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Abstract
The success of adversarial formulations in ma-
chine learning has brought renewed motivation
for smooth games. In this work, we focus on the
class of stochastic Hamiltonian methods and pro-
vide the first convergence guarantees for certain
classes of stochastic smooth games. We propose a
novel unbiased estimator for the stochastic Hamil-
tonian gradient descent (SHGD) and highlight its
benefits. Using tools from the optimization lit-
erature we show that SHGD converges linearly
to the neighbourhood of a stationary point. To
guarantee convergence to the exact solution, we
analyze SHGD with a decreasing step-size and
we also present the first stochastic variance re-
duced Hamiltonian method. Our results provide
the first global non-asymptotic last-iterate con-
vergence guarantees for the class of stochastic
unconstrained bilinear games and for the more
general class of stochastic games that satisfy a
“sufficiently bilinear” condition, notably including
some non-convex non-concave problems. We sup-
plement our analysis with experiments on stochas-
tic bilinear and sufficiently bilinear games, where
our theory is shown to be tight, and on simple
adversarial machine learning formulations.

1. Introduction
We consider the min-max optimization problem

min
x1∈Rd1

max
x2∈Rd2

g(x1, x2) (1)

where g : Rd1 × Rd2 → R is a smooth objective. Our goal
is to find x∗ = (x∗1, x

∗
2)> ∈ Rd where d = d1 + d2 such

that
g(x∗1, x2) ≤ g(x∗1, x

∗
2) ≤ g(x1, x

∗
2), (2)
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for every x1 ∈ Rd1 and x2 ∈ Rd2 . We call point, x∗, a sad-
dle point, min-max solution or Nash equilibrium of (1). In
its general form, this problem is hard. In this work we focus
on the simplest family of problems where some important
questions are still open: the case where all stationary points
are global min-max solutions.

Motivated by recent applications in machine learning, we
are particularly interested in cases where the objective, g, is
naturally expressed as a finite sum

min
x1∈Rd1

max
x2∈Rd2

g(x1, x2) =
1

n

n∑
i=1

gi(x1, x2) , (3)

where each component function gi : Rd1 × Rd2 → R is
assumed to be smooth. Indeed, in problems like domain gen-
eralization (Albuquerque et al., 2019), generative adversarial
networks (Goodfellow et al., 2014), and some formulations
in reinforcement learning (Pfau & Vinyals, 2016), empirical
risk minimization yields finite sums of the form of (3). We
refer to this formulation as a stochastic smooth game.1 We
call problem (1) a deterministic game.

The deterministic version of the problem has been stud-
ied in a number of classic (Korpelevich, 1976; Nemirovski,
2004) and recent results (Mescheder et al., 2017; Ibrahim
et al., 2019; Gidel et al., 2018; Daskalakis et al., 2018; Gidel
et al., 2019; Mokhtari et al., 2020; Azizian et al., 2020a;b)
in various settings. Importantly, the majority of these results
provide last-iterate convergence guarantees. In contrast,
for the stochastic setting, guarantees on the classic extra-
gradient method and its variants rely on iterate averaging
over compact domains (Nemirovski, 2004). However, Chav-
darova et al. (2019) highlighted a possibility of pathological
behavior where the iterates diverge towards and then ro-
tate near the boundary of the domain, far from the solution,
while their average is shown to converge to the solution (by
convexity).2 This behavior is also problematic in the context
of applying the method on non-convex problems, where av-
eraging do not necessarily yield a solution (Daskalakis et al.,

1We note that all of our results except the one on variance
reduction do not require the finite-sum assumption and can be
easily adapted to the stochastic setting (see Appendix C.3).

2This is qualitatively very different to stochastic minimization
where the iterates converge towards a neighborhood of the solution
and averaging is only used to stabilize the method.
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2018; Abernethy et al., 2019). It is only very recently that
last-iterate convergence guarantees over a non-compact
domain appeared in literature for the stochastic problem
(Palaniappan & Bach, 2016; Chavdarova et al., 2019; Hsieh
et al., 2019; Mishchenko et al., 2020) under the assumption
of strong monotonicity. Strong monotonicity, a generaliza-
tion of strong convexity for general operators, seems to be
an essential condition for fast convergence in optimization.
Here, we make no strong monotonicity assumption.

