
Error Estimation for Sketched SVD via the Bootstrap

— Supplement —

Organization of supplement. The main aspects of the proof of Theorem 1 are presented in Section A,
and the arguments in this section will refer to lower level results that are stated and proved in Sections B, C, D,
and E. Next, in Section F, we provide detailed examples of matrices that satisfy both of the assumptions
RP and RS. Lastly, in Section G, we present additional experimental results that go beyond the settings
considered in the main text. For ease of reference, we include here statements of the theoretical setup,
Assumptions RP and RS, and Theorem 1.

Theoretical setup. Our result is formulated in terms of a sequence of deterministic matrices An ∈ Rn×d
indexed by n = 1, 2, . . . , such that d remains fixed as n→∞. Likewise, the number k ∈ {1, . . . , d} and the
set of indices J ⊂ {1, . . . , k} remain fixed as well. In addition, for each n, there is an associated random
sketching matrix Sn ∈ Rtn×n and a number of bootstrap samples Bn such that tn → ∞ and Bn → ∞ as
n→∞. Here, it is important to note that we make no restriction on the sizes of tn and Bn relative to n, and
hence we allow tn/n→ 0 and Bn/n→ 0. Lastly, in order to lighten notation in Theorem 1, we will suppress
dependence on n for the outputs of Algorithm 1, as well the exact singular vectors/values (uj , vj , σj) of An
and their sketched versions (ũj , ṽj , σ̃j).

Assumption RP. There is a positive definite matrix G∞ in Rd×d such that 1
nA
>
nAn → G∞ as n→∞, and

the eigenvalues of G∞ each have multiplicity 1.

To state Assumption RS, let (p1, . . . , pn) denote the row-sampling probabilities for Sn, and let al ∈ Rd denote

the lth row of An. In addition, let r̃n ∈ Rd denote the first row of the re-scaled sketch
√
t√
n
SnAn, and let

v1, v2 ∈ Rd denote the top two eigenvectors of G∞.

Assumption RS. The following conditions hold in addition to Assumption RP. For any fixed matrix C ∈
Rd×d, the sequence var(r̃>nCr̃n) converges to a finite limit `(C), possibly zero, as n→∞. Furthermore, if C is
chosen as C = v1v

>
1 or C = v1v

>
2 , then the limit `(C) is positive. Lastly, the condition max1≤l≤n ‖ 1√

npl
al‖2 =

o(t
1/8
n ) holds as n→∞.

Theorem 1. Suppose that Assumption RP holds when Sn is a Gaussian random projection, or that Assump-
tion RS holds when Sn is a row-sampling matrix. Also, let q̂

U
(tn), q̂Σ(tn), and q̂

V
(tn) denote the outputs of

Algorithm 1. Then, for any fixed set J ⊂ {1, . . . , k} containing 1, and any α ∈ (0, 1), the following three
limits hold as n→∞,

P
(

max
j∈J

ρsin(ũj , uj) ≤ q̂
U
(tn)

)
−→ 1− α, (0.1)

P
(

max
j∈J
|σ̃j − σj | ≤ q̂

Σ
(tn)

)
−→ 1− α, (0.2)

P
(

max
j∈J

ρsin(ṽj , vj) ≤ q̂
V
(tn)

)
−→ 1− α. (0.3)

A Proof of Theorem 1

We decompose the main parts of the proof into Sections A.2, A.3, and A.4 corresponding to the three limits
(in the order of 0.3, (0.1), and (0.2)). In addition, we provide a summary of the notation and terminology for
the proofs immediately below.
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A.1 Notation and terminology for proofs

Items related to matrices. For any real matrices L and M of the same size, we frequently use the
inner product 〈〈L,M〉〉 := tr(L>M). Also, for any real matrix M , the Frobenius norm ‖M‖F is equal to√

tr(M>M), and the operator norm ‖M‖op is equal to the maximum singular value of M . The set of
symmetric matrices in Rd×d is denoted Sd×d, and for any M ∈ Sd×d, its ordered eigenvalues are written as
λj(M) ≥ λj+1(M). Likewise, the ordered singular values of a general real (possibly rectangular) matrix R

are denoted σj(R) ≥ σj+1(R). For a sketch of An, we write Ãn = SnAn, and similarly, the matrix Ã∗n is

defined as having rows that are sampled with replacement from the rows of Ãn. When the context is clear,
we will sometimes use the shorthand notation

σj = σj(An),

σ̃j = σj(Ãn),

σ̃∗j = σj(Ã
∗
n).

Similarly, the jth left and right singular vectors of Ãn are denoted as ũj and ṽj , and likewise for ũ∗j and ṽ∗j
with respect to Ã∗n. Hence, the dependence on n will be generally suppressed for these vectors. In addition,
for the normalized Gram matrices associated with An, Ãn and Ã∗n, we define

Gn := 1
nA
>
nAn, (A.1)

G̃n := 1
n Ã
>
n Ãn, (A.2)

G̃∗n := 1
n (Ã∗n)>(Ã∗n). (A.3)

Lastly, recall that under Assumption RP, the matrix Gn converges to a positive definite matrix G∞ ∈ Rd×d
as n → ∞. Accordingly, sans-serif font will be reserved for other limiting objects, such as the leading
eigenvectors v1, v2 ∈ Rd of G∞, as described in Assumptions RS.

Items related to probability. If Y is a random matrix, we write L(Y ) to refer to its distribution, and if
Z is another random matrix, we write L(Y |Z) to refer to the conditional distribution of Y given Z. If {Yn} is
a sequence of random matrices converging in probability to another random matrix Y∞ as n→∞, we write

either Yn = Y∞ + oP(1), or Yn
P−→ Y∞. Next, if Yn converges to Y∞ in distribution, we write L(Yn)

d−→ L(Y∞).
In addition, it is important to define a notion of convergence for conditional distributions. Specifically, if
{Zn} is a sequence of random matrices, we will need to define the convergence of the conditional distributions
L(Yn|Zn). To do this, first note that ordinary convergence in distribution can be equivalently expressed in

terms of various metrics on the space of probability measures. That is, the limit L(Yn)
d−→ L(Y∞) is equivalent

to %(L(Yn),L(Y∞))→ 0, where % is a metric such as the Lévy-Prohorov metric, or the bounded Lipschitz

metric (cf. [Dudley, 2002, Sec. 11.3]). Likewise, for conditional distributions we write ‘L(Yn|Zn)
d−−→ L(Y∞)

in probability’ if the sequence of scalar random variables {%(L(Yn|Zn),L(Y∞))} converges to 0 in probability.

A.2 Proof of the limit (0.3)

We begin with a reduction that is often used in the literature on bootstrap methods. Specifically, it is known
that (0.3) can be reduced to showing that

L
(√

tn max
j∈J

ρsin(ṽj , vj)
)

d−−→ L(ξ
V

), (A.4)

and
L
(√

tn max
j∈J

ρsin(ṽ∗j , ṽj)
∣∣∣Sn) d−−→ L(ξ

V
) in probability, (A.5)

for some random variable ξ
V

whose distribution function is continuous. (For further details, please see
Theorem 1.2.1, as well as Remark 1.2.1, and the discussion on p.5 of the book Politis et al. [1999].) Next,

2



as a step towards showing the limits (A.4) and (A.5), we will use some algebraic identities involving the
projection matrices associated with vj , ṽj , and ṽ∗j , which we denote as

Pj := vjv
>
j , P̃j := ṽj ṽ

>
j , P̃ ∗j := (ṽ∗j )(ṽ∗j )>, (A.6)

where the fact that these matrices depend on n has been suppressed. The relevant identities are
√
tnρsin(ṽj , vj) = 1√

2

∥∥√tn(P̃j − Pj)
∥∥
F
, (A.7)

√
tnρsin(ṽ∗j , ṽj) = 1√

2

∥∥√tn(P̃ ∗j − P̃j)
∥∥
F
. (A.8)

As a consequence of these identities, we may write

√
tn max

j∈J
ρsin(ṽj , vj) = f

(√
tn(P̃1 − P1), . . . ,

√
tn(P̃k − Pk)

)
, (A.9)

√
tn max

j∈J
ρsin(ṽ∗j , ṽj) = f

(√
tn(P̃ ∗1 − P̃1), . . . ,

√
tn(P̃ ∗k − P̃k)

)
(A.10)

where f : (Rd×d)k → R is defined by f(C1, . . . , Ck) = maxj∈J
1√
2
‖Cj‖F . In turn, by the continuous mapping

theorem and the Cramér-Wold theorem [Kallenberg, 2006, Theorem 3.27 and Corollary 4.5]), the limits (A.4)
and (A.5) will hold if we can show that for any fixed matrices M1, . . . ,Mk ∈ Rd×d, there is an associated
Gaussian random vector, say (Z1(M1), . . . , Zk(Mk)) ∈ Rk, such that

L
(
〈〈
√
tn(P̃1 − P1),M1〉〉, . . . , 〈〈

√
tn(P̃k − Pk),Mk〉〉

)
d−−→ L(Z1(M1), . . . , Zk(Mk)), and (A.11)

L
(
〈〈
√
tn(P̃ ∗1 − P̃1),M1〉〉, . . . , 〈〈

√
tn(P̃ ∗k − P̃k),Mk〉〉

∣∣∣Sn) d−−→ L(Z1(M1), . . . , Zk(Mk)) in probability.

