-decay random walks from each node u (which only gives
a weaker concentration than the original algorithm), can we
achieve the desirable accuracy guarantee? Let us denote the
modified algorithm asA′. Note thatA′ also needs to modify
its PageRank estimation method for an unbiased estimate.
That is, after the Fractional-Push phase, each walk that ends
at node u contributes u’ PageRank estimation, π̂(u), by
1
kn (= ε2α

(2ε/3+2)n log (2n) ). Next, we show that Algorithm A′
gives a desirable estimation.

Lemma 4. With Algorithm A′, |π(v) − π̂(v)| ≤ ε · π(v)
holds with probability at least 1− 1

n .

Proof. We first reduce the problem of computing PageRank
in the original graphG to computing Personalized PageRank
in a relevant graph G′. G′ is constructed from G based
on the following operations: 1) G′ has an additional node
s∗ compared with G; 2) each undirected edge (u, v) in G
makes two directed edges (u, v) and (v, u) in G′; 3) s∗

links to every other node in G′, i.e., there are directed edges
(s∗, u) in G′ for every other node u. We claim that the
personalized PageRank from s∗ to v in G′ is the same as the
PageRank of v in G. To see this, the personalized PageRank
from source node s∗ is defined as the probability of an α-
decay random walk that starts from s∗ terminates at v. Since
s∗ links to every other node (but is not linked reversely),
the probability is equal to an α-decay random walk in G
that starts from a node uniformly chosen at random, and the
walk terminates at node v.

Thus, we can apply A′ in G′ to compute the personalized
PageRank from s∗ to other node v in G. Let us denote
the personalized PageRank value as π(s∗, v) and the ap-
proximate value by Algorithm A′ is π̂(s∗, v). We note that
Algorithm A′ is a BATON instance (Luo et al., 2019c) and
as shown in (Wang et al., 2017), the algorithm gives the
following guarantee (lemma rephrased).

Lemma 5. Given a value threshold δ ∈ (0, 1), when set-
ting k = (2ε/3+2) log(2n)

ε2δ , for Personalized PageRank value
π(s∗, v) ≥ δ, we have

|π̂(s∗, v)− π(s∗, v)| ≤ ε · π(s∗, v) (6)

holds with probability at least 1− 1
n .

By Lemma 5, setting δ to the PageRank lower bound α
n and

ε = 1
logd n

gives Lemma 4.

Since Algorithm 3 gives at least the same accuracy guaran-
tee as Algorithm A′, we immediately have the following
lemma.

Lemma 6. The approximated PageRank values by Algo-
rithm 3 satisfy the accuracy guarantee given by Equation 1
when ε = Θ( 1

logd n
) for a given constant d ≥ 1.

4.2. Round Complexity and Bandwidth

In this section we present the analysis for the round com-
plexity and bandwidth.

Round Complexity. The Fractional-Push phase will be fin-
ished in O(log 1

1−α

(2ε/3+2) log (2n)
ε2α ) = O(log 1

1−α

2ε/3+2
α +

2d log 1
1−α

log n + log 1
1−α

log (2n)) = O(d log log n)

rounds. For the Radar-Push phase, by Lemma 1 each unit
task can be finished in O(log log n) rounds. The total num-
ber of rounds involved is thus O(d log log n).



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

Bandwidth. We show that the bandwidth of Algorithm 3 is
O(d log3 n) bits. In the Fractional-Push phase, in each syn-
chronized round (i.e., each loop in Line 5 of Algorithm 3),
every pair of nodes only transmits a message that is a float
value in [0, 1] describing the portion of τ being distributed
between the nodes. Suppose we use h bits to encode the
float value, then the encoding error is up to 1

2h
. To explain,

we can divide the space of [0, 1] into 2h subspaces of equal
size. For any float value that falls within the subspace, we
use the left boundary of the subspace to encode the value.
Since the subspace is of size 1

2h
, the rounding error is at

most 1
2h

.

In each round of the Fractional-Push Phase, any node u
receives d(u) messages, which accumulates to at most d(u)

2h

error, or O(d(u)
2h

) error. However, such accumulated error
is distributed in the next round to its d(u) neighbors so
that only O( 1

2h
) error passes to the next round. In the mean-

while, in the current round an additionalO( 1
2h

) error in each
message is incurred due to rounding. Taking into account
that the Fractional-Push phase costs O(d log log n) rounds
and hence incurs O(d log logn

2h
) error in each message in the

Fractional-Push Phase. As each node receives at most n
messages to compute a τ value in each round, the final (max-
imum) rounding error of a τ value after the Fractional-Push
phase is O(dn log logn