The algorithms we consider belong to a recently intro-
duced family of computationally-light second order methods
which in each step require the computation of a Jacobian-
vector product. Methods that belong to this family are the
consensus optimization (CO) method (Mescheder et al.,
2017) and Hamiltonian gradient descent (Balduzzi et al.,
2018; Abernethy et al., 2019). Even though some con-
vergence results for these methods are known for the de-
terministic problem, there is no available analysis for the
stochastic problem. We close this gap. We study stochastic
Hamiltonian gradient descent (SHGD), and propose the first
stochastic variance reduced Hamiltonian method, named L-
SVRHG. Our contributions are summarized as follows:
• Our results provide the first set of global non-asymptotic

last-iterate convergence guarantees for a stochastic game
over a non-compact domain, in the absence of strong
monotonicity assumptions.

• The proposed stochastic Hamiltonian methods use novel
unbiased estimators of the gradient of the Hamiltonian
function. This is an essential point for providing conver-
gence guarantees. Existing practical variants of SHGD
use biased estimators (Mescheder et al., 2017).

• We provide the first efficient convergence analysis of
stochastic Hamiltonian methods. In particular, we focus
on solving two classes of stochastic smooth games:

– Stochastic Bilinear Games.
– Stochastic games satisfying the “sufficiently bilin-

ear” condition or simply Stochastic Sufficiently Bi-
linear Games. The deterministic variant of this class
of games was firstly introduced by Abernethy et al.
(2019) to study the deterministic problem and no-
tably includes some non-monotone problems.

• For the above two classes of games, we provide conver-
gence guarantees for SHGD with a constant step-size (lin-
ear convergence to a neighborhood of stationary point),
SHGD with a variable step-size (sub-linear convergence
to a stationary point) and L-SVRHG. For the latter, we
guarantee a linear rate.

• We show the benefits of the proposed methods by per-
forming numerical experiments on simple stochastic bilin-
ear and sufficiently bilinear problems, as well as toy GAN
problems for which the optimal solution is known. Our
numerical findings corroborate our theoretical results.

2. Further Related work
In recent years, several second-order methods have been
proposed for solving the min-max optimization problem (1).
Some of them require the computation or inversion of a
Jacobian which can be an inefficient operation (Wang et al.,
2019; Mazumdar et al., 2019).3 In contrast, second-order
methods like the ones presented in Mescheder et al. (2017);
Balduzzi et al. (2018); Abernethy et al. (2019) and in this
work are more efficient as they only rely on the computation
of a Jacobian-vector product in each step.

Abernethy et al. (2019) provide the first last-iterate con-
vergence rates for the deterministic Hamiltonian gradient
descent (HGD) for several classes of games including games
satisfying the sufficiently bilinear condition. The authors
briefly touch upon the stochastic setting and by using the
convergence results of Karimi et al. (2016), explain how a
stochastic variant of HGD with decreasing stepsize behaves.
Their approach was purely theoretical and they did not pro-
vide an efficient way of selecting the unbiased estimators
of the gradient of the Hamiltonian. In addition, they as-
sumed bounded gradient of the Hamiltonian function which
is restrictive for functions satisfying the Polyak-Lojasiewicz
(PL) condition (Gower et al., 2020). In this work we provide
the first efficient variants and analysis of SHGD. We did
that by choosing practical unbiased estimator of the full
gradient and by using the recently proposed assumptions
of expected smoothness (Gower et al., 2019) and expected
residual (Gower et al., 2020) in our analysis. The proposed
theory of SHGD allow us to obtain as a corollary tight con-
vergence guarantees for the deterministic HGD recovering
the result of Abernethy et al. (2019).

In another line of work, Carmon et al. (2019) analyze vari-
ance reduction methods for constrained finite-sum problems
and Ryu et al. (2019) provide an ODE-based analysis and
guarantees in the monotone but potentially non-smooth case.
Chavdarova et al. (2019) show that both alternate stochas-
tic descent-ascent and stochastic extragradient diverge on
an unconstrained stochastic bilinear problem. In the same
paper, Chavdarova et al. (2019) propose the stochastic vari-
ance reduced extragradient (SVRE) algorithm with restart,
which empirically achieves last-iterate convergence on this
problem. However, it came with no theoretical guarantees.
In Section 7, we observe in our experiments that SVRE is
slower than the proposed L-SVRHG for both the stochastic
bilinear and sufficiency bilinear games that we tested.