(A.12)

These limits are established in Lemmas 4 and 5 below, where we handle certain key technical challenges.
In addition, we must verify the condition that the limiting random variable ξV in (A.4) and (A.5) has a
continuous distribution function. To do this, first note that the limit (A.11) allows us to view the tuple of
matrices

(√
tn(P̃j−Pj)

)
j∈J as converging in distribution to a Gaussian vector in the space (Rd×d)|J |. Also, it

is a basic fact that the norm of a Gaussian vector with a non-zero covariance matrix yields a random variable
whose distribution function is continuous. So, given that the function f restricts to a norm on (Rd×d)|J |, it
suffices to show that the mentioned Gaussian vector in (Rd×d)|J | has positive variance when projected into
at least one direction. In other words, to show that ξV has a continuous distribution function, it is enough
to show that there is at least one index j ∈ J and matrix Mj ∈ Rd×d such that 〈〈√tn(P̃j − Pj),Mj〉〉 has a
limiting Gaussian distribution with positive variance — and this is handled in Lemma 4. Altogether, this
completes the proof of the first limit (0.3) in Theorem 1.

Remark. The proofs of the second and third limits (0.1) and (0.2) will require different versions of the
Lemmas 4 and 5, and these are given later on in Lemmas 7 and 8.

A.3 Proof of the limit (0.1)

By the reduction argument used at the beginning of Section A.2, it suffices to show that

L
(√

tn max
j∈J

ρsin(ũj , uj)
)

d−−→ L(ξ
U

), (A.13)

and
L
(√

tn max
j∈J

ρsin(Ãnṽ
∗
j , Ãnṽj)

∣∣∣Sn) d−−→ L(ξ
U

) in probability, (A.14)

for some random variable ξ
U

whose distribution function is continuous. Next, to develop a counterparts of
the relation (A.7), define the projection matrices

Πj := uju
>
j =

AnPjA
>
n

tr(PjA>nAn)
and Π̃j := ũj ũ

>
j =

AnP̃jA
>
n

tr(P̃jA>nAn)
.
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Similarly, to develop a counterpart of (A.8), define the vectors ŭj :=
Ãṽj
‖Ãṽj‖2

and ŭ∗j :=
Ãṽ∗j
‖Ãṽ∗j ‖2

, and their

associated projections

Π̆j := ŭj ŭ
>
j =

ÃnP̃
>
j Ã
>
n

tr(P̃jÃ>n Ãn)
and Π̆∗j := (ŭ∗j )(ŭ

∗
j )
> =

ÃP̃∗j Ã
>
n

tr(P̃∗j Ã
>
n Ãn)

.

Remark. For a finite n, it is possible that the denominators tr(P̃jA
>
nAn), tr(P̃jÃ

>Ã), or tr(P̃ ∗j Ã
>
n Ãn) may

be zero, and if this occurs, we instead define Π̃j , Π̆j , or Π̆∗j to be the zero matrix. However, the probability
of such events will turn out to go to zero asymptotically, and hence, such events will be unimportant.
This same type of consideration will occur at other points in the proofs, and so in order to avoid repe-
tition, we will not make further mention of zero denominators that occur with vanishing probability as n→∞.

In the above notation, it is straightforward to check the identities

ρsin(ũj , uj) = 1√
2
‖Π̃j −Πj‖F (A.15)

ρsin(ŭ∗j , ŭj) = 1√
2
‖Π̆∗j − Π̆j‖F . (A.16)

Since the Frobenius norm of a symmetric matrix only depends on the non-zero eigenvalues, we may replace
the matrices (Π̃j −Πj) and (Π̃∗j − Π̃j) above with different matrices whose non-zero eigenvalues are the same.

In particular, the matrix AnMA>n has the same non-zero eigenvalues as (A>nAn)1/2M(A>nAn)1/2 for any
M ∈ Rd×d. So, if we recall the definition Gn = 1

nA
>
nAn from (A.1), it follows that the matrix

∆̃j := G1/2
n

(
P̃j

tr(P̃jGn)
− Pj

tr(PjGn)

)
G

1/2
n (A.17)

has the same non-zero eigenvalues as (Π̃j −Πj), and therefore

ρsin(ũj , uj) = 1√
2
‖∆̃j‖F . (A.18)

Similarly, if we recall the definition G̃n = 1
n Ã
>
n Ãn and define

∆̃∗j := G̃1/2
n

(
P̃∗j

tr(P̃∗j G̃n)
− P̃j

tr(P̃jG̃n)

)
G̃

1/2
n , (A.19)

then we have
ρsin(ŭ∗j , ŭj) = 1√

2
‖∆̃∗j‖F . (A.20)

The key significance of working with the d × d matrices ∆̃j and ∆̃∗j is that they remain of a fixed size

asymptotically, whereas the n× n matrices (Π̃j −Πj) and (Π̆∗j − Π̆j) expand as n→∞.
At this stage, the identities (A.18) and (A.20) will play the role that (A.7) and (A.8) did earlier. In

turn, we may apply the previous reasoning based on the continuous mapping theorem and the Cramér-Wold
theorem. In this way, the limits (A.13) and (A.14) will hold if we can show that for any fixed matrices
M1, . . . ,Mk ∈ Rd×d, there is an associated Gaussian vector, say (ζ1(M1), . . . , ζk(Mk)) ∈ Rk, such that

L
(〈〈√

tn∆̃1,M1
〉〉
, . . . ,

〈〈√
tn∆̃k,Mk

〉〉) d−−→ L(ζ1(M1), . . . , ζk(Mk)), and (A.21)

L
(√

tn∆̃∗1,M1〉〉, . . . , 〈〈
√
tn∆̃∗k,Mk〉〉

∣∣∣Sn) d−−→ L(ζ1(M1), . . . , ζk(Mk)) in probability. (A.22)

These limits are established in Lemma 7 below. Lastly, to ensure that the limiting random variable ξ
U

in (A.13) and (A.14) has a continuous distribution function, the reasoning in Section A.2 shows that it is
sufficient to exhibit at least one index j ∈ J and matrix Mj ∈ Rd×d such that var(ζj(Mj)) > 0. This is also
done in Lemma 7.
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A.4 Proof of the limit (0.2)

As in the previous two subsections, the proof can be reduced to showing that

L
(√

tn√
n

max
j∈J
|σ̃j − σj |

)
d−−→ L(ξΣ), and (A.23)

L
(√

tn√
n

max
j∈J
|σ̃∗j − σ̃j |

∣∣∣S) d−−→ L(ξ
Σ

), in probability (A.24)

for some random variable ξ
Σ

whose distribution function is continuous. (Here, we use the normalizing factor√
tn√
n

, rather than the
√
tn used in (A.4) and (A.5), because the singular values depend on the scaling of

the matrix 1
nA
>
nAn — whereas the singular vectors do not.) Proceeding as before, the continuous mapping

theorem and the Cramér-Wold theorem imply that (A.23) and (A.24) will hold if we can show that the
following limits hold for any constants c1, . . . , ck ∈ R,

L
( k∑
j=1

√
tn√
n
cj(σ̃j − σj)

)
d−−→ L(ζ(c1, . . . , ck)), (A.25)

and
L
(∑k

j=1

√
tn√
n
cj(σj(Ã

∗
n)− σj(Ãn))

∣∣∣Sn) d−−→ L(ζ(c1, . . . , ck)) in probability, (A.26)

where ζ(c1, . . . , ck) is a Gaussian scalar random variable. These limits are established in Lemma 8. In
addition, we can show that ξ

Σ
has a continuous distribution function in the same way as was done for ξ

V
and

ξ
U

, which amounts to showing that ζ(1, 0, . . . , 0) has positive variance — and this is shown in Lemma 8 as
well. This completes the proof.

