
Moniqua: Modulo Quantized Communication in Decentralized SGD

Yucheng Lu 1 Christopher De Sa 1

Abstract
Running Stochastic Gradient Descent (SGD) in
a decentralized fashion has shown promising re-
sults. In this paper we propose Moniqua, a tech-
nique that allows decentralized SGD to use quan-
tized communication. We prove in theory that
Moniqua communicates a provably bounded num-
ber of bits per iteration, while converging at the
same asymptotic rate as the original algorithm
does with full-precision communication. Moni-
qua improves upon prior works in that it (1) re-
quires zero additional memory, (2) works with
1-bit quantization, and (3) is applicable to a va-
riety of decentralized algorithms. We demon-
strate empirically that Moniqua converges faster
with respect to wall clock time than other quan-
tized decentralized algorithms. We also show that
Moniqua is robust to very low bit-budgets, allow-
ing 1-bit-per-parameter communication without
compromising validation accuracy when training
ResNet20 and ResNet110 on CIFAR10.

1. Introduction
Stochastic gradient descent (SGD), as a widely adopted opti-
mization algorithm for machine learning, has shown promis-
ing performance when running in parallel (Zhang, 2004;
Bottou, 2010; Dean et al., 2012; Goyal et al., 2017). How-
ever, the communication bottleneck among workers1 can
substantially slow down the training (Alistarh, 2018). State-
of-the-art frameworks such as TensorFlow (Abadi et al.,
2016), CNTK (Seide & Agarwal, 2016) and MXNet (Chen
et al., 2015) are built in a centralized fashion, where workers
exchange gradients either via a centralized parameter server

1Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, United States. Correspondence
to: Yucheng Lu <yl2967@cornell.edu>, Christopher De Sa
<cdesa@cs.cornell.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1A worker could refer to any computing unit that is capable of
computing, communicating and has local memory such as CPU,
GPU, or even a single thread, etc.

(Li et al., 2014a;b) or the MPI AllReduce operation (Gropp
et al., 1999). Such a design, however, puts heavy pressure
on the central server and strict requirements on the underly-
ing network. In other words, when the underlying network
is poorly constructed, i.e. high latency or low bandwidth, it
can easily cause degradation of training performance due to
communication congestion in the central server or stragglers
(slow workers) in the system.

There are two general approaches to deal with these prob-
lems: (1) decentralized training (Lian et al., 2017a;b; Tang
et al., 2018b; Hendrikx et al., 2018) and (2) quantized com-
munication2 (Zhang et al., 2017; Alistarh et al., 2017; Wen
et al., 2017). In decentralized training, all the workers
are connected to form a graph and each worker commu-
nicates only with neighbors by averaging model parameters
between two adjacent optimization steps. This balances
load and is robust to scenarios where workers can only be
partially connected or the communication latency is high.
On the other hand, quantized communication reduces the
amount of data exchanged among workers, leading to faster
convergence with respect to wall clock time (Alistarh et al.,
2017; Seide et al., 2014; Doan et al., 2018; Zhang et al.,
2017; Wang et al., 2018). This is especially useful when the
communication bandwidth is restricted.

At this point, a natural question is: Can we apply quantized
communication to decentralized training, and thus bene-
fit from both of them? Unfortunately, directly combining
them together negatively affects the convergence rate (Tang
et al., 2018a). This happens because existing quantization
techniques are mostly designed for centralized SGD, where
workers communicate via exchanging gradients (Alistarh
et al., 2017; Seide et al., 2014; Wangni et al., 2018). Gra-
dients are robust to quantization since they get smaller in
magnitude near local optima and in some sense carry less
information, causing quantization error to approach zero
(De Sa et al., 2018). In contrast, decentralized workers
are communicating the model parameters, which do not
necessarily get smaller around local optima and thus the
quantization error does not approach zero without explicitly
increasing precision (Tang et al., 2018c). Previous work

2For brevity, in this paper we generally refer to lossy com-
pression methods including quantization, sparsification, etc, as
“quantization.”

Moniqua: Modulo Quantized Communication in Decentralized SGD

solved this problem by adding an error tracker to compen-
sate for quantization errors (Tang et al., 2019) or adding
replicas of neighboring models and focusing on quantiz-
ing model-difference which does approach zero (Koloskova
et al., 2019; Tang et al., 2018a). However, these methods
have limitations in that: (1) the extra replicas or error track-
ing incurs substantial memory overhead that is proportional
to size of models and the graph (more details in Section 2);
and (2) these methods are either limited to constant step
size or biased quantizers (Koloskova et al., 2019; Tang et al.,
2018a; 2019).

To address these problems, in this paper we propose Moni-
qua, an additional-memory-free method for decentralized
training to use quantized communication. Moniqua sup-
ports non-constant step size and biased quantizers. Our
contribution can be summarized as follows:

• We show by example that naively quantizing commu-
nication in decentralized training can fail to converge
asymptotically. (Section 3)

• We propose Moniqua, a general algorithm that uses
modular arithmetic for communication quantization
in decentralized training. We prove applying Moni-
qua achieves the same asymptotic convergence rate as
the baseline full-precision algorithm (D-PSGD) while
supporting extreme low bit-budgets. (Section 4)

• We apply Moniqua to decentralized algorithms with
variance reduction and asynchronous communication
(D2 and AD-PSGD) and prove Moniqua enjoys the
same asymptotic rate as with full-precision communi-
cation when applied to these cases. (Section 5)

• We empirically evaluate Moniqua and show it outper-
forms all the related algorithms given an identical quan-
tizer. We also show Moniqua is scalable and works
with 1-bit quantization. (Section 6)

Intuition behind Moniqua. In decentralized training,
workers communicate to average their model parameters
(Lian et al., 2017a). As the algorithm converges, all the
workers will approach the same stationary point as they
reach consensus (Tang et al., 2018a). As a result, the dif-
ference in the same coordinate of models on two workers
is becoming small. Suppose x and y are the ith coordinates
of models on workers wx and wy , respectively. If we some-
how know in advance that |x− y| < θ, then if wy needs to
obtain x, it suffices to fetch x mod 2θ rather than x from
wx. Note that x mod 2θ is generally a smaller number than
x, which means to obtain the same absolute error, fewer bits
are needed compared to fetching x directly. Formally, this
intuition is captured in the following lemma.