In concurrent work, Yang et al. (2020) provide global conver-
gence guarantees for stochastic alternate gradient descent-
ascent (and its variance reduction variant) for a subclass
of nonconvex-nonconcave objectives satisfying a so-called

3See also Schäfer & Anandkumar (2019) for an efficient ap-
proximation of the inverse through a conjugate gradient approach.
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two-sided Polyak-Lojasiewicz inequality, but this does not
include the stochastic bilinear problem that we cover.

3. Technical Preliminaries
In this section, we present the necessary background and
the basic notation used in the paper. We also describe the
update rule of the deterministic Hamiltonian method.

3.1. Optimization Background: Basic Definitions

We start by presenting some definitions that we will later
use in the analysis of the proposed methods.

Definition 3.1. Function f : Rd → R is µ–quasi-strongly
convex if there exists a constant µ > 0 such that ∀x ∈ Rd:
f∗ ≥ f(x)+〈∇f(x), x∗ − x〉+ µ

2 ‖x
∗ − x‖2 , where f∗

is the minimum value of f and x∗ is the projection of x
onto the solution set X ∗ minimizing f .

Definition 3.2. We say that a function satisfies the Polyak-
Lojasiewicz (PL) condition if there exists µ > 0 such that

1

2
‖∇f(x)‖2 ≥ µ [f(x)− f∗] ∀x ∈ Rd , (4)

where f∗ is the minimum value of f .

An analysis of several stochastic optimization methods un-
der the assumption of PL condition (Polyak, 1987) was
recently proposed in Karimi et al. (2016). A function can
satisfy the PL condition and not be strongly convex, or
even convex. However, if the function is µ−quasi strongly
convex then it satisfies the PL condition with the same µ
(Karimi et al., 2016).

Definition 3.3. Function f : Rd → R is L-smooth if
there exists L > 0 such that:
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rd.

If f = 1
n

∑n
i=1 fi(x), then a more refined analysis of

stochastic gradient methods has been proposed under new
notions of smoothness. In particular, the notions of expected
smoothness (ES) and expected residual (ER) have been in-
troduced and used in the analysis of SGD in Gower et al.
(2019) and Gower et al. (2020) respectively. ES and ER are
generic and remarkably weak assumptions. In Section 6 and
Appendix B.2, we provide more details on their generality.
We state their definitions below.
Definition 3.4 (Expected smoothness, (Gower et al.,
2019)). We say that the function f = 1

n

∑n
i=1 fi(x) sat-

isfies the expected smoothness condition if there exists
L > 0 such that for all x ∈ Rd,

Ei
[
‖∇fi(x)−∇fi(x∗)‖2

]
≤ 2L(f(x)− f(x∗)) . (5)

Definition 3.5 (Expected residual, (Gower et al., 2020)).
We say that the function f = 1

n

∑n
i=1 fi(x) satisfies the

expected residual condition if ∃ρ > 0 such that ∀x ∈ Rd,

Ei
[
‖∇fi(x)−∇fi(x∗)− (∇f(x)−∇f(x∗))‖2

]
≤ 2ρ (f(x)− f(x∗)) . (6)

3.2. Smooth Min-Max Optimization

We use standard notation used previously in Mescheder
et al. (2017); Balduzzi et al. (2018); Abernethy et al. (2019);
Letcher et al. (2019).

Let x = (x1, x2)> ∈ Rd be the column vector obtained by
stacking x1 and x2 one on top of the other. With ξ(x) :=

(∇x1g,−∇x2g)
>, we denote the signed vector of partial

derivatives evaluated at point x. Thus, ξ(x) : Rd → Rd is a
vector function. We use

J = ∇ξ =

(
∇2
x1,x1

g ∇2
x1,x2

g
−∇2

x2,x1
g −∇2

x2,x2
g

)
∈ Rd×d

to denote the Jacobian of the vector function ξ. Note
that using the above notation, the simultaneous gradient
descent/ascent (SGDA) update can be written simply as:
xk+1 = xk − ηkξ(xk).