B Intermediate results

The results in this section are relevant to the proofs of all three limits in Theorem 1. The first is a well
known result, usually called Slutsky’s lemma [van der Vaart, 2000, Lemma 2.8], whereas the second is a
conditional version of it that is tailored to the current paper. Hence, we only provide a proof of the conditional
version. Lastly, in Lemmas 2 and 3, we provide a CLT for

√
tn(G̃n−Gn), as well as its bootstrap counterpart√

tn(G̃∗n − G̃n).

Fact 1 (Slutsky’s lemma). For each n ≥ 1, let Tn ∈ Rd1×d2 and Rn ∈ Rd′1×d′2 be random matrices whose
dimensions remain fixed as n → ∞. In addition, suppose there is a random matrix T∞ ∈ Rd1×d2 and a

constant matrix R∞ ∈ Rd′1×d′2 such that L(Tn)
d−−→ L(T∞) and Rn → R∞ in probability. Then, for any

continuous function g : Rd1×d2 × Rd′1×d′2 → R, the following limit holds

L
(
g(Tn, Rn)

) d−−→ L
(
g(T∞, R∞)

)
. (B.1)

Lemma 1 (Conditional Slutsky’s lemma). For each n ≥ 1, let Dn = {X1,n, . . . , Xtn,n} be a set of random
variables, and let D∗n = {X∗1,n, . . . , X∗tn,n} be sampled with replacement from Dn. Also, for each n ≥ 1, let

T ∗n = Tn(D∗n) be a real random matrix of size d1 × d2 computed from D∗n. In addition, let Rn ∈ Rd′1×d′2
be a random matrix that may depend on both Dn and D∗n. Lastly, suppose that there is a random matrix
T∞ ∈ Rd1×d2 and a constant matrix R∞ ∈ Rd′1×d′2 such that

L(T ∗n |Dn)
d−−→ L(T∞) in probability, (B.2)

and for any ε > 0,
P
(
‖Rn −R∞‖F > ε

∣∣Dn) → 0 in probability. (B.3)

Then, for any continuous function g : Rd1×d2 × Rd′1×d′2 → R, the following limit holds

L
(
g(T ∗n , Rn)

∣∣Dn) d−−→ L
(
g(T∞, R∞)

)
in probability. (B.4)
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Proof. By the continuous mapping theorem, it suffices to show that the bounded-Lipschitz metric between
L
(
T ∗n , Rn

∣∣Dn) and L
(
T∞, R∞

)
converges to 0 in probability. (Please see the comments in Section A.1 for

additional background.) Let F denote the class of functions from Rd1×d2 × Rd′1×d′2 to R that are bounded in
magnitude by 1 and are 1-Lipschitz with respect to the Frobenius norm. Then,

sup
f∈F

∣∣∣E[f(T ∗n , Rn)|Dn)]− E[f(T∞, R∞)]
∣∣∣ ≤ sup

f∈F

∣∣∣E[f(T ∗n , Rn)− f(T ∗n , R∞)
∣∣Dn]∣∣∣

+ sup
f∈F

∣∣∣E[f(T ∗n , R∞)|Dn)]− E[f(T∞, R∞)]
∣∣∣. (B.5)

Regarding the second term on the right side, note that for each f ∈ F , the associated function h(·) := f(·, R∞)
on Rd1×d2 is bounded in magnitude by 1 and is 1-Lipschiz with respect to the Frobenius norm. Hence, the
assumption (B.2) implies that the second term in the bound (B.5) converges to 0 in probability.

Regarding the first term of the bound (B.5), we can decompose the expectation by writing the constant 1
as a sum of two indicators, 1 = 1En + 1Ec

n
, where we define the event En := {‖(T ∗n , Rn)− (T ∗n , R∞)‖F > ε}.

Likewise, by noting that En is the same as {‖Rn −R∞‖F > ε}, we have

sup
f∈F

∣∣∣E[f(T ∗n , Rn)|Dn)]− E[f(T ∗n , R∞)|Dn]
∣∣∣ ≤ ε+ 2P

(
‖Rn −R∞‖F > ε

∣∣Dn)
= ε+ oP(1),

(B.6)

where the second step follows from Assumption (B.3). Finally, since ε > 0 can be taken arbitrarily small,
this completes the proof.

Remark. The proofs of the next two results are similar to the proofs of Lemmas 3 and 4 in Lopes et al. [2018],
but there is an important distinction insofar as the current proofs handle row-sampling matrices — which
were not addressed in that prior work.

Lemma 2. Suppose that the conditions of Theorem 1 hold. Then, for any fixed matrix M ∈ Rd×d, there is a
Gaussian random variable Z(M) such that

L
(
〈〈M,

√
tn(G̃n −Gn)〉〉

)
d−−→ L(Z(M)).

Proof. Let s1,n, . . . , stn,n ∈ Rn denote the rows of
√
tnSn, and observe the algebraic relation

〈〈M,
√
tn(G̃n −Gn)〉〉 = 1√

tn n

tn∑
i=1

(
〈〈M,A>n sis

>
i An〉〉 − 〈〈M,A>nAn〉〉

)
. (B.7)

Hence, if we defineXi,n = 1
n

(
s>i,nAnMA>n si,n−〈〈M,A>nAn〉〉

)
for each i ∈ {1, . . . , tn}, then it is straightforward

to check that these random variables have mean zero and satisfy

〈〈M,
√
tn(G̃n −Gn)〉〉 = 1√

tn

tn∑
i=1

Xi,n. (B.8)

Since the variables X1,n, . . . , Xtn,n are i.i.d. for each n, but have distributions that may vary with n, we now
apply the Lindeberg CLT for triangular arrays [van der Vaart, 2000, Prop. 2.27]. This result requires us to
verify two conditions as n→∞. The first is that var(X1,n) converges to a finite limit, and the second is that

E
[
X2

1,n1
{
|X1,n| > ε

√
tn
}]
→ 0 for every fixed ε > 0. (B.9)

We will now show that var(X1,n) converges to a limit separately in the cases where Sn is a row-sampling
matrix or a Gaussian random projection. In the row-sampling case, this follows directly from Assumption RS
and the fact that

var(X1,n) = var
(

1
ns
>
1,nAnMA>n s1,n

)
= var(r̃>nMr̃n),
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where r̃n is the first row of 1√
n
Ãn. Meanwhile, in the case of Gaussian random projections, it is possible to

explicitly calculate var(X1,n). Specifically, if z ∼ N(0, In) is a standard Gaussian vector and Q ∈ Rn×n is
fixed, then

var(z>Qz) = 2‖Q‖2F , (B.10)

which can be found in [Bai and Silverstein, 2010, eqn. 9.8.6]. Consequently, we have

var(X1,n) = 2
∥∥ 1
nAnMA>n

∥∥2
F

= 2 tr(M>GnMGn),
(B.11)

and since Assumption RP ensures Gn → G∞, it follows that var(X1,n)→ tr(M>G∞MG∞), as needed.

To complete the proof, it remains to check the Lindeberg condition (B.9) in the cases of the two types of
sketching matrices. First we handle the case of row sampling. Using the Cauchy-Schwarz inquality, followed
by a Chernoff bound, we have

E
[
X2

1,n1
{
|X1,n| > ε

√
tn
}]
≤
√
E
[
X4

1,n

]
E
[
e|X1,n|

]
e−ε
√
tn . (B.12)

Using the general inequality (a+ b)4 ≤ 8(a4 + b4), we may bound the fourth moment as

E[X4
1,n] ≤ 8

n∑
l=1

pl
(

1
npl

a>l Mal
)4

+ 8〈〈M,Gn〉〉4

≤ 8‖M‖4op max
1≤l≤n

‖ 1√
npl

al‖82 + c0,

(B.13)

where we have used the fact that 〈〈M,Gn〉〉 ≤ c0 for some positive constant c0 > 0. Similarly, we have

E
[
e|X1,n|

]
e−ε
√
tn ≤ exp

(
|〈〈M,Gn〉〉| − ε

√
tn

)∑n
l=1 pl exp

(∣∣ 1
npl

a>l Mal
∣∣)

≤ exp
(
c0 − ε

√
tn + ‖M‖op max

1≤l≤n
‖ 1√

npl
al‖22

)
.