Lemma 1. Define the modulo operation mod as the fol-
lows. For any z ∈ R and a ∈ R+,

{z mod a} = {z + na|n ∈ N} ∩ [−a/2, a/2) (1)

then for any x, y ∈ R, if |x− y| < θ, then

x = (x mod 2θ − y mod 2θ) mod 2θ + y.

2. Related Work
Decentralized Stochastic Gradient Descent (SGD). De-
centralized algorithms (Mokhtari & Ribeiro, 2015; Sirb &
Ye, 2016; Lan et al., 2017; Wu et al., 2018b) have been
widely studied with consideration of communication effi-
ciency, privacy and scalability. In the domain of large-scale
machine learning, D-PSGD was the first Decentralized SGD
algorithm that was proven to enjoy the same asymptotic con-
vergence rate O(1/

√
Kn) (where K is the number of total

iterations and n is the number of workers) as centralized
algorithms (Lian et al., 2017a). After D-PSGD came D2,
which improves D-PSGD and is applicable to the case where
workers are not sampling from identical data sources (Tang
et al., 2018b). Another extension was AD-PSGD, which
lets workers communicate asynchronously and has a con-
vergence rate of O(1/

√
K) (Lian et al., 2017b). Other

relevant work includes: He et al. (2018), which investigates
decentralized learning on linear models; Nazari et al. (2019),
which introduces decentralized algorithms with online learn-
ing; Zhang & You (2019), which analyzes the case when
workers cannot mutually communicate; and Assran et al.
(2018), which investigates Decentralized SGD specifically
for deep learning.

Quantized Communication in Centralized SGD. Prior
research on quantized communication is often focused
on centralized algorithms, such as randomized quantiza-
tion (Doan et al., 2018; Suresh et al., 2017; Zhang et al.,
2017) and randomized sparsification (Wangni et al., 2018;
Stich et al., 2018; Wang et al., 2018; Alistarh et al., 2018).
Many examples of prior work focus on studying quantiza-
tion in the communication of deep learning tasks specif-
ically (Han et al., 2015; Wen et al., 2017; Grubic et al.,
2018). Alistarh et al. (2017) proposes QSGD, which uses
an encoding-efficient scheme, and discusses its communi-
cation complexity. Another method, 1bitSGD, quantizes
exchanged gradients with one bit per parameter and shows
great empirical success on speech recognition (Seide et al.,
2014). Other work discusses the convergence rate under
sparsified or quantized communication (Jiang & Agrawal,
2018; Stich et al., 2018). Acharya et al. (2019) theoretically
analyzes sublinear communication for distributed training.

Quantized Communication in Decentralized SGD.
Quantized communication for decentralized algorithms is
a rising topic in the optimization community. Previous
work has proposed decentralized algorithms with quan-
tized communication for strongly convex objectives (Rei-
sizadeh et al., 2018). Following that, Tang et al. (2018a)
proposes DCD/ECD-PSGD, which quantizes communica-
tion via estimating model difference. Furthermore, Tang

Moniqua: Modulo Quantized Communication in Decentralized SGD

Table 1. Comparison among Moniqua and baseline algorithms, where workers form a graph with n vertices and m edges. d refers to
the model dimension. Detailed discussion can be found in Section 2. The additional memory refers to the space complexity required
additional to the baseline full-precision communication decentralized training algorithm (D-PSGD).

DCD-PSGD ECD-PSGD ChocoSGD DeepSqueeze Moniqua

Supports biased quantizers No No Yes Yes Yes

Supports 1-bit quantization No No Yes No Yes

Works beyond D-PSGD No No No No Yes

Non-constant Step Size No No No No Yes

Additional Memory Θ(md) Θ(md) Θ(md) Θ(nd) 0

et al. (2019) proposes DeepSqueeze, which applies an error-
compensation method (Wu et al., 2018a) to decentralized
setting. Koloskova et al. (2019) proposed ChocoSGD, a
method that lets workers estimate remote models with a
local estimator, which supports arbitrary quantization by
tuning the communication matrix.

How Moniqua improves on prior works. We summa-
rize the comparison among Moniqua and other baseline
algorithms in Table 2. Specifically, Moniqua works with a
wider range of quantizers (those with biased estimation or
extremely restricted precision, e.g. 1bit per parameter) with
theoretical guarantees. It enjoys several statistical benefits
such as supporting non-constant step sizes and can be ex-
tended to different scenarios that are beyond synchronous
setting (D-PSGD). Most importantly, it prevents the algo-
rithms from trading memory with bandwidth, requiring zero
additional memory in the implementation.

3. Setting and Notation
In this section, we introduce our notation and the general as-
sumptions we will make about the quantizers for our results
to hold. Then we describe D-PSGD (Lian et al., 2017a), the
basic algorithm for Decentralized SGD, and we show how
naive quantization can fail in decentralized training.

Quantizers. Throughout this paper, we assume that we use
a quantizer Qδ that has bounded error

‖Qδ(x)− x‖∞ ≤ δ when x ∈
[
− 1

2 ,
1
2

)d
(2)

where δ is some constant. Note that in this assumption, we
do not assume any bound for x outside

[
− 1

2 ,
1
2

)d
: as will

be shown later, a bound in this region is sufficient for our
theory to hold. This assumption holds for both linear (Gupta
et al., 2015; De Sa et al., 2017) and non-linear (Stich, 2018;
Alistarh et al., 2017) quantizers. In general, a smaller δ
denotes more fine-grained quantization requiring more bits.
For example, a biased linear quantizer can achieve (2) by

rounding any coordinate of x to the nearest number in the
set {2δn | n ∈ Z}; this will require about δ−1 quantization
points to cover the interval [−1/2, 1/2), so such a linear
quantizer can satisfy (2) using only

⌈
log2

(
1
2δ + 1

)⌉
bits (Li

et al., 2017; Gupta et al., 2015).