Definition 3.6. The objective function g of problem (1)
is Lg-smooth if there exist Lg > 0 such that:
‖ξ(x)− ξ(y)‖ ≤ Lg‖x− y‖ ∀x, y ∈ Rd.

We also say that g is L-smooth in x1 (in x2) if
‖∇x1

g(x1, x2) − ∇x1
g(x′1, x2)‖ ≤ L‖x1 − x′1‖ (if

‖∇x2
g(x1, x2) − ∇x2

g(x1, x
′
2)‖ ≤ L‖x2 − x′2‖)

for all x1, x
′
1 ∈ Rd1 (for all x2, x

′
2 ∈ Rd2 ).

Definition 3.7. A stationary point of function f : Rd →
R is a point x∗ ∈ Rd such that ∇f(x∗) = 0. Using the
above notation, in min-max problem (1), point x∗ ∈ Rd
is a stationary point when ξ(x∗) = 0.

As mentioned in the introduction, in this work we focus on
smooth games satisfying the following assumption.

Assumption 3.8. The objective function g of problem (3)
has at least one stationary point and all of its stationary
points are global min-max solutions.

With Assumption 3.8, we can guarantee convergence to a
min-max solution of problem (3) by proving convergence to
a stationary point. This assumption is true for several classes
of games including strongly convex-strongly concave and
convex-concave games. However, it can also be true for
some classes of non-convex non-concave games (Abernethy
et al., 2019). In Section 4, we describe in more details
the two classes of games that we study. Both satisfy this
assumption.



Stochastic Hamiltonian Gradient Methods for Smooth Games

3.3. Deterministic Hamiltonian Gradient Descent

Hamiltonian gradient descent (HGD) has been proposed as
an efficient method for solving min-max problems in Bal-
duzzi et al. (2018). To the best of our knowledge, the first
convergence analysis of the method is presented in Aber-
nethy et al. (2019) where the authors prove non-asymptotic
linear last-iterate convergence rates for several classes of
games.

In particular, HGD converges to saddle points of problem
(1) by performing gradient descent on a particular objec-
tive function H, which is called the Hamiltonian function
(Balduzzi et al., 2018), and has the following form:

min
x

H(x) =
1

2
‖ξ(x)‖2. (7)

That is, HGD is a gradient descent method that minimizes
the square norm of the gradient ξ(x). Note that under As-
sumption 3.8, solving problem (7) is equivalent to solving
problem (1). The equivalence comes from the fact that H
only achieves its minimum at stationary points. The up-
date rule of HGD can be expressed using a Jacobian-vector
product (Balduzzi et al., 2018; Abernethy et al., 2019):

xk+1 = xk − ηk∇H(x) = xk − ηk
[
J>ξ

]
, (8)

making HGD a second-order method. However, as dis-
cussed in Balduzzi et al. (2018), the Jacobian-vector prod-
uct can be efficiently evaluated in tasks like training neural
networks and the computation time of the gradient and the
Jacobian-vector product is comparable (Pearlmutter, 1994).

4. Stochastic Smooth Games and Stochastic
Hamiltonian Function

In this section, we provide the two classes of stochastic
games that we study. We define the stochastic counterpart
to the Hamiltonian function as a step towards solving prob-
lem (3) and present its main properties.

Let us start by presenting the basic notation for the stochas-
tic setting. Let ξ(x) = 1

n

∑n
i=1 ξi(x), where ξi(x) :=

(∇x1
gi,−∇x2

gi)
>, for all i ∈ [n] and let

J =
1

n

n∑
i=1

Ji, where Ji =

(
∇2
x1,x1

gi ∇2
x1,x2

gi
−∇2

x2,x1
gi −∇2

x2,x2
gi

)
.

Using the above notation, the stochastic variant of SGDA
can be written as xk+1 = xk−ηkξi(xk) where Ei[ξi(xk)] =
ξ(xk).4

In this work, we focus on stochastic smooth games of the
form (3) that satisfy the following assumption.

4Here the expectation is over the uniform distribution. That is,
Ei[ξi(x)] = 1

n

∑n
i=1 ξi(x).