(B.14)

Hence, under Assumption RS, there is a constant c(ε) > 0 such that the bound

E
[
e|X1,n|

]
e−ε
√
tn ≤ ec0e−c(ε)

√
tn

holds for all large t. Combining with (B.13) and noting that the limit max1≤l≤n ‖ 1√
npl

al‖82 e−c(ε)
√
tn → 0

holds under Assumption RS, it follows that the Lindeberg condition (B.9) indeed holds in the case of row
sampling.

Lastly, to handle the case of Gaussian random projections, it follows from the Cauchy-Schwarz and
Chebyshev inequalities that

E
[
X2

1,n1
{
|X1,n| > ε

√
tn
}]
≤
√
E
[
X4

1,n

]
1

ε2tn
var(X1,n). (B.15)

Next, it is known from [Bai and Silverstein, 2010, Lemma B.26] that if s1,n is a standard Gaussian vector in
Rn, then the following bound holds in terms of the matrix Kn := 1

nAnMA>n and an absolute constant c > 0,

E[X4
1,n] ≤ c

(
tr(KnK

>
n )2 + tr

(
(KnK

>
n )2

))
= c

(
tr(MGnM

>Gn) + tr
(
(MGnM

>Gn)2
))
.

(B.16)

In turn, since this bound converges to tr(MG∞M
>G∞) + tr

(
(MG∞M

>G∞)2
)
, we conclude that E[X4

1,n] is
bounded, and so (B.15) implies that the Lindeberg condition (B.9) holds in the case of Gaussian random
projections.
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Lemma 3. Suppose that the conditions of Theorem 1 hold, and for each fixed M ∈ Rd×d, let Z(M) be the
Gaussian random variable in the statement of Lemma 2. Then, the following limit holds as n→∞,

L
(〈〈
M,
√
tn(G̃∗n − G̃n)

〉〉 ∣∣∣Sn) d−−→ L(Z(M)), in probability.

Proof. Recall that s1,n, . . . , stn,n ∈ Rn denote the rows of
√
tnSn, and let s∗1,n, . . . , s

∗
tn,n be tn i.i.d. samples

drawn with replacement from s1,n, . . . , stn,n. By analogy with the proof of Lemma 2, consider the algebraic
relation 〈〈

M,
√
tn(G̃∗n − G̃n)

〉〉
= 1√

tn n

tn∑
i=1

(〈〈
M,A>n (s∗i,n)(s∗i,n)>An

〉〉
−
〈〈
M, Ã>n Ãn

〉〉)
, (B.17)

and define the random variable X∗i,n = 1
n

(
(s∗i,n)>AnMA>n (s∗i,n) − 〈〈M, Ã>n Ãn〉〉

)
for each i ∈ {1, . . . , tn} so

that 〈〈
M,
√
tn(G̃∗n − G̃n)

〉〉
= 1√

tn

tn∑
i=1

X∗i,n. (B.18)

Also observe that E[X∗i,n|Sn] = 0 for every i ∈ {1, . . . , tn}. To complete the proof, it suffices to show that the
conditions of the Lindeberg CLT for triangular arrays hold in a conditional sense (cf. [van der Vaart, 2000,
p.330-331]). More precisely, it suffices to show that the conditional variance var(

〈〈
M,
√
tn(G̃∗n − G̃n)〉〉|Sn)

converges to a limit in probability, and that the following limit holds for each fixed ε > 0,

E
[
(X∗1,n)21

{
|X∗1,n| > ε

√
tn
}∣∣∣Sn] → 0 in probability. (B.19)

To show the latter condition in the cases of either the row-sampling or Gaussian random projections, let
Ln denote the left side of (B.19) and note that the definition of sampling with replacement implies

Ln = 1
tn

∑tn
i=1X

2
i,n1{Xi,n > ε

√
tn}.

Consequently, for any ε > 0, Markov’s inequality gives

P(Ln > ε) ≤ 1
εE[Ln] = 1

εE
[
X2

1,n1{X1,n > ε
√
tn}
]
, (B.20)

and so the condition (B.19) must hold because the limit E
[
X2

1,n1{X1,n > ε
√
tn}
]
→ 0 was established in the

proof of Lemma 2.

Finally, we show that var(〈〈M,
√
tn(G̃∗n− G̃n)〉〉|Sn) has a limit in probability, and the argument will apply

in the same manner to the cases of row sampling and Gaussian random projections. Define the random
variable ς̂2tn := 1

tn

∑t
i=1X

2
i,n − ( 1

tn

∑tn
i=1Xi,n)2, and observe that

var
(〈〈
M,
√
tn(G̃∗n − G̃n)〉〉

∣∣∣Sn) = var
(
X∗1,n

∣∣Sn)
= ς̂2tn ,

(B.21)

which follows from the relation (B.18) and the fact that, conditionally on Sn, the random variable X∗1,n
is a sample from the discrete uniform distribution on {X1,n, . . . , Xtn,n}. Thus, it remains to show that
ς̂2tn converges to a limit in probability. Due to basic facts about the sample variance ς̂2tn , it is known that

E[ς̂2tn ] = tn−1
tn

var(X1,n) and var(ς̂2tn) = O( 1
tn
E[X4

1,n]) [Kenney and Keeping, 1951, p. 164]. Furthermore, the

proof of Lemma 2 shows that 1
tn
E[X4

1,n]→ 0 under either Assumption RP or RS, and so it follows that ς̂2tn
must converge in probability to the same limit as var(X1,n), which completes the proof.

C Lemmas for the right singular vectors

In Lemmas 4 and 5 we provide a joint CLT for the projection matrices
√
tn(P̃j−Pj), as well as their bootstrap

counterparts
√
tn(P̃ ∗j − P̃j) with j = 1, . . . , k. (Recall that the definitions of definitions of Pj , P̃j , and P̃ ∗j are

given in (A.6).)
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Lemma 4. Suppose that the conditions of Theorem 1 hold. Then, for any fixed matrices M1, . . . ,Mk ∈ Rd×d,
there is a Gaussian vector (Z1(M1), . . . , Zk(Mk)) in Rk such that

L
(√

tn〈〈P̃1 − P1,M1〉〉, . . . ,
√
tn〈〈P̃k − Pk,Mk〉〉

)
d−−→ L

(
Z1(M1), . . . , Zk(Mk)

)
. (C.1)

Furthermore, there is a choice of the matrix M1 ∈ Rd×d such that the Gaussian variable Z1(M1) has positive
variance.

Proof. By the Cramér-Wold theorem, the limit (C.1) can be established by showing that for any constants

c1, . . . , ck ∈ R, the sum
∑k
j=1 cj

√
tn〈〈P̃j−Pj ,Mj〉〉 converges in distribution to a Gaussian random variable. We

will show this first, and then at the end of the proof, we will exhibit a choice of M1 for which var(Z1(M1)) > 0.
Recall that Sd×d ⊂ Rd×d denotes the subspace of symmetric matrices, and for each j ∈ {1, . . . , k}, let

ψj : Sd×d → R denote the function that satisfies ψj(Gn) = 〈〈Pj ,Mj〉〉 and ψj(G̃n) = 〈〈P̃j ,Mj〉〉, so that

√
t〈〈P̃j − Pj ,Mj〉〉 =

√
tn(ψj(G̃n)− ψj(Gn)).