Decentralized parallel stochastic gradient descent (D-
PSGD). D-PSGD (Lian et al., 2017a) is the first and most
basic Decentralized SGD algorithm. In D-PSGD, n workers
are connected to form a graph. Each worker i stores a copy
of model x ∈ Rd and a local dataset Di and collaborates to
optimize

minx∈Rd f(x) = 1
n

∑n
i=1 Eξ∼Difi(x; ξ)︸ ︷︷ ︸

fi(x)

. (3)

where ξ is a data sample from Di. In each iteration of D-
PSGD, worker i computes a local gradient sample using Di.
Then it averages its model parameters with its neighbors
according to a symmetric and doubly stochastic matrixW ,
whereW ij denotes the ratio worker j averages from worker
i. Formally: Let xk,i and g̃k,i denote local model and
sampled gradient on worker i at k-th iteration, respectively.
Let αk denote the step size. The update rule of D-PSGD
can be expressed as:

xk+1,i =
∑n

j=1
xk,jW ji − αkg̃k,i

= xk,i−
∑n

j=1
(xk,i − xk,j)W ji︸ ︷︷ ︸

communicate to reduce difference

−αkg̃k,i︸ ︷︷ ︸
gradient step

From (3) we can see the update of a single local model con-
tains two parts: communication to reduce model difference
and a gradient step. Lian et al. (2017a) shows that all local
models in D-PSGD reach the same stationary point.

Failure with naive quantization. Here, we illustrate why
naively quantizing communication in decentralized training
—directly quantizing the exchanged data—can fail to con-
verge asymptotically even on a simple problem. This naive

Moniqua: Modulo Quantized Communication in Decentralized SGD

approach with quantizer Qδ can be represented by

xk+1,i = xk,iW ii +
∑

j 6=i
Qδ(xk,j)W ji − αkg̃k,i (4)

Based on Equation 4, we obtain the following theorem.

Theorem 1. For some constant δ, suppose that we use
an unbiased linear quantizer Qδ with representable points
{δn | n ∈ Z} to learn on the quadratic objective function
f(x) = (x− δ1/2)>(x− δ1/2)/2 with the direct quanti-
zation approach (4). Let φ denote the smallest value of a
non-zero entry inW . Regardless of what step size we adopt,
it will always hold for all iterations k and local model in-
dices i that E ‖∇f(xk,i)‖2 ≥ φ2δ2

8(1+φ2) . That is, the local
iterates will fail to asymptotically converge to a region of
small gradient magnitude in expectation.

Theorem 1 shows that naively quantizing communication
in decentralized SGD, even with an unbiased quantizer,
any local model can fail to converge on a simple quadratic
objective. This is not satisfying, since, it implies we would
need more advanced quantizers which are likely to require
more system resources such as memory. In the following
section, we propose a technique, Moniqua, that solves this
problem.

4. Moniqua
In Section 1, we described the basic idea behind Moniqua:
to use modular arithmetic to decrease the magnitude of the
numbers we are quantizing. We now describe how Moniqua
implements this intuition with a given quantizer Qδ. Con-
sider the two-scalar example from Section 1. Suppose we
know y and |x− y| < θ and need to fetch x from a remote
host via a quantizer Qδ to recover x. We’ve shown in Sec-
tion 3 that fetching and usingQδ(x) leads to divergence. In-
stead, we define a parameter Bθ = (2θ)/(1− 2δ) and then
use the modulo operation and fetch Qδ ((x/Bθ) mod 1)
from the remote host, from which we can approximately
recover x as

x̂ = (BθQδ ((x/Bθ) mod 1)− y) mod Bθ + y. (5)

Note that inside the quantizer we rescale x to x/Bθ, which
is required for (2) to apply. This approach has quantization
error bounded proportional to the original bound θ, as shown
in the following lemma.

Lemma 2. For any scalars x, y ∈ R, if |x− y| < θ and if
δ < 1

2 , then if we set Bθ = (2θ)/(1− 2δ) and x̂ as in (5),

|x̂− x| ≤ δBθ = θ · (2δ)/(1− 2δ).

Importantly, since the quantization error is decreasing with
θ, if we are able to prove a decentralized algorithm ap-
proaches consensus and use this proof to give a bound of

Algorithm 1 Pseudo-code of Moniqua on worker i
Require: initial point x0,i = x0, step size {αk}k≥0, the

a priori bound {θk}k≥0, communication matrix W ,
number of iterations K, quantizer Qδ , neighbor list Ni

1: for k = 0, 1, 2, · · · ,K − 1 do
2: Compute a local stochastic gradient g̃k,i with data

sample ξk,i and current weight xk,i
3: Send modulo-ed model to neighbors:

qk,i = Qδ ((xk,i/Bθk) mod 1)

4: Compute local biased term x̂k,i as:
x̂k,i = qk,iBθk − xk,i mod Bθk + xk,i

5: Recover model received from worker j as:
x̂k,j =

(
qk,jBθk − xk,i

)
mod Bθk + xk,i

6: Average with neighboring workers:

xk+ 1
2 ,i
← xk,i +

∑
j∈Ni

(x̂k,j − x̂k,i)W ji

7: Update the local weight with local gradient:
xk+1,i ← xk+ 1

2 ,i
− αkg̃k,i

8: end for
9: return averaged modelXK = 1

n

∑n
i=1 xK,i

the form |x− y| < θ, this bound will give us a compression
procedure (5) with smaller error as our consensus bound
improves. We formalize this approach as Moniqua (Algo-
rithm 1). (Note that all the division and mod operations in
Algorithm 1 act element-wise.)

Note that in line 4 and 6, we compute and cancel out a local
biased term, this is to cancel out the extra noise which may
be brought to the averaged model. As we will show in the
supplementary material, cancelling out this local biased term
reduces extra noise to the algorithm. And in Algorithm 1,
we consider the general case where θ can be a iteration
dependent bound. As will be shown later, a constant θ also
guarantees convergence.

We now proceed to analyze the convergence rate of Algo-
rithm 1. We use the following common assumptions for
analyzing decentralized optimization algorithms (Lian et al.,
2017a; Tang et al., 2018a; Koloskova et al., 2019).