Assumption 4.1. Functions gi : Rd1 × Rd2 → R of
problem (3) are twice differentiable, Li-smooth with Si-
Lipschitz Jacobian. That is, for each i ∈ [n] there are
constants Li > 0 and Si > 0 such that ‖ξi(x)− ξi(y)‖ ≤
Li‖x − y‖ and ‖Ji(x) − Ji(y)‖ ≤ Si‖x − y‖ for all
x, y ∈ Rd.

4.1. Classes of Stochastic Games

Here we formalize the two families of stochastic smooth
games under study: (i) stochastic bilinear, and (ii) stochastic
sufficiently bilinear. Both families satisfy Assumption 3.8.
Interestingly, the latter family includes some non-convex
non-concave games, i.e. non-monotone problems.

Stochastic Bilinear Games. A stochastic bilinear game
is the stochastic smooth game (3) in which function g has
the following structure:

g(x1, x2) =
1

n

n∑
i=1

(
x>1 bi + x>1 Aix2 + c>i x2

)
. (9)

While this game appears simple, standard methods diverge
on it (Chavdarova et al., 2019) and L-SVRHG gives the first
stochastic method with last-iterate convergence guarantees.

Stochastic sufficiently bilinear games. A game of the
form (3) is called stochastic sufficiently bilinear if it satisfies
the following definition.

Definition 4.2. Let Assumption 4.1 be satisfied and let
the objective function g of problem (3) be L-smooth
in x1 and L-smooth in x2. Assume that a constant
C > 0 exists, such that Ei‖ξi(x)‖ < C. Assume the
cross derivative ∇2

x1,x2
g be full rank with 0 < δ ≤

σi
(
∇2
x1,x2

g
)
≤ ∆ for all x ∈ Rd and for all singular

values σi. Let ρ2 = minx1,x2 λmin

[
∇2
x1,x1

g(x1, x2)
]2

and β2 = minx1,x2 λmin

[
∇2
x2,x2

g(x1, x2)
]2

. Finally let
the following condition to be true:

(δ2 + ρ2)(δ2 + β2)− 4L2∆2 > 0. (10)

Note that the definition of the stochastic sufficiently bilinear
game has no restriction on the convexity of functions gi(x)
and g(x). The most important condition that needs to be
satisfied is the expression in equation (10). Following the
terminology of Abernethy et al. (2019), we call the con-
dition (10): “sufficiently bilinear” condition. Later in our
numerical evaluation, we present stochastic non convex-non
concave min-max problems that satisfy condition (10).

We highlight that the deterministic counterpart of the above
game was first proposed in Abernethy et al. (2019). The
deterministic variant of Abernethy et al. (2019) can be ob-
tained as special case of the above class of games when
n = 1 in problem (3).
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4.2. Stochastic Hamiltonian Function

Having presented the two main classes of stochastic smooth
games, in this section we focus on the structure of the
stochastic Hamiltonian function and highlight some of its
properties.

Finite-Sum Structure Hamiltonian Function. Having
the objective function g of problem (3) to be stochastic
and in particular to be a finite-sum function, leads to the
following expression for the Hamiltonian function:

H(x) =
1

n2

n∑
i,j=1

1

2
〈ξi(x), ξj(x)〉︸ ︷︷ ︸
Hi,j(x)

. (11)

That is, the Hamiltonian functionH(x) can be expressed as
a finite-sum with n2 components.

Properties of the Hamiltonian Function. As we will see
in the following sections, the finite-sum structure of the
stochastic Hamiltonian function (11) allows us to use popu-
lar stochastic optimization problems for solving problem (7).
However in order to be able to provide convergence guar-
antees of the proposed stochastic Hamiltonian methods, we
need to show that the stochastic Hamiltonian function (11)
satisfies specific properties for the two classes of games we
study. This is what we do in the following two proposi-
tions.
Proposition 4.3. For stochastic bilinear games of the
form (9), the stochastic Hamiltonian function (11) is
a smooth quadratic µH–quasi-strongly convex function
with constants LH = σ2

max(A) and µH = σ2
min(A)

where A = 1
n

∑n
i=1 Ai and σmax and σmin are the maxi-

mum and minimum non-zero singular values of A.