To apply the mean-value theorem to the difference on the right, we may rely on the fact from matrix calculus
that ψj is continuously differentiable in an open neighborhood of any symmetric matrix whose jth eigenvalue
is isolated [Magnus and Neudecker, 2019, Theorem 8.9]. Since all the eigenvalues of G∞ are isolated, we
may let U ⊂ Sd×d denote an open neighborhood on which all the functions ψ1, . . . , ψk are continuously
differentiable. Also, we need to define a random variable R̃n,j and a random matrix D̃j,n ∈ Sd×d in the

following two cases: either (1) both of the matrices Gn and G̃n lie in U , or (2) at least one of the matrices
Gn or G̃n falls outside of U . In the first case, let R̃n,j = 0, and let D̃j,n denote the differential (gradient)

ψ′j(Ğj,n) ∈ Sd×d evaluated at a random matrix Ğj,n that is a convex combination of Gn and G̃n. In the

second case, let R̃n,j =
√
tn(ψj(G̃n)− ψj(Gn)) and let D̃j,n = 0. Based on these definitions, the mean-value

theorem ensures that the following relation always holds

√
tn

(
ψj(G̃n)− ψj(Gn)

)
=
〈〈
D̃j,n,

√
tn(G̃n −Gn)

〉〉
+ R̃n,j . (C.2)

Hence, if we let D̃n =
∑k
j=1 cjD̃j,n and R̃n =

∑k
j=1 cjR̃n,j , then

k∑
j=1

cj
√
tn〈〈P̃j − Pj ,Mj〉〉 =

〈〈
D̃n,
√
tn(G̃n −Gn)

〉〉
+ R̃n. (C.3)

Based on this relation, as well as Lemma 2 and Slutsky’s lemma (Fact 1), the proof of the limit (C.1) reduces
to establishing the following limits

R̃n → 0 in probability, (C.4)

and
D̃n → D∞ in probability, (C.5)

for some constant matrix D∞ ∈ Sd×d. These limits are established below.
Let En denote the event that both G̃n and Gn lie in the neighborhood U . Given that R̃n can only be

non-zero when Ecn occurs, we have
P(|R̃n| > ε) ≤ P(Ecn).

Furthermore, since we assume that Gn converges to G∞, and since it is shown in Lemma 6 below that G̃n
converges in probability to G∞, it follows that P(Ecn)→ 0. This establishes the limit (C.4). With regard to
the limit (C.5), observe that our definitions give the relation

D̃n =

k∑
j=1

cj1Enψ
′
j(Ğj,n),

where 1En is the indicator of the event En. Based on the mentioned limits of G̃n and Gn, it follows that
the convex combination Ğj,n must converge in probability to G∞. In addition, since the differential ψ′j is
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continuous on U , it follows that ψ′j(Ğj,n) converges in probability to the constant matrix ψ′j(G∞). Hence, if
we put

D∞ :=

k∑
j=1

cjψ
′
j(G∞), (C.6)

then the limit (C.5) holds, and the proof of (C.1) is complete.
Now, we turn to showing that var(Z1(M1)) > 0. Let v1 and v2 denote the pair of eigenvectors of G∞

mentioned in Assumption RS, and consider the particular choice of the matrix

M1 = v2v
>
1 .

Then, our previous argument leads to

√
tn
〈〈
P̃1 − P1,M1

〉〉
=
〈〈
ψ′1(G∞),

√
tn(G̃n −Gn)

〉〉
+ oP(1),

where we recall that the definition of ψ1 depends on M1. Based on an analytical formula for the matrix
differential of an eigenprojection [Magnus and Neudecker, 2019, Theorem 8.9], the differential ψ′1(G∞) can be
obtained explicitly. In particular, the inner product on the right side above may be calculated as follows,
where λ1 and λ2 denote the eigenvalues of G∞ corresponding to v1 and v2, and the symbol † refers to the
Moore-Penrose inverse,〈〈
ψ′1(G∞),

√
tn(G̃n −Gn)

〉〉
=

〈〈
v1v
>
1 M1

(
λ1Id − G∞

)†
+
(
λ1Id − G∞

)†
M1v1v

>
1 ,
√
tn(G̃n −Gn)

〉〉
,

= 1
λ1−λ2

〈〈
M>1 ,

√
tn(G̃n −Gn)

〉〉
.

(C.7)

where the second step is obtained by noting >v1v
>
1 M1 = 0, as well as (λ1Id − G∞)†v2 = 1

λ1−λ2
v2. In turn, by

rearranging the last expression in (C.7), we have

〈〈
ψ′1(G∞),

√
tn(G̃n −Gn)

〉〉
= 1

λ1−λ2

1√
tn

tn∑
i=1

(
s>i,n
(
1
nAnM

>
1 A
>
n

)
si,n − tr( 1

nAnM
>
1 A
>
n )
)

(C.8)

and since the terms of the sum are mean-zero and i.i.d., we have

var
(〈〈
ψ′1(G∞),

√
tn(G̃n −Gn)

〉〉)
= 1

(λ1−λ2)2
var
(
s>1,n

(
1
nAnM

>
1 A
>
n

)
s1,n

)
.

Altogether, it remains to separately check that the right side of this display has a positive limit in the
cases of row sampling and Gaussian random projections. In the row sampling case, this follows directly from
Assumption RS since var(s>1,n( 1

nAnM
>
1 A
>
n )s1,n) = var(r̃>n (v1v

>
2 )r̃n) → `(v1v

>
2 ). Alternatively, in the case

when Sn is a Gaussian random projection, we may use the formula (B.10) which leads to

var
(
s>1,n

(
1
nAnM

>
1 A
>
n

)
s1,n

)
= 2

∥∥∥ 1
nAnM

>
1 A
>
n

∥∥∥2
F

= 2 tr
(
M1GnM

>
1 Gn

)
= 2 tr

(
M1G∞M

>
1 G∞

)
+ o(1)

= 2
(
v>1 G∞v1

)(
v>2 G∞v2

)
+ o(1)

= 2λ1λ2 + o(1).

(C.9)

This clearly leads to a positive limit for the variance of
〈〈
ψ′1(G∞),

√
tn(G̃n − Gn)

〉〉
, which completes the

proof.
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Lemma 5. Suppose the conditions of Theorem 1 hold, and for any fixed matrices M1, . . . ,Mk ∈ Rd×d, let
(Z1(M1), . . . , Zk(Mk)) be the Gaussian vector in the statement of Lemma 4. Then, as n→∞,

L
(√

tn〈〈P̃ ∗1 − P̃1,M1〉〉, . . . ,
√
tn〈〈P̃ ∗k − P̃k,Mk〉〉

∣∣∣Sn) d−−→ L
(
Z1(M1), . . . , Zk(Mk)

)
in probability. (C.10)

Proof. The argument is similar to the proof of Lemma 4, but with some differences that we explain here.
By the Cramér-Wold theorem, it suffices to show that the following limit holds for any fixed numbers
c1, . . . , ck ∈ R,

L
(∑k

j=1 cj
√
tn〈〈P̃ ∗j − P̃j ,Mj〉〉

∣∣∣Sn) d−−→ L
(∑k

j=1 cjZj(Mj)
)

in probability.

To show this, we will combine Lemmas, 1, 2, and 4.
Let the fixed matrix D∞ ∈ Rd×d denote the limit in (C.6) that depends on c1, . . . , ck, and observe that

the proof of Lemma 4 shows that

L
(〈〈

D∞,
√
tn(G̃n −Gn)

〉〉) d−−→ L
(∑k

j=1 cjZj(Mj)
)
.

Next, we claim that the following expansion holds∑k
j=1 cj

√
tn〈〈P̃ ∗j − P̃j ,Mj〉〉 =

〈〈
D̃∗n,
√
tn(G̃∗n − G̃n)

〉〉
+ R̃∗n (C.11)

where D̃∗n ∈ Rd×d is a random matrix and R̃∗n is a random scalar that satisfy the following limits for any
fixed ε > 0,

P
(
‖D̃∗n − D∞‖F > ε

∣∣∣Sn) → 0 in probability, (C.12)

P
(
|R∗n − 0| > ε

∣∣∣Sn) → 0 in probability. (C.13)

As a consequence of this claim, and the fact that L(〈〈D∞,
√
tn(G̃∗n − G̃n)〉〉|Sn) conditionally converges in

distribution to the same limit as L(〈〈D∞,
√
tn(G̃n −Gn)〉〉) (by Lemma 2), the proof will be completed by the

conditional version of Slutsky’s lemma (Lemma 1). Thus, it remains to verify the three parts (C.11), (C.12),
and (C.13) of the claim.

For each j ∈ {1, . . . , k}, let ψj : Sd×d → R be as defined in the proof of Lemma 4, and let U ⊂ Sd×d again
denote the open neighborhood of G∞ on which all the functions ψ1, . . . , ψk are continuously differentiable.
Also, let E ′n denote the event that G̃∗n lies in U , and recall that En denotes the event that both G̃n and Gn
lie in U . To establish the expansion (C.11), we now define D̃∗n and R̃∗n as follows. When E ′n ∩ En holds, the
mean-value theorem ensures that for each j ∈ {1, . . . , k} we have

√
tn〈〈P̃ ∗j − P̃j ,Mj〉〉 =

√
tn
(
ψj(G̃

∗
n)− ψj(G̃n)

)
= 〈〈D̃∗j,n,

√
tn(G̃∗n − G̃n)〉〉,

(C.14)

where D̃∗j,n is a shorthand for the differential ψ′j(Ğ
∗
j,n) ∈ Sd×d evaluated at a point Ğ∗j,n that is a convex

combination of G̃∗j,n and G̃j,n. Accordingly, when E ′n ∩ En holds, we define D̃∗n =
∑k
j=1 cjD̃

∗
j,n and R̃∗n = 0.