(A1) Lipschitzian gradient. All the functions fi have L-
Lipschitzian gradients.
‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖,∀x,y ∈ Rd

(A2) Spectral gap. The communication matrix W is a
symmetric doubly stochastic matrix and

max{|λ2(W)|, |λn(W)|} = ρ < 1,

where λi(W) denotes the the ith largest eigenvalue of
W .

(A3) Bounded variance. There exist non-negative con-

Moniqua: Modulo Quantized Communication in Decentralized SGD

stants σ and ς ∈ R such that

Eξi∼Di
∥∥∥∇f̃i(x; ξi)−∇fi(x)

∥∥∥2 ≤σ2

Ei∼{1,··· ,n} ‖∇fi(x)−∇f(x)‖2 ≤ς2

where ∇f̃i(x; ξi) denotes the gradient sample on
worker i computed via data sample ξi.

(A4) Initialization. All the local models are initialized with
the same weight: x0,i = x0 for all i, and without loss
of generality x0 = 0d.

(A5) Bounded gradient magnitude. For some constant
G∞, the norm of a sampled gradient is bounded by∥∥g̃k,i∥∥∞ ≤ G∞, for all i and k.

Lemma 2 states that the error bound from quantization is pro-
portional to θ. In other words, a tight estimation or choice
on the θ will lead to smaller quantization error in the algo-
rithm. We present these parameter choices in Theorem 2,
along with the resulting convergence rate for Moniqua.
Theorem 2. Consider adopting a non-increasing step size
scheme {αt}t≥0 such that there exists constant Cα > 0
and η (0 < η ≤ 1) that for any k, t ≥ 0, αk

αk+t
≤ Cαη

t,

set θk = 2αkG∞Cα log(16n)
1−ηρ and δ = 1−ηρ

8C2
αη log(16n)+2(1−ηρ) ,

then Algorithm 1 converges at the following rate:
K−1∑
k=0

αkE
∥∥∇f(Xk)

∥∥2 ≤ 4(Ef(0)− Ef∗) + 2σ2L

n

K−1∑
k=0

α2
k

+
8(σ2 + 3ς2)L2

(1− ρ)2
K−1∑
k=0

α3
k +

8G2
∞dL

2

(1− ρ)2C2
α

K−1∑
k=0

α3
k

where f∗ = infx f(x).

Theorem 2 shows that the priori bound θk is proportional
to the step size and increases at the logarithmic speed when
system size n increases. The two-constant assumption on
the step size prevents it from decreasing too fast. As a
rapidly decreasing step size would prevent us from obtaining
such a priori bound in theory. This assumption generally
holds for most of the step size schemes. Just as baseline
algorithms, by setting step size to a constant, we can obtain
a concrete convergence bound as shown in the following
corollary.
Corollary 1. If we adopt a step size scheme where αk =

1

ς2/3K1/3+σ
√
K/n+2L

in Theorem 2, then the output of Al-

gorithm 1 converges at the asymptotic rate

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 .
1

K
+

σ√
nK

+
ς

2
3

K
2
3

+
(σ2 +G2

∞d)n

σ2K + n
.

Consistent with D-PSGD. Note that D-PSGD converges
at the asymptotic rate of O(σ/

√
nK + ς

2
3 /K

2
3 + n/K),

and thus Moniqua has the same asymptotic rate as D-
PSGD (Lian et al., 2017a). That is, the asymptotic conver-
gence rate is not negatively impacted by the quantization.

Robust to large d. In Assumptions (A3) and (A5), we
use l2-norm and l∞-norm to bound sample variance and
gradient magnitude, respectively. Note that, when d gets
larger, the variance σ2 will also tend to grow proportionally.
So, the last term will tend to remain n/K asymptotically
with large d.

Bound on the Bits. The specific number of bits required
by Moniqua depends on the underlying quantizer (Qδ). If
we use nearest neighbor rounding (Gupta et al., 2015) with
a linear quantizer as Qδ in Theorem 2, it suffices to use at
each step a number of bits B for each parameter sent, where

B ≤
⌈
log2

(
1
2δ + 1

)⌉
=
⌈
log2

(
4 log2(16n)

1−ρ + 3
)⌉

Note that this bound is independent of model dimension
d. When the system scales up, the number of required
bits grows at a rate of O (log log n). Note that, this is a
general bound on the number of bits required by Moniqua
using the same communication matrix W as the baseline.
To enforce a even more restricted bit-budget (e.g. 1 bit),
Moniqua can still converge at the same rate by adjusting the
communication matrix.

1-bit Quantization. We can also add a consensus step
(Tang et al., 2019; Koloskova et al., 2019) to allow Moniqua
to use 1 bit per number. Specifically, we adopt a slack
communication matrixW = γW + (1−γ)I and tune γ as
a hyperparameter. We formalize this result in the following
Theorem.
Theorem 3. Consider using a communication matrix in
the form of W = γW + (1 − γ)I . If we set θ =
2αG∞ log(16n)

γ(1−ρ) , γ = 2

1−ρ+ 16δ2

(1−2δ)2
· 64 log(4n) log(K)

1−ρ
, and α =

1

ς
2
3K

1
3 +σ
√

K
n +2L

, then the output of Algorithm 1 converges

at the asymptotic rate

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 .
σ√
nK

+
1

K
+
ς

2
3 δ4 log2(n) log2(K)

K
2
3 (1− 2δ)4

+
σ2nδ4 log2(n) log2(K)

(σ2K + n)(1− 2δ)4
+
nδ6 log4(n) log2(K)

(σ2K + n)(1− 2δ)6

Note that the dominant term in Lemma 3 is still
O(σ/

√
nK), which means Moniqua converges at the

asymptotic rate the same as full precision D-PSGD (Lian
et al., 2017a) even with more restricted bits-budget. Note
that in Theorem 3, the only requirement on the quantizer is
δ < 1

2 . Considering the properties of our quantizer (2), this
version of Moniqua allowes us to use 1 bit in general per
parameter.