Proposition 4.4. For stochastic sufficiently bilinear
games, the stochastic Hamiltonian function (11) is a
LH = S̄C + L̄2 smooth function and satisfies the PL
condition (4) with µH = (δ2+ρ2)(δ2+β2)−4L2∆2

2δ2+ρ2+β2 . Here
S̄ = Ei[Si] and L̄ = Ei[Li].

5. Stochastic Hamiltonian Gradient Methods
In this section we present the proposed stochastic Hamil-
tonian methods for solving the stochastic min-max prob-
lem (3). Our methods could be seen as extensions of pop-
ular stochastic optimization methods into the Hamiltonian
setting. In particular, the two algorithms that we build upon
are the popular stochastic gradient descent (SGD) and the re-
cently introduced loopless stochastic variance reduced gradi-
ent (L-SVRG). For completeness, we present their form for
solving finite-sum optimization problems in Appendix A.

Algorithm 1 Stochastic Hamiltonian Gradient Descent
(SHGD)

Input: Starting stepsize γ0 > 0. Choose initial points
x0 ∈ Rd. Distribution D of samples.
for k = 0, 1, 2, · · · ,K do

Generate fresh samples i ∼ D and j ∼ D and evaluate
∇Hi,j(xk).
Set step-size γk following one of the selected choices
(constant, decreasing)
Set xk+1 = xk − γk∇Hi,j(xk)

end for

5.1. Unbiased Estimator

One of the most important elements of stochastic gradient-
based optimization algorithms for solving finite-sum prob-
lems of the form (11) is the selection of unbiased estimators
of the full gradient ∇H(x) in each step. In our proposed
optimization algorithms for solving (11), at each step we
use the gradient of only one component functionHi,j(x):

∇Hi,j(x) =
1

2

[
J>i ξj + J>j ξi

]
. (12)

It can easily be shown that this selection is an unbiased
estimator of ∇H(x). That is, Ei,j [∇Hi,j(x)] = ∇H(x).

5.2. Stochastic Hamiltonian Gradient Descent (SHGD)

Stochastic gradient descent (SGD) (Robbins & Monro,
1951; Nemirovski & Yudin, 1978; 1983; Nemirovski et al.,
2009; Hardt et al., 2016; Gower et al., 2019; 2020; Loizou
et al., 2020) is the workhorse for training supervised ma-
chine learning problems. In Algorithm 1, we apply SGD
to (11), yielding stochastic Hamiltonian gradient descent
(SHGD) for solving problem (3). Note that at each step,
i ∼ D and j ∼ D are sampled from a given well-defined
distribution D and then are used to evaluate∇Hi,j(xk) (un-
biased estimator of the full gradient). In our analysis, we
provide rates for two selections of step-sizes for SHGD.
These are the constant step-size γk = γ and the decreasing
step-size (switching rule which describe when one should
switch from a constant to a decreasing stepsize regime).

5.3. Loopless Stochastic Variance Reduced
Hamiltonian Gradient (L-SVRHG)

One of the main disadvantage of Algorithm 1 with constant
step-size selection is that it guarantees linear convergence
only to a neighborhood of the min-max solution x∗. As we
will present in Section 6, the decreasing step-size selection
allow us to obtain exact convergence to the min-max but at
the expense of slower rate (sublinear).

One of the most remarkable algorithmic breakthroughs in re-
cent years was the development of variance-reduced stochas-
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Algorithm 2 Loopless Stochastic Variance Reduced Hamil-
tonian Gradient (L-SVRHG)

Input: Starting stepsize γ > 0. Choose initial points
x0 = w0 ∈ Rd. Distribution D of samples. Probability
p ∈ (0, 1]
for k = 0, 1, 2, · · · ,K − 1 do

Generate fresh samples i ∼ D and j ∼ D and evaluate
∇Hi,j(xk).
Evaluate gk = ∇Hi,j(xk)−∇Hi,j(wk) +∇H(wk).
Set xk+1 = xk − γgk
Set

wk+1 =

{
xk with probability p

wk with probability 1− p

end for
Output:
Option I: The last iterate x = xk.
Option II: x is chosen uniformly at random from {xi}Ki=0.