Oppositely, when the event (E ′n ∩ En)c holds, we put D̃∗n = 0 and R̃∗n =
∑k
j=1 cj

√
tn
(
ψj(G̃

∗
n) − ψj(G̃n)

)
.

Based on these definitions, it follows that the expansion (C.11) always holds.
Turning to the limit (C.13), the event {|R̃∗n−0| > ε} can only occur when (E ′n∩En)c occurs. Consequently,

a union bound gives

E
[
P
(
|R∗n − 0| > ε

∣∣∣Sn)] ≤ P((E ′n)c) + P(Ecn). (C.15)

Furthermore, we know from the proof of Lemma 4 that P(Ecn)→ 0, and also, it is straightforward to check
that P((E ′n)c)→ 0. Thus, (C.15) implies (C.13) via Markov’s inequality.

Lastly, handling the limit (C.12) can be reduced to showing G̃∗n
P−→ G∞ (unconditionally), which is done in

Lemma 6 below. This is sufficient because the limit G̃n
P−→ G∞ (cf. Lemma 6) and the continuity of ψ′j(·) on

the neighborhood U imply ψ′j(Ğ
∗
j,n)

P−→ ψ′j(G∞) for all j ∈ {1, . . . , k}, which leads to P(‖D̃∗n−D∞‖F > ε)→ 0.
In turn, this implies (C.12) via Markov’s inequality, and the proof is complete.
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Lemma 6. Suppose that the conditions of Theorem 1 hold. Then, the following limits hold as n→∞,

G̃n
P−→ G∞ (C.16)

and
G̃∗n

P−→ G∞. (C.17)

Proof. The first limit (C.16) is a direct consequence of Lemma 2. To handle the second limit (C.17), observe
that Chebyshev’s inequality (conditional on Sn) gives

P
(
‖G̃∗n − G̃n‖F > ε

∣∣Sn) ≤ 1
ε2E
[∥∥G̃∗n − G̃n‖2F ∣∣Sn]

= 1
ε2E
[∥∥ 1

tn

∑t
i=1

1
nA
>
n (s∗i,n)(s∗i,n)>An − 1

nA
>
nS
>
n SnAn

∥∥2
F

∣∣∣Sn]
= 1

ε2tn
E
[∥∥A>n (s∗1,n)(s∗1,n)>An − 1

nA
>
nS
>
n SnAn

∥∥2
F

∣∣∣Sn]
= 1

ε2tn
1
tn

∑tn
i=1

∥∥ 1
nA
>
n si,ns

>
i,nAn − 1

nA
>
nS
>
n SnAn

∥∥2
F
,

(C.18)

where the third line follows from the general fact that if Y1, . . . , Yt are independent mean-zero random
matrices, then E[‖Y1 + · · · + Ytn‖2F ] =

∑tn
i=1 E[‖Yi‖2F ], and the fourth line follows from the definition of

sampling with replacement. So, taking an expectation over Sn on both sides of the previous display, we have

P
(
‖G̃∗n − G̃n‖F > ε

)
≤ 1

ε2tn
E
[∥∥ 1

nA
>
n s1,ns

>
1,nAn − 1

nA
>
nS
>
n SnAn

∥∥2
F

]
≤ 2

ε2tn
E
[∥∥ 1

nA
>
n s1,ns

>
1,nAn −Gn

∥∥2
F

]
+ 2

ε2tn
E
[∥∥Gn − 1

nA
>
nS
>
n SnAn

∥∥2
F

]
=
(

2
ε2tn

+ 2
ε2t2n

)(
E
[
( 1
ns
>
1,nAnA

>
n s1,n)2

]
− ‖Gn‖2F

)
=
(

2
ε2tn

+ 2
ε2t2n

)(
var
(
1
ns
>
1,nAnA

>
n s1,n

)
+
(

tr(Gn)2 − ‖Gn‖2F
))
,

(C.19)

where the third line relies on expanding AnS
>
n SnAn as a sum and using the identity E[‖Y1 + · · ·+ Ytn‖2F ] =∑tn

i=1 E[‖Yi‖2F ] that was mentioned just a moment ago. Finally, the proof of Lemma 2 shows that the quantity
var( 1

ns
>
1,nAnA

>
n s1,n) + (tr(Gn)2 − ‖Gn‖2F ) converges to a finite limit (under either Assumption RP or RS).

Hence, the O(1/tn) prefactor requires P
(
‖G̃∗n − G̃n‖F > ε

)
to converge to 0, as needed.

D Lemma for the left singular vectors

The following lemma is needed for proving the limit (0.1) in Theorem 1.

Lemma 7. Suppose that the conditions of Theorem 1 hold, and for each j ∈ {1, . . . , k}, let ∆̃j and ∆̃∗j be

as defined in (A.17) and (A.19). Then, for any fixed matrices M1, . . . ,Mk ∈ Rd×d, there is an associated
Gaussian random vector (ζ1(M1), . . . , ζk(Mk)) ∈ Rk such that

L
(〈〈√

tn∆̃1,M1
〉〉
, . . . ,

〈〈√
tn∆̃k,Mk

〉〉) d−−→ L(ζ1(M1), . . . , ζk(Mk)), and (D.1)

L
(√

tn∆̃∗1,M1〉〉, . . . , 〈〈
√
tn∆̃∗k,Mk〉〉

∣∣∣Sn) d−−→ L(ζ1(M1), . . . , ζk(Mk)) in probability. (D.2)

Furthermore, there is a choice of the matrix M1 ∈ Rd×d such that the Gaussian variable ζ1(M1) has positive
variance.
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Proof. It is straightforward to check that the algebraic relation

〈〈
√
tn∆̃j ,Mj〉〉 = 〈〈

√
tn(P̃j − Pj), K̃j〉〉 (D.3)

holds for every j ∈ {1, . . . , k}, where we let

K̃j =
G1/2

n MjG
1/2
n

tr(P̃jGn)
− 〈〈Pj ,G

1/2
n MjG

1/2
n 〉〉

tr(P̃jGn) tr(PjGn)
Gn.

In addition, since G∞ has isolated eigenvalues, the function that maps a symmetric matrix to its jth
eigenprojection is continuous in an open neighborhood of G∞ [Magnus and Neudecker, 2019, Theorem
8.9]. Next, if we let (λ1, v1), . . . , (λd, vd) denote the eigenvalue-eigenvectors pairs of G∞ with corresponding
eigenprojections Pj := vjv

>
j , then the limits

Pj = Pj + o(1) and P̃j = Pj + oP(1),

follow from Gn = G∞ + o(1) and G̃n = G∞ + oP(1) (by Lemma 6). (Also recall that the dependence of Pj
and P̃j on n is suppressed.) In turn, we have

K̃j = 1
λj
G
1/2
∞ MjG

1/2
∞ − 1

λj
〈〈Pj ,Mj〉〉G∞ + oP(1).

So, if we combine this expression for K̃j with (D.3), Lemma 4, and Slutsky’s lemma, it follows that the
limit (D.1) holds.

To show there is a choice of M1 for which 〈〈√tn∆̃1,M1〉〉 converges to a distribution with a positive
variance, consider the choice M1 = v2v

>
1 . In this case, it can be checked that

K̃1 =
√
λ2√
λ1
M1 + oP(1),

and in the proof of Lemma 4 it is shown that the limiting distribution of 〈〈√tn(P̃j − Pj),M1〉〉 has positive

variance (under either Assumption RS or RP). Thus, by Slutsky’s lemma, the random variable 〈〈√tn∆̃1,M1〉〉
must also have a limiting distribution with positive variance.