2h
). As we aim to achieve a Θ( 1

logd n
)

relative error of the PageRank value approximation, we
need a sufficiently large h such that even for the smallest
τ , we can still achieve a Θ( 1

logd n
) relative error. For each

round, τ(u) is reduced by a factor of 1
d(u) · (1− α) ≥ 1−α

n .
Hence, any τ value after the Fractional-Push phase is lower
bounded by

1

n
(
1− α
n

)
log 1

1−α

(2ε/3+2) log(2n)

ε2α (7)

It thus requires the following equation in order to achieve
an acceptable error (hides a constant factor)

dn log log n

2h
=

1

n
(
1− α
n

)
log 1

1−α

(2ε/3+2) log(2n)

ε2α · 1

logd n

which gives us h = O(d log n · log log n) = O(d log2 n).

Hence, in the Fractional-Push phase we only need
O(d log2 n) bits of bandwidth.

In the Radar-Push phase, the bandwidth can be affected by
two factors. The first factor is the bandwidth incurred by
stitching the short walks in Radar-Push steps. By Lemma 1,
each unit task costs O(log2 n) bits of bandwidth. Since
there are O(2d log 1

1−α
n) unit tasks processed in parallel

in Algorithm 3 (see Line 15), the total bandwidth of stitch-
ing short walks is bounded by O(2d log 1

1−α
n · log2 n) =

O(d log3 n) bits. The second factor is the bandwidth in-
curred by rounding the float value τ(s) · (1−α)L·α)

d(s)·d(1−α)L·αe .

To guarantee a Θ( 1
logd n

) relative error for any π(u), we

need a Θ( 1
logd n

) relative error for τ(s) · (1−α)L·α)
d(s)·d(1−α)L·αe . By

previous analysis, we have

τ ≥ 1

n
(
1− α
n

)
log 1

1−α

(2ε/3+2) log(2n)

ε2α

1

d(s)
≥ 1

n
, and

(1− α)L · α
d(1− α)L · αe

≥ (1− α)L · α

Hence, for an acceptable rounding error, we need

1

2h
=

1

n
(
1− α
n

)
log 1

1−α

(2ε/3+2) log(2n)

ε2α · 1
n
·(1−α)L·α· 1

logd n

where L = 2d log 1
1−α

n. This gives us h = O(d log n ·
log log n). Hence, the overall bandwidth isO(d log3 n) bits,
and we summarize all our results by the following lemma.

Lemma 7. Given an undirected and connected simple
graph G(V,E) of n nodes, and a constant d ≥ 1, and
also given an error bound ε = Θ( 1

logd n
), Algorithm 3 can

be implemented in the bandwidth-generalized congested
clique model to approximate PageRank in O(d log log n)
rounds with a bandwidth of O(d log3 n) bits. For any
node v ∈ V , the approximated PageRank, π̂(v), satisfies
|π̂(v)− π(v)| ≤ ε · π(v) with probability at least 1− 1

n .

5. Conclusion
We present a new distributed PageRank algorithm that
can be implemented in a bandwidth-generalized congested
clique model. Our algorithm strategically combines the
Fractional-Push operation and the Radar-Push algorithm.
We give a detailed analysis on the algorithm, and show that
it significantly improves the state-of-the-art algorithm in
terms of the bandwidth, while achieving asymptotically the
same round complexity.

A. More Details for Algorithm 1
We first note that the lower bound of PageRank value of any
node is at least αn (because there is a probability 1

n that a
walk starts at each node and then with a probability α the
walk ends at that node as well). The unit-tasks that have
been cut off (by dropping the rangeL ∈ (log 1

1−α
( 1
ε∗ ·

n
α ),∞)

contribute to π(u) at most α·(1−α)n · ε∗ absolute error, which
is at most ε∗ = ε

2 relative error. Meanwhile, conducting
6 log (2n)
ε2α random walks guarantees a relative error of ε∗ = ε

2
as well. Overall the relative error is at most ε.

B. More Details for Radar-Push
In the original Radar-Push paper (Luo, 2019), the relative
error is considered as a constant. In this paper, we discuss a



Improved Communication Cost in Distributed PageRank Computation – A Theoretical Study

more general case where the relative error is about Θ( 1
logd n

).
We show that in this more general case the round complexity
of Radar-Push is aboutO(log log n+log d) = O(log log n).
To explain, we first consider that the lower bound of PageR-
ank value is α

n . After we do O(log1−α(αn ·
1

logd n
)) =

O(log n + d log log n) rounds of α-decay process, only
α
n ·

1
logd n

portion of the walks are remained, which contribute

at most a relative estimation error of
α
n ·

1

logd n
α
n

= Θ( 1
logd n

).
Hence, it is sufficient to only consider walks of length
O(log n + d log log n) in Radar-Push to achieve a rela-
tive error of Θ( 1

logd n
). By Multi-Phase Radar-Push intro-

duced in (Luo, 2019), we get the round complexity to be
O(log(log n+ d log log n)) = O(log log n+ log d).