tic gradient algorithms for solving finite-sum optimization
problems. These algorithms, by reducing the variance of
the stochastic gradients, are able to guarantee convergence
to the exact solution of the optimization problem with faster
convergence than classical SGD. For example, for smooth
strongly convex functions, variance reduced methods can
guarantee linear convergence to the optimum. This is a vast
improvement on the sub-linear convergence of SGD with
decreasing step-size. In the past several years, many effi-
cient variance-reduced methods have been proposed. Some
popular examples of variance reduced algorithms are SAG
(Schmidt et al., 2017), SAGA (Defazio et al., 2014), SVRG
(Johnson & Zhang, 2013) and SARAH (Nguyen et al., 2017).
For more examples of variance reduced methods in different
settings, see Defazio (2016); Konečný et al. (2016); Gower
et al. (2018); Sebbouh et al. (2019).

In our second method Algorithm 2, we propose a vari-
ance reduced Hamiltonian method for solving (3). Our
method is inspired by the recently introduced and well
behaved variance reduced algorithm, Loopless-SVRG (L-
SVRG) first proposed in Hofmann et al. (2015); Kovalev
et al. (2020) and further analyzed under different settings
in Qian et al. (2019); Gorbunov et al. (2020); Khaled et al.
(2020). We name our method loopless stochastic variance
reduced Hamiltonian gradient (L-SVRHG). The method
works by selecting at each step the unbiased estimator
gk = ∇Hi,j(xk)−∇Hi,j(wk) +∇H(wk) of the full gra-
dient. As we will prove in the next section, this method
guarantees linear convergence to the min-max solution of
the stochastic bilinear game (9).

To get a linearly convergent algorithm in the more general
setup of sufficiently bilinear games 4.2, we had to propose a

Algorithm 3 L-SVRHG (with Restart)

Input: Starting stepsize γ > 0. Choose initial points
x0 = w0 ∈ Rd. Distribution D of samples. Probability
p ∈ (0, 1], T
for t = 0, 1, 2, · · · , T do

Set xt+1 = L-SVRHGII(xt,K, γ, p ∈ (0, 1])
end for
Output: The last iterate xT .

restarted variant of Alg. 2, presented in Alg. 3, which calls
at each step Alg. 2 with the second option of output, that is
L-SVRHGII . Using the property from Proposition 4.4 that
the Hamiltonian function (11) satisfy the PL condition 3.2,
we show that Alg. 3 converges linearly to the solution of the
sufficiently bilinear game (Theorem 6.8).

6. Convergence Analysis
We provide theorems giving the performance of the previ-
ously described stochastic Hamiltonian methods for solving
the two classes of stochastic smooth games: stochastic bi-
linear and stochastic sufficiently bilinear. In particular, we
present three main theorems for each one of these classes
describing the convergence rates for (i) SHGD with con-
stant step-size, (ii) SHGD with decreasing step-size and (iii)
L-SVRHG and its restart variant (Algorithm 3).

The proposed results depend on the two main parameters
µH, LH evaluated in Propositions 4.3 and 4.4. In addition,
the theorems related to the bilinear games (the Hamiltonian
function is quasi-strongly convex) use the expected smooth-
ness constant L (5), while the theorems related to the suffi-
ciently bilinear games (the Hamiltonian function satisfied
the PL condition) use the expected residual constant ρ (6).
We note that the expected smoothness and expected residual
constants can take several values according to the well-
defined distributions D selected in our algorithms and the
proposed theory will still hold (Gower et al., 2019; 2020).

As a concrete example, in the case of τ -minibatch sam-
pling,5 the expected smoothness and expected residual pa-
rameters take the following values:

L(τ) = n2(τ−1)
τ(n2−1)LH + n2−τ

τ(n2−1)Lmax (13)

ρ(τ) = Lmax
n2−τ

(n2−1)τ (14)

where Lmax = max{1,...,n2}{LHi,j
} is the maximum

smoothness constant of the functions Hi,j . By using the
expressions (13) and (14), it is easy to see that for single
element sampling where τ = 1 (the one we use in our ex-

5In each step we draw uniformly at random τ components of
the n2 possible choices of the stochastic Hamiltonian function (11).
For more details on the τ -minibatch sampling see Appendix B.2.
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periments) L = ρ = Lmax. On the other limit case where a
full-batch is used (τ = n2), that is we run the deterministic
Hamiltonian gradient descent, these values becomeL = LH
and ρ = 0 and as we explain below, the proposed theorems
include the convergence of the deterministic method as spe-
cial case.