5. Scalable Moniqua
So far, we have discussed how Moniqua, along with base-
line algorithms, modifies D-PSGD to use communication

Moniqua: Modulo Quantized Communication in Decentralized SGD

quantization. Note that the basic idea of using modular
arithmetic in quantized communication is invariant to the al-
gorithm being used. In light of this, in this section we show
Moniqua is general enough to be applied on other decen-
tralized algorithms that are beyond D-PSGD. Previous work
has extended D-PSGD to D2 (Tang et al., 2018b) (to make
Decentralized SGD applicable to workers sampling from dif-
ferent data sources) and AD-PSGD (Lian et al., 2017b) (an
asynchronous version of D-PSGD). In this section, we prove
Moniqua is applicable to both of these algorithms.

Moniqua with Decentralized Data Decentralized data
refers to the case where all the local datasets Di are not
identically distributed (Tang et al., 2018b). More explicitly,
the outer variance Ei∼{1,··· ,n} ‖∇fi(x)−∇f(x)‖2 is no
longer bounded by ς2 as assumed in D-PSGD (Assump-
tion (A3)). We apply Moniqua to D2 (Tang et al., 2018b), a
decentralized algorithm designed to tackle this problem by
reduing the variance over time. Applying Moniqua on D2

can be explicitly expressed3 as:

Xk+ 1
2
= 2Xk −Xk−1 − αkG̃k + αk−1G̃k−1

Xk+1 = Xk+ 1
2
W + (X̂k+ 1

2
−Xk+ 1

2
)(W − I)

whereXk, G̃k and X̂k+ 1
2

are matrix in the shape of Rd×n,
where their i-th column are xk,i, g̃k,i and x̂k+ 1

2 ,i
respec-

tively. AndX−1 and G̃−1 are 0d×n by convention. Based
on this, we obtain the following convergence theorem.
Theorem 4. If we apply Moniqua on D2 in a setting where
θ = (6D1n + 8)αG∞, δ = 1

12nD2+2 and αk = α =
1

σ
√
K/n+2L

where D1 and D2 are two constants4, applying

Moniqua on D2 has the following asymptotic convergence
rate:

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 .
1

K
+

σ√
nK

+
(σ2 +G2

∞d)n

σ2K + n
.

Note that D2 (Tang et al., 2018b) with full-precision
communication has the asymptotic convergence rate of
O
(

1
K + σ√

nK
+ n

K

)
, Moniqua onD2 has the same asymp-

totic rate.

Moniqua with Asychronous Communication Both D-
PSGD and D2 are synchronous algorithms as they require
global synchronization at the end of each iteration, which
can become a bottleneck when such synchronization is not
cheap. Another algorithm, AD-PSGD, avoids this over-
head by letting workers communicate asynchronously (Lian
et al., 2017b). In the analysis of AD-PSGD, an iteration

3For brevity, the detailed pseudo code can be found in the
supplemenraty material, Section G.

4they only depend on the eigenvalues of W (definition can be
found in supplementary material, section G)

represents a single gradient update on one randomly-chosen
worker, rather than a synchronous bulk update of all the
workers. This single-worker-update analysis models the
asynchronous nature of the algorithm. Applying Moniqua
on AD-PSGD can be explicitly expressed5 as:

Xk+1 = XkW k + (X̂k −Xk)(W k − I)− αkG̃k−τk

whereW k describes the communication behaviour between
the kth and (k+1)th gradient update, and τk denotes the de-
lay (measured as a number of iterations) between when the
gradient is computed and updated to the model. Note that
unlike D-PSGD, here W k can be different at each update
step and usually each individually has ρ = 1, so we can’t
expect to get a bound in terms of a bound on the spectral
gap, as we did in Theorems 2 and 4. Instead, we require
the following condition, which is inspired by the literature
on Markov chain Monte Carlo methods: for some constant
tmix and for any k, ∀µ ∈ Rn, if e>i µi ≥ 0 and 1>µ =

1, it must hold that
∥∥∥(∏tmix

i=1 W k+i

)
µ− 1

n

∥∥∥
1
≤ 1

2 . We
call this constant tmix because it is effectively the mixing
time of the time-inhomogeneous Markov chain with transi-
tion probability matrixW k at time k (Levin & Peres, 2017).
Note that this condition is more general than those used in
previous work on AD-PSGD because it does not require
that the W k are sampled independently or in an unbiased
manner. Using this, we obtain the following convergence
theorem.
Theorem 5. If we apply Moniqua on AD-PSGD in a setting
where θ = 16tmixαG∞, δ = 1

64tmix+2 and αk = α =
n

2L+
√
K(σ2+6ς2)

, applying Moniqua on AD-PSGD has the

following asymptotic convergence rate:

1

K

K−1∑
k=0

E
∥∥∇f(Xk)

∥∥2 .
1

K
+

√
σ2 + 6ς2√

K
+

(σ2 + 6ς2)t2mixn
2

(σ2 + 6ς2)K + 1

+
n2t2mixG

2
∞d

(σ2 + 6ς2)K + 1

Note that AD-PSGD (Lian et al., 2017b) with full-precision
communication has the asymptotic convergence rate of

O
(

1
K +

√
σ2+6ς2√
K

+ n2

K

)
, Moniqua obtains the same

asymptotic rate.

Since adopting a slack matrix to enable 1-bit quantization in
these two algorithms will be similar to the case in Theorem 3,
we omit the discussion here for brevity.

6. Experiments
In this section, we evaluate Moniqua empirically. First, we
compare Moniqua and other quantized decentralized train-

5For brevity, the detailed pseudo code can be found in the
supplemenraty material, section H.