References
Ahmadi, B., Kersting, K., and Sanner, S. Multi-evidence

lifted message passing, with application to pagerank and
the kalman filter. In IJCAI, 2011.

Andersen, R., Chung, F., and Lang, K. Local graph parti-
tioning using pagerank vectors. In FOCS, pp. 475–486,
2006.

Beame, P., Koutris, P., and Suciu, D. Communication steps
for parallel query processing. JACM, 64(6):1–58, 2017.

Berkhin, P. Bookmark-coloring algorithm for personalized
pagerank computing. Internet Mathematics, 3(1):41–62,
2006.

Das Sarma, A., Molla, A. R., Pandurangan, G., and Upfal,
E. Fast distributed pagerank computation. Theoretical
Computer Science, (561):113–121, 2015.

Fang, Y., Cheng, R., Luo, S., and Hu, J. Effective commu-
nity search for large attributed graphs. PVLDB, 9(12):
1233–1244, 2016.

Florescu, C. and Caragea, C. A position-biased pagerank
algorithm for keyphrase extraction. In AAAI, 2017.

Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., and
Onizuka, M. Fast and exact top-k algorithm for pagerank.
In AAAI, 2013.

Ghaffari, M. and Parter, M. Mst in log-star rounds of con-
gested clique. In PODC, pp. 19–28, 2016.

Guo, T., Cao, X., Cong, G., Lu, J., and Lin, X. Distributed
algorithms on exact personalized pagerank. In SIGMOD,
pp. 479–494, 2017.

Hegeman, J. W. and Pemmaraju, S. V. Lessons from the
congested clique applied to mapreduce. Theoretical Com-
puter Science, 608:268–281, 2015.

Hegeman, J. W., Pandurangan, G., Pemmaraju, S. V.,
Sardeshmukh, V. B., and Scquizzato, M. Toward op-
timal bounds in the congested clique: Graph connectivity
and MST. In PODC, pp. 91–100, 2015.

Jurdziński, T. and Nowicki, K. Mst in o (1) rounds of
congested clique. In SODA, pp. 2620–2632, 2018.

Klauck, H., Nanongkai, D., Pandurangan, G., and Robinson,
P. Distributed computation of large-scale graph problems.
In SODA, pp. 391–410, 2014.

Lenzen, C. Optimal deterministic routing and sorting on the
congested clique. In PODC, pp. 42–50, 2013.

Luo, S. Distributed pagerank computation: An improved
theoretical study. In AAAI, volume 33, pp. 4496–4503,
2019.

Luo, S., Kao, B., Li, G., Hu, J., Cheng, R., and Zheng, Y.
TOAIN: a throughput optimizing adaptive index for an-
swering dynamic k nn queries on road networks. PVLDB,
11(5):594–606, 2018.

Luo, S., Cheng, R., Kao, B., Xiao, X., Zhou, S., and Hu, J.
ROAM: A fundamental routing query on road networks
with efficiency. TKDE, 2019a.

Luo, S., Xiao, X., Lin, W., and Kao, B. BATON: Batch one-
hop personalized pageranks with efficiency and accuracy.
TKDE, 2019b.

Luo, S., Xiao, X., Lin, W., and Kao, B. Efficient batch one-
hop personalized pageranks. In ICDE, pp. 1562–1565,
2019c.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,
Horn, I., Leiser, N., and Czajkowski, G. Pregel: a system
for large-scale graph processing. In SIGMOD, pp. 135–
146, 2010.

Neumann, M., Ahmadi, B., and Kersting, K. Markov logic
sets: Towards lifted information retrieval using pagerank
and label propagation. In AAAI, 2011.

Page, L., Brin, S., Motwani, R., and Winograd, T. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

Ponzetto, S. P. and Strube, M. Deriving a large scale taxon-
omy from wikipedia. In AAAI, volume 7, pp. 1440–1445,
2007.

Wang, S., Yang, R., Xiao, X., Wei, Z., and Yang, Y. Fora:
simple and effective approximate single-source personal-
ized pagerank. In SIGKDD, pp. 505–514, 2017.

Zhu, Y., Ye, S., and Li, X. Distributed pagerank computation
based on iterative aggregation-disaggregation methods.
In CIKM, pp. 578–585, 2005.