Lastly, it remains to establish the limit (D.2). For each j ∈ {1, . . . , k}, define the random matrix

K̃∗j =
G̃1/2

n MjG̃
1/2
n

tr(P̃∗j G̃n)
− 〈〈P̃j ,G̃

1/2
n MjG̃

1/2
n 〉〉

tr(P̃∗j G̃n) tr(P̃jG̃n)
G̃n, (D.4)

which leads to the algebraic relation

〈〈
√
tn∆̃∗j ,Mj〉〉 = 〈〈

√
tn(P̃ ∗j − P̃j), K̃∗j 〉〉. (D.5)

In addition, using the reasoning that led to the limit P̃j = Pj + oP(1) and the fact that G̃∗n = G∞ + oP(1) (by

Lemma 6), it can be checked that P̃ ∗j = Pj + oP(1), which leads to

K̃∗j = 1
λj
G
1/2
∞ MjG

1/2
∞ − 1

λj
〈〈Pj ,Mj〉〉G∞ + oP(1). (D.6)

Finally, by combining this with the relation (D.5), Lemma 5, and the conditional of version of Slutsky’s
lemma (Lemma 1), it follows that the limit (D.2) holds.

E Lemma for the singular values

The following lemma gives a joint CLT for
√
tn(σj(Ãn) − σj(An)) with j = 1, . . . , k, as well as for the

bootstrap counterparts
√
tn(σj(Ã

∗
n)− σj(Ãn)).
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Lemma 8. Suppose that the conditions of Theorem 1 hold. Then, for any fixed real numbers c1, . . . , ck, there
is a Gaussian random variable ζ(c1, . . . , ck) such that as n→∞,

L
(∑k

j=1

√
tn√
n
cj(σj(Ãn)− σj(An))

)
d−−→ L(ζ(c1, . . . , ck)), (E.1)

and
L
(∑k

j=1

√
tn√
n
cj(σj(Ã

∗
n)− σj(Ãn))

∣∣∣Sn) d−−→ L(ζ(c1, . . . , ck)) in probability. (E.2)

Lastly, the random variable ζ(1, 0, . . . , 0) has positive variance.

Proof. First, we prove the limit (E.1). For any fixed positive semidefinite matrix M ∈ Sd×d and index
j ∈ {1, . . . , k}, let ϕj(M) =

√
λj(M) so that we have the relation

√
tn√
n

(σj(Ãn)− σj(An)) =
√
tn
(
ϕj(G̃n)− ϕj(Gn)

)
.

Since the limiting matrix G∞ has isolated eigenvalues, it is a fact from matrix calculus that there is an open
neighborhood V ⊂ Sd×d of G∞ such that all of the functions ϕ1, . . . , ϕk are continuously differentiable on
V [Magnus and Neudecker, 2019, Theorem 8.9]. Consequently, if we let ϕ′j(G∞) ∈ Sd×d denote the differential

of ϕj at G∞, and define the matrix J∞ =
∑k
j=1 cj ϕ

′
j(G∞), then the argument in the proof of Lemma 4 can

be re-used to show that the following expansion holds∑k
j=1

√
tn√
n
cj(σj(Ãn)− σj(An)) =

〈〈
J∞,
√
tn(G̃n −Gn)

〉〉
+ oP(1).

In turn, it follows directly from Lemma 2 that the limit (E.1) holds.
Next, to handle the limit (E.2), an argument that is analogous to the proof of Lemma 5 can be used. In

particular, the same reasoning can be used to show that there is a random matrix J̃∗n ∈ Sd×d and a remainder
variable W̃ ∗n , such that the following equation holds∑k

j=1

√
tn√
n
cj(σj(Ã

∗
n)− σj(Ãn)) =

〈〈
J̃∗n,
√
tn(G̃∗n − G̃n)

〉〉
+ W̃ ∗n . (E.3)

In addition, for any ε > 0, the limits P
(
‖J̃∗n − J∞‖F > ε

∣∣Sn) = oP(1) and P(|W̃ ∗n − 0| > ε|Sn) = oP(1) can be
shown to hold as well. Thus, the conditional version of Slutsky’s lemma (Lemma 1), combined with Lemma 5,
lead to the the desired limit (E.2).

Lastly, to prove that ζ(1, 0, . . . , 0) has positive variance, it suffices to show that the random variable
〈〈ϕ′1(G∞),

√
tn(G̃n−Gn)〉〉 converges to a Gaussian random variable with positive variance. Using an analytical

formula for the differential ϕ′1(G∞) available in [Magnus and Neudecker, 2019, Theorem 8.9], we have〈〈
ϕ′1(G∞),

√
tn(G̃n −Gn)

〉〉
=
〈〈

1
2
√
λ1
v1v
>
1 ,
√
tn(G̃n −Gn)

〉〉
= 1

2
√
λ1

1√
tn

tn∑
i=1

(
s>i,n
(
1
nAnv1v

>
1 A
>
n

)
si,n − tr( 1

nAnv1v
>
1 A
>
n )
)
.

(E.4)

Since the last sum consists of i.i.d. zero-mean random variables, the variance of the limiting Gaussian
distribution will be positive if the sequence var(s>1,n

(
1
nAnv1v

>
1 A
>
n

)
s1,n) has a positive limit. In the case of a

row-sampling sketching matrix, the positive limit follows from Assumption RS, and in the case of a Gaussian
random projection, this can be verified by essentially repeating the calculation (C.9).

F Examples satisfying Assumptions RP and RS

Example 1. For any positive definite matrix G◦ ∈ Rd×d, we may define an associated sequence of vectors

a1, a2, . . . in Rd as follows. If 1 ≤ l ≤ d, define al to be the lth row of the matrix
√
dG

1/2
◦ , and if l > d, define

the successive vectors in a cyclical manner, ad+1 = a1, ad+2 = a2, . . . , a2d = ad, a2d+1 = a1, and so on. In
this notation, let the rows of An ∈ Rn×d consist of the first n such vectors. When n is an exact multiple of d,
we have

1
nA
>
nAn = 1

d

∑d
l=1 ala

>
l = G◦.
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More generally, as n→∞ with d held fixed, it is simple to check that 1
nA
>
nAn → G◦, and so the matrix G◦

plays the role of G∞ in this example. Likewise, any choice of G◦ whose eigenvalues λ1(G◦), . . . , λd(G◦) all
have multiplicity 1 will ensure that Assumption RP holds.

Next, we consider Assumption RS. It is straightforward to check that for any fixed n and fixed C ∈ Rd×d
we have

var(r̃>nCr̃n) =
∑n
l=1 pl

(
1
npl

a>l Cal
)2 − ( 1

n

∑n
l=1 a

>
l Cal

)2
. (F.1)

If we focus on the case of uniform sampling with pl = 1/n for all l ∈ {1, . . . , n}, then we have the following
limit as n→∞,

var(r̃>nCr̃n) → `(C) = 1
d

∑d
l=1(a>l Cal)

2 −
(

1
d

∑d
l=1 a

>
l Cal

)2
.

To consider the choices C = v1v
>
1 or C = v1v

>
2 in the case of uniform sampling, we may use the algebraic

identity

a>l v1 =
√
de>l G

1/2
◦ v1 =

√
dλ1(G◦)e

>
l v1 (F.2)

to evaluate the limit function `(·) as

`(v1v
>
1 ) = λ21(G◦)

(
d
∑d
l=1(e>l v1)4 − 1

)
and `(v1v

>
2 ) = λ1(G◦)λ2(G◦)d

∑d
l=1(e>l v1)2(e>l v2)2.

Based on these formulas, it follows that we have `(v1v
>
1 ) > 0 and `(v1v

>
2 ) > 0 under two rather generic

conditions: First, we have `(v1v
>
1 ) > 0 as long as v1 is not parallel to a vector of the form (±1√

d
, . . . , ±1√

d
),

which can be checked by noting that the Cauchy-Schwarz inequality

1 =
∑d
l=1 1 · (e>l v1)2 ≤

√
d
√∑d

l=1(e>l v1)4

holds with equality precisely when v1 is parallel to a vector of the stated form. Second, we have `(v1v
>
2 ) > 0

as long as there is at least one coordinate in {1, . . . , d} where v1 and v2 are both non-zero. Lastly, since the
set of values {‖a1‖2, . . . , ‖ad‖2} is fixed with respect to n, it follows that in the case of uniform sampling, the

growth condition max1≤l≤n
1√
npl
‖al‖2 = o(t

1/8
n ) is satisfied as well.