Moniqua: Modulo Quantized Communication in Decentralized SGD

0 5 10 15 20 25
Time(min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Tr

ai
ni

ng
 L

os
s

Centralized(32bit)
D-PSGD(32bit)
ECD-PSGD(8bit)
DCD-PSGD(8bit)
ChocoSGD(8bit)
DeepSqueeze(8bit)
Moniqua(8bit)

(a) Train Loss vs Time(s), Bandwidth=200Mbps, Latency=0.15ms

0 10 20 30 40
Time(min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

Centralized(32bit)
D-PSGD(32bit)
ECD-PSGD(8bit)
DCD-PSGD(8bit)
ChocoSGD(8bit)
DeepSqueeze(8bit)
Moniqua(8bit)

(b) Train Loss vs Time(s), Bandwidth=100Mbps, Latency=0.15ms

0 20 40 60 80
Time(min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

Centralized(32bit)
D-PSGD(32bit)
ECD-PSGD(8bit)
DCD-PSGD(8bit)
ChocoSGD(8bit)
DeepSqueeze(8bit)
Moniqua(8bit)

(c) Train Loss vs Time(s), Bandwidth=100Mbps, Latency=1.0ms

0 500 1000 1500 2000
Time(min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 L
os

s

Centralized(32bit)
D-PSGD(32bit)
ECD-PSGD(8bit)
DCD-PSGD(8bit)
ChocoSGD(8bit)
DeepSqueeze(8bit)
Moniqua(8bit)

(d) Train Loss vs Time(s), Bandwidth=1.0Mbps, Latency=1.0ms

Figure 1. Performance of different algorithms under different network configurations

ing algorithms’ convergence under different network config-
urations. Second, we compare the validation performance
of them under extreme bit-budget. Then we investigate
Moniqua’s scalability on D2 and AD-PSGD. Finally, we
introduce several useful techniques for running Moniqua
efficiently.

Setting and baselines. All the models and training scripts
in this section are implemented in PyTorch and run on
Google Cloud Platform. We launch one instance as one
worker in previous formulation, each configured with a
2-core CPU with 4 GB memory and an NVIDIA Tesla
P100 GPU. We use MPICH as the communication back-
end. All the instances are running Ubuntu 16.04, and la-
tency and bandwidth on the underlying network are con-
figured using the tc command in Linux. Throughout our
experiments, we adopt the commonly used (Gupta et al.,
2015; Li et al., 2017) stochastic rounding6. We compare

6Since several baselines are not applicable to biased quantizer,
for fair comparison we consistently use stochastic rounding (unbi-
ased).

Moniqua with the following baselines: Centralized (imple-
mented as MPI AllReduce operation), D-PSGD (Lian et al.,
2017a) with full-precision communication, DCD/ECD-
PSGD (Tang et al., 2018a), ChocoSGD (Koloskova et al.,
2019) and DeepSqueeze (Tang et al., 2019). In the experi-
ment, we adopt the following hyperparameters for Moniqua:
{Momentum = 0.9,Weight Decay = 5e−4,Batch Size =
128, Initial Step Size = 0.1, θk = 2.0}. In the extreme-bit-
budget experiment, we further use adopt the average ratio
{γ = 5e− 3}.

Wall-clock time evaluation. We start by evaluating the per-
formance of Moniqua and other baseline algorithms under
different network configurations. We launch 8 workers con-
nected in a ring topology and train a ResNet20 (He et al.,
2016) model on CIFAR10 (Krizhevsky et al., 2014). For
all the algorithms, we quantize each parameter into 8-bit
representation.

We plot our results in Figure 1. We can see from Figures 1(a)
to 1(b) that when the network bandwidth decreases, the
curves begin to separate. AllReduce and full-precision D-

Moniqua: Modulo Quantized Communication in Decentralized SGD

Table 2. Final test accuracy of ResNet20 and ResNet110 on CIFAR10 trained by different algorithms. (“diverge” means the algorithm
cannot converge. “extra memory” means the extra memory required by different algorithms compared to full precision D-PSGD.)

DCD-PSGD ECD-PSGD ChocoSGD DeepSqueeze Moniqua

ResNet20
budget: 1bit diverge diverge 90.88± 0.13% 90.02± 0.22% 91.08± 0.19%
budget: 2bit diverge 36.32± 2.46% 91.09± 0.09% 91.12± 0.11% 91.13± 0.12%

extra memory (MB) 16.48 16.48 16.48 8.24 0

ResNet110
budget: 1bit diverge diverge 91.24± 0.21% 91.80± 0.27% 92.97± 0.23%
budget: 2bit diverge diverge 93.43± 0.12% 92.96± 0.17% 93.47± 0.18%

extra memory (MB) 103.68 103.68 103.68 51.84 0

PSGD suffer the most, since they require a large volume
of high-precision exchanged data. And from Figure 1(b)
to Figure 1(c), when the network latency increases, AllRe-
duce is severely delayed since it needs to transfer large
volume of messages (such as handshakes between hosts to
send data). On the other hand, from Figure 1(a) to Fig-
ure 1(b) and Figure 1(c), curves of all the quantized base-
lines (DCD/ECD-PSGD, ChocoSGD and DeepSqueeze) are
getting closer to Moniqua. This is because, as shown in
Figure 1(a), the extra updating of the replicas in DCD/ECD-
PSGD and ChocoSGD as well as the error tracking in Deep-
Squeeze counteract the benefits from accelerated commu-
nication. However, when network bandwidth decreases
or latency increases, communication becomes the bottle-
neck and makes these algorithms diverge from centralized
SGD and D-PSGD. Delay between Moniqua and quantized
baselines does not vary with the network since that only
depends on the their extra local computation (error tracking
and replica update). Figure 1(d) shows an extremely poor
network, and we can see that all the quantized baselines are
having similar convergence speed since now network is a
serious overhead.

Extremely low bit-budget. We proceed to evaluate
whether Moniqua and other baselines are able to achieve
state-of-the-art accuracy under extremely low bit budgets.
We train two different models: ResNet20 and ResNet110
on CIFAR10. State-of-the-art results (He et al., 2016) show
that ResNet20 can achieve test accuracy of 91.25% while
ResNet110 can achieve 93.57%. We enforce two strict bit-
budget: 1bit and 2bit (per parameter). We plot the final
test accuracy under different algorithms in Table 6. We
can see that DCD-PSGD and ECD-PSGD are generally not
able to converge. Among all the other algorithms, Moni-
qua achieves slightly better test accuracy while requiring no
additional memory. By comparison, ChocoSGD and Deep-
Squeeze are able to get close to state-of-the art accuracy, but
at the cost of incurring substantial memory overhead.