6.1. Stochastic Bilinear Games

We start by presenting the convergence of SHGD with con-
stant step-size and explain how we can also obtain an anal-
ysis of the HGD (8) as special case. Then we move to the
convergence of SHGD with decreasing step-size and the
L-SVRHG where we are able to guarantee convergence to
a min-max solution x∗. In the results related to SHGD we
use σ2 := Ei,j [‖∇Hi,j(x∗)‖2] to denote the finite gradient
noise at the solution.
Theorem 6.1 (Constant stepsize). Let us have the stochas-
tic bilinear game (9). Then iterates of SHGD with constant
step-size γk = γ ∈ (0, 1

2L ] satisfy:

E‖xk−x∗‖2 ≤ (1− γµH)
k ‖x0−x∗‖2 +

2γσ2

µ
. (15)

That is, Theorem 6.1 shows linear convergence to a neigh-
borhood of the min-max solution. Using Theorem 6.1 and
following the approach of Gower et al. (2019), we can obtain
the following corollary on the convergence of deterministic
Hamiltonian gradient descent (HGD) (8). Note that for the
deterministic case σ = 0 and L = L (13).

Corollary 6.2. Let us have a deterministic bilinear game.
Then the iterates of HGD with step-size γ = 1

2L satisfy:

‖xk − x∗‖2 ≤ (1− γµH)
k ‖x0 − x∗‖2 . (16)

To the best of our knowledge, Corollary 6.2 provides the
first linear convergence guarantees for HGD in terms of
‖xk − x∗‖2 (Abernethy et al. (2019) gave guarantees only
on H(xk)). Let us now select a decreasing step-size rule
(switching strategy) that guarantees a sublinear convergence
to the exact min-max solution for the SHGD.
Theorem 6.3 (Decreasing stepsizes/switching strategy).
Let us have the stochastic bilinear game (9). Let K :=
L/µH. Let

γk =


1

2L for k ≤ 4dKe

2k+1
(k+1)2µH

for k > 4dKe.
(17)

If k ≥ 4dKe, then SHGD given in Algorithm 1 satisfy:

E‖xk − x∗‖2 ≤ σ2

µ2
H

8
k + 16dKe2

e2k2 ‖x
0 − x∗‖2. (18)

Lastly, in the following theorem, we show under what se-

lection of step-size L-SVRHG convergences linearly to a
min-max solution.
Theorem 6.4 (L-SVRHG). Let us have the stochastic bi-
linear game (9). Let step-size γ = 1/6LH and p ∈ (0, 1].
Then L-SVRHG with Option I for output as given in Al-
gorithm 2 convergences linearly to the min-max solution
x∗ and satisfies:

E[Φk] ≤ max

{
1− µ

6LH
, 1− p

2

}k
Φ0

where Φk := ‖xk − x∗‖2 + 4γ2

pn2

∑n
i,j=1 ‖∇Hi,j(wk) −

∇Hi,j(x∗)‖2.

6.2. Stochastic Sufficiently-Bilinear Games

As in the previous section, we start by presenting the con-
vergence of SHGD with constant step-size and explain how
we can obtain an analysis of the HGD (8) as special case.
Then we move to the convergence of SHGD with decreasing
step-size and the L-SVRHG (with restart) where we are able
to guarantee linear convergence to a min-max solution x∗.
In contrast to the results on bilinear games, the convergence
guarantees of the following theorems are given in terms of
the Hamiltonian function E[H(xk)]. In all theorems we call
“sufficiently-bilinear game” the game described in Defini-
tion 4.2. With σ2 := Ei,j [‖∇Hi,j(x∗)‖2], we denote the
finite gradient noise at the solution.

Theorem 6.5. Let us have a stochastic sufficiently-
bilinear game. Then the iterates of SHGD with constant
steps