Example 2. Although Theorem 1 is based on a framework in which the matrix An ∈ Rn×d is deterministic,
it is of interest to know if Assumptions RP or RS are likely to hold for particular realizations of An generated
at random by “nature”. Likewise, for the purposes of this example only, the matrix An will be treated as
being generated independently of all sources of algorithmic randomness. Furthermore, since the input matrix
to an SVD algorithm is often viewed as having rows that represent data points in Rd, we will consider the case
where the rows of An are i.i.d. samples from a centered elliptical distribution (cf. Cambanis et al. [1981]).? In

detail, this means that each vector ai can be expressed in the form ai =
√
dνiG

1/2
◦ Ui, where G◦ ∈ Rd×d is a

fixed positive definite matrix with isolated eigenvalues, and the pairs (ν1, U1), (ν2, U2), . . . are i.i.d. elements
in R× Rd. In addition, each Ui is uniformly distributed on the unit `2-sphere, and each νi is a non-negative
random variable (independent of Ui) with a finite moment generating function and E[ν2i ] = 1.

To consider Assumption RP, we will use the relation E[ala
>
l ] = G◦, which follows from the fact that

E[UiU
>
i ] = 1

dId. Therefore, if we apply the law of large numbers to 1
nA
>
nAn = 1

n

∑n
l=1 ala

>
l , then we have

the limit 1
nA
>
nAn → G◦ in probability. Thus, Assumption RP holds in probability.

Next, to consider Assumption RS in the case of uniform sampling, the formula (F.1) gives

var(r̃>nCr̃n|An) = 1
n

∑n
l=1

(
a>l Cal

)2 − ( 1
n

∑n
l=1 a

>
l Cal

)2
. (F.3)

In order to verify Assumption RS in probability, we will first show that var(r̃>nCr̃n|An) converges in probability
to a constant `(C). Using a known formula for the variance of quadratic forms involving elliptical random
vectors [Hu et al., 2019, Lemma A.1], as well as the law of large numbers, we have

var(r̃>nCr̃n|An) −→ `(C)

?Distributions of this type are commonly used in multivariate data analysis.
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in probability, where the limit is given by

`(C) =
E[ν4

1 ]
1+2/d

(
tr(CG◦)

2 + tr(G◦CG◦C
>) + tr(G◦CG◦C)

)
− tr(CG◦)

2.

In turn, this formula for `(C) implies

`(v1v
>
1 ) = λ21(G◦)

(
3E[ν4

1 ]
1+2/d − 1

)
and `(v1v

>
2 ) = λ1λ2

E[ν4
1 ]

1+2/d , (F.4)

where the positivity of `(v1v
>
2 ) is clear, and the positivity of `(v1v

>
1 ) holds when d ≥ 2, because E[ν41 ] ≥

(E[ν21 ])2 = 1. Lastly, to verify the growth condition involving max1≤l≤n
1√
npl
‖al‖2, recall that pl = 1/n for

uniform sampling, and that νi is assumed to have a moment generating function. Under these conditions, it
follows from [van der Vaart and Wellner, 1996, Lemma 2.2.2] that E[max1≤l≤n ‖al‖2] = O(log(n)), which

implies that t
−1/8
n max1≤l≤n ‖al‖2 → 0 in probability under the mild condition log(n)t

−1/8
n → 0.

G Supplementary Experiments

In this section, we provide three sets of experiments that go beyond the settings considered in the main text.
Subsequently, we provide additional results about running times.

G.1 Subsampled Randomized Hadamard Transform (SRHT)

Here, we revisit the synthetic example that we introduced in Section 5.1 to demonstrate that the bootstrap
error estimation also works for other sampling schemes. Specifically, we consider the subsampled randomized
hadamard transform (SRHT) Ailon and Chazelle [2006] to construct the sketch of A.
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Figure 1: We consider matrices of dimension (n, d) = (105, 3× 103) that have singular value decay profiles of
the form σj = j−β for j ∈ {1, . . . , d} with β ∈ {0.5, 1.0, 2.0}. The error variables correspond to the index set
J = {1}, and the simulations involve 500 trials and 30 bootstraps per trial. The rows correspond to the error
quantiles for the singular values (top), right singular vectors (middle), and left singular vectors (bottom).
The labelling scheme of the curves is the same as in the main text.
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Figure 1 shows that the bootstrap quantile estimates, as well as their extrapolated versions, are good
approximations to the true quantiles over the entire range of t. This behavior is also consistent across the
different decay parameters β = {0.5, 1.0, 2.0}.

G.2 Synthetic matrices with alternative decay profile

As an alternative to the singular value decay profile σj = j−β with parameter values β ∈ {0.5, 1, 2} used for
the experiments of the main text, we now look at a profile of the form σj = 10−γj , with parameter values
γ ∈ {0.05, 0.1, 0.5}. In particular, this type of decay profile arises in many applications related to differential
equations and dynamical systems. Apart from the change in the decay profile, the experiments here were
organized in the same manner as those for the synthetic matrices in the main text, and the results are plotted
in the same format.

Figure 2 shows how close the bootstrap quantile estimates are to the true quantiles q
U

(t), qΣ(t), and q
V

(t)
for sketch sizes t ∈ {500, . . . , 6000}. Overall, the plots show that the bootstrap estimates are quite accurate,
and in essence, the results for the current setting are on par with those shown in the main text.
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Figure 2: We consider artificial matrices of dimension (n, d) = (105, 3× 103) that have singular value decay
profiles of the form σj = 10−γj for j ∈ {1, . . . , d} with γ ∈ {0.05, 0.1, 0.5}. The simulations involve 500 trials
and 30 bootstraps per trial. The rows correspond to the error quantiles for the singular values (top), right
singular vectors (middle), and left singular vectors (bottom). The labelling scheme of the curves is the same
as in the main text.
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G.3 Results for the index set J = {1, 2, 3}
Recall that in our experiments, the sketching error variables are defined with respect to an index set
J ⊂ {1, . . . , k} according to

ε̃
U
(t) = max

j∈J
ρsin(ũj , uj)

ε̃
V
(t) = max

j∈J
ρsin(ṽj , vj),

ε̃
Σ
(t) =max

j∈J
|σ̃j − σj |.

Whereas the experiments in the main text considered the sketching errors for the leading triple (u1, σ1, v1)
corresponding to J = {1}, we now look at the case when J = {1, 2, 3}. In other words, the new experiments
in this section correspond to a situation where the user would like to have simultaneous control over the
sketching errors associated the top three singular vectors/values. Apart from this change in the choice of J ,
all other aspects of the design and presentation of the experiments remain the same as in the main text. Given
that a maximum is now being taken over a larger set of indices, the magnitudes of ε̃

Σ
(t), ε̃

U
(t), and ε̃

V
(t) will

necessarily be larger. Nevertheless, the important point to notice is that the quality of the bootstrap quantile
estimates remains essentially as good as in the case when J = {1}.
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Figure 3: We consider artificial matrices of dimension (n, d) = (105, 3× 103) that have singular value decay
profiles of the form σj = j−β for j ∈ {1, . . . , d} with parameter values β ∈ {0.5, 1, 2}. The error variables
correspond to the index set J = {1, 2, 3}, and the simulations involve 500 trials and 30 bootstraps per trial.
The rows correspond to the error quantiles for the singular values (top), right singular vectors (middle), and
left singular vectors (bottom). The labelling scheme of the curves is the same as in the main text.

G.4 Computational performance

The bootstrap method for error estimation can be executed in parallel, since the bootstrap replicates are
independent of the others. Indeed, this a feature of the bootstrap method and allows one to take advantage
of modern computational environments such as cloud computing. For instance, up to several thousands
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Figure 4: Computational time that is required to compute 30 bootstrap estimates using serverless computing.
Here we compute the error estimates for the top 5 right singular vectors and values. In practice, one might
even choose the number of workers larger than the number of required bootstrap samples B. In this case,
the algorithm stops once B samples are received and one does not need to wait for the results of workers
(so-called stragglers) which have a low response time.

workers can be allocated on AWS Lambda in less than ten seconds. In the following, we just use up to 30 low
budget workers for our experiments. (The computational times can be reduced by using computational more
powerful workers, however, these come with a higher price tag.)

Given a row index set, the individual workers can pull the row subset from a source matrix that is stored
in external memory (e.g., cloud storage like AWS S3). Then, each worker computes an error estimate that is
returned to the central node. The computational times for executing our algorithm for various numbers of
workers are illustrated in Figure 4. Here, we consider a tall synthetic source matrix with (n, d) = (105, 20×103)
that is characterized by low effective rank, i.e., the singular values of the source matrix were chosen as
Σ = diag(1−β , 2−β , . . . , d−β) with β ∈ {2.0}.
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