Scalability. We evaluate the performance of Moniqua when
applied to D2 (Tang et al., 2018b) and AD-PSGD (Lian
et al., 2017b). First, we demonstrate how applying Moniqua
to D2 can handle decentralized data. We launch 10 workers,

0 20 40 60 80 100
Epoch

2

4

6

Tr
ai

ni
ng

 L
os

s

D-PSGD
D2

Moniqua D2

(a) Training Loss vs Epoch (Decentralized Data)

0 500 1000 1500 2000 2500
Time

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

D-PSGD
AD-PSGD
Async Moniqua

(b) Training Loss vs Time(s) (Asynchronous Communica-
tion)

Figure 2. Performance of applying Moniqua onD2 and AD-PSGD

collaborating to train a VGG16 (Simonyan & Zisserman,
2014) model on CIFAR10. Similar to the setting of D2

(Tang et al., 2018b), we let each worker have exclusive ac-
cess to 1 label (of the 10 labels total in CIFAR10). In this
way, the data variance among workers is maximized. We
plot the results in Figure 2(a). We observe that applying
Moniqua on D2 does not affect the convergence rate while
D-PSGD can no longer converge because of the outer vari-
ance. Here we omit the wall clock time comparison since
the communication volume is the same in comparison of

Moniqua: Modulo Quantized Communication in Decentralized SGD

Moniqua and Centralized algorithm in Figure 1.

Next, we evaluate Moniqua on AD-PSGD. We launch 6
workers organized in a ring topology, collaborating to train
a ResNet110 model on CIFAR10. We set the network band-
width to be 20Mbps and latency to be 0.15ms. We plot
the results in Figure 2(b). We can see that both AD-PSGD
and asynchronous Moniqua outperform D-PSGD. Besides,
Moniqua outperforms AD-PSGD in that communication is
reduced, which is aligned with the intuition and theory.

Choosing θ empirically. We can see that the θ chosen
will largely affect the running of Moniqua. In practice, there
are several methods to effectively tune θ. The first is to
directly compute θ via its expression. Specifically, we could
first run a few epochs and keep track of the infinity norm of
the gradient and then use expression in Theorem 2 to obtain
θ. Note that gradient is usually decreasing in magnitude as
algorithm proceeds. In general the computed θ can be used
throughout the training. The second method is to treat θ as
a hyperparameter and use standard methods such as random
search or grid search (Bergstra & Bengio, 2012) to tune θ
until we find the correct θ. The third method is to add ver-
ification. For instance, consider using stochastic rounding
with quantization step being δ. Suppose we have x ∈ R and
need to send it to machine M with y. If |x− y| < θ, then if
we send Qδ(x/δ) mod θ/δ to M , it will recover Qδ(x/δ)
based on y. In addition, we can also send H(Qδ(x/δ)),
where H is a hash function that takes the un-modded vector.
When M recovers Qδ(x/δ), it can detect whether the thing
it recovered has the correct hash. If the θ is mistakenly
chosen, M will detect any errors with high probability (Al-
Riyami & Paterson, 2003). Note that compared to the model
parameters, the output of hash function will not cause any
overhead in general.

In the experiments of previous subsections, we mainly use
the first method, which is sufficient for a good θ. The
second method is a standard tuning protocol, but we do
not usually use it in practice. The third method is optional
to further guarantee the correctness of θ with little cost.
Besides, we found constant θ(s) suffice to perform well in
the experiments, and thus in practice we usually do not need
to modify θ in each iteration.

More efficient Moniqua. There are two techniques we
have observed to improve the performance of Moniqua when
using stochastic rounding: Qδ(x) = δbxδ + uc (where u
is uniformly sampled from [0, 1]), ∀x ∈ Rd. The first is to
use shared randomness, in which the same random seed is
used for stochastic rounding on all the workers. That is, if
two workers are exchanging tensors x and y respectively,
then the floored tensors bxδ + uc and byδ + uc they send
use the same randomly sampled value u. This provably
reduces the error due to quantization (more details are in
the supplementary material). The second technique is to

use a standard entropy compressor like bzip to further
compress the communicated tensors. This can help further
reduce the number of bits because the modulo operation in
Moniqua can introduce some redundancy in the higher-order
bits, which a traditional compression algorithm can easily
remove.

7. Conclusions
In this paper we propose Moniqua, a simple unified method
of quantizing the communication in decentralized training al-
gorithms. Theoretically, Moniqua supports biased quantizer
and non-convex problems, while enjoying the same asymp-
totic convergence rate as full-precision-communication algo-
rithms without incurring storage or computation overhead.
Empirically, we observe Moniqua converges faster than
other related algorithms with respect to wall clock time.
Additionally, Moniqua is robust to very low bits-budget.

Acknowledgement
Yucheng Lu was supported by Cornell PhD Fellowship. We
thank A. Feder Cooper, Jerry Chee and anonymous review-
ers from ICML 2020 for providing valuable feedback and
suggestions on this paper. We thank Google Cloud Platform
Research Credits program for providing computational re-
sources.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: a system for large-scale machine learning. In
OSDI, volume 16, pp. 265–283, 2016.

Acharya, J., De Sa, C., Foster, D. J., and Sridharan, K.
Distributed learning with sublinear communication. arXiv
preprint arXiv:1902.11259, 2019.

Al-Riyami, S. S. and Paterson, K. G. Certificateless public
key cryptography. In International conference on the
theory and application of cryptology and information
security, pp. 452–473. Springer, 2003.

Alistarh, D. A brief tutorial on distributed and concur-
rent machine learning. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pp.
487–488. ACM, 2018.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. In Advances in Neural Information
Processing Systems, pp. 1709–1720, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N.,
Khirirat, S., and Renggli, C. The convergence of sparsi-

Moniqua: Modulo Quantized Communication in Decentralized SGD

fied gradient methods. In Advances in Neural Information
Processing Systems, pp. 5973–5983, 2018.

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochas-
tic gradient push for distributed deep learning. arXiv
preprint arXiv:1811.10792, 2018.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(Feb):281–305, 2012.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010,
pp. 177–186. Springer, 2010.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

De Sa, C., Feldman, M., Ré, C., and Olukotun, K. Un-
derstanding and optimizing asynchronous low-precision
stochastic gradient descent. In ACM SIGARCH Computer
Architecture News, volume 45, pp. 561–574. ACM, 2017.

De Sa, C., Leszczynski, M., Zhang, J., Marzoev, A.,
Aberger, C. R., Olukotun, K., and Ré, C. High-accuracy
low-precision training. arXiv preprint arXiv:1803.03383,
2018.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

Doan, T. T., Maguluri, S. T., and Romberg, J. On the
convergence of distributed subgradient methods under
quantization. In 2018 56th Annual Allerton Conference
on Communication, Control, and Computing (Allerton),
pp. 567–574. IEEE, 2018.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gropp, W., Thakur, R., and Lusk, E. Using MPI-2: Ad-
vanced features of the message passing interface. MIT
press, 1999.

Grubic, D., Tam, L., Alistarh, D., and Zhang, C. Syn-
chronous multi-gpu deep learning with low-precision
communication: An experimental study. Proceedings
of the EDBT 2018, 2018.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. In
International Conference on Machine Learning, pp. 1737–
1746, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, L., Bian, A., and Jaggi, M. Cola: Decentralized linear
learning. In Advances in Neural Information Processing
Systems, pp. 4541–4551, 2018.

Hendrikx, H., Massoulié, L., and Bach, F. Acceler-
ated decentralized optimization with local updates for
smooth and strongly convex objectives. arXiv preprint
arXiv:1810.02660, 2018.

Jiang, P. and Agrawal, G. A linear speedup analysis of dis-
tributed deep learning with sparse and quantized commu-
nication. In Advances in Neural Information Processing
Systems, pp. 2525–2536, 2018.

Koloskova, A., Stich, S. U., and Jaggi, M. De-
centralized stochastic optimization and gossip algo-
rithms with compressed communication. arXiv preprint
arXiv:1902.00340, 2019.

Krizhevsky, A., Nair, V., and Hinton, G. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html, 2014.

Lan, G., Lee, S., and Zhou, Y. Communication-efficient
algorithms for decentralized and stochastic optimization.
arXiv preprint arXiv:1701.03961, 2017.

Levin, D. A. and Peres, Y. Markov chains and mixing times,
volume 107. American Mathematical Soc., 2017.

Li, H., De, S., Xu, Z., Studer, C., Samet, H., and Goldstein,
T. Training quantized nets: A deeper understanding. In
Advances in Neural Information Processing Systems, pp.
5811–5821, 2017.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 14, pp. 583–598, 2014a.

Li, M., Andersen, D. G., Smola, A. J., and Yu, K. Com-
munication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, pp. 19–27, 2014b.

Moniqua: Modulo Quantized Communication in Decentralized SGD

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pp. 5330–5340, 2017a.

Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous
decentralized parallel stochastic gradient descent. arXiv
preprint arXiv:1710.06952, 2017b.

Mokhtari, A. and Ribeiro, A. Decentralized double stochas-
tic averaging gradient. In Signals, Systems and Comput-
ers, 2015 49th Asilomar Conference on, pp. 406–410.
IEEE, 2015.

Nazari, P., Tarzanagh, D. A., and Michailidis, G. Dadam: A
consensus-based distributed adaptive gradient method for
online optimization. arXiv preprint arXiv:1901.09109,
2019.

Reisizadeh, A., Mokhtari, A., Hassani, S. H., and Pedarsani,
R. Quantized decentralized consensus optimization.
CoRR, abs/1806.11536, 2018. URL http://arxiv.
org/abs/1806.11536.

Seide, F. and Agarwal, A. Cntk: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2135–2135. ACM, 2016.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Sirb, B. and Ye, X. Consensus optimization with delayed
and stochastic gradients on decentralized networks. In Big
Data (Big Data), 2016 IEEE International Conference
on, pp. 76–85. IEEE, 2016.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified
sgd with memory. In Advances in Neural Information
Processing Systems, pp. 4452–4463, 2018.

Suresh, A. T., Yu, F. X., Kumar, S., and McMahan, H. B.
Distributed mean estimation with limited communication.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 3329–3337. JMLR.
org, 2017.

Tang, H., Gan, S., Zhang, C., Zhang, T., and Liu, J. Com-
munication compression for decentralized training. In
Advances in Neural Information Processing Systems, pp.
7663–7673, 2018a.

Tang, H., Lian, X., Yan, M., Zhang, C., and Liu, J. D2:
Decentralized training over decentralized data. arXiv
preprint arXiv:1803.07068, 2018b.

Tang, H., Yu, C., Renggli, C., Kassing, S., Singla, A., Alis-
tarh, D., Liu, J., and Zhang, C. Distributed learning over
unreliable networks. arXiv preprint arXiv:1810.07766,
2018c.

Tang, H., Lian, X., Qiu, S., Yuan, L., Zhang, C., Zhang,
T., and Liu, J. Deepsqueeze: Parallel stochastic gradient
descent with double-pass error-compensated compression.
arXiv preprint arXiv:1907.07346, 2019.

Wang, H., Sievert, S., Liu, S., Charles, Z., Papailiopoulos,
D., and Wright, S. Atomo: Communication-efficient
learning via atomic sparsification. In Advances in Neural
Information Processing Systems, pp. 9850–9861, 2018.

Wangni, J., Wang, J., Liu, J., and Zhang, T. Gradient spar-
sification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, pp. 1306–1316, 2018.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error compen-
sated quantized sgd and its applications to large-scale dis-
tributed optimization. arXiv preprint arXiv:1806.08054,
2018a.

Wu, T., Yuan, K., Ling, Q., Yin, W., and Sayed, A. H.
Decentralized consensus optimization with asynchrony
and delays. IEEE Transactions on Signal and Information
Processing over Networks, 4(2):293–307, 2018b.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., and Zhang,
C. Zipml: Training linear models with end-to-end low
precision, and a little bit of deep learning. In International
Conference on Machine Learning, pp. 4035–4043, 2017.

Zhang, J. and You, K. Asynchronous decentralized
optimization in directed networks. arXiv preprint
arXiv:1901.08215, 2019.

Zhang, T. Solving large scale linear prediction problems
using stochastic gradient descent algorithms. In Pro-
ceedings of the twenty-first international conference on
Machine learning, pp. 116. ACM, 2004.

http://arxiv.org/abs/1806.11536
http://arxiv.org/abs/1806.11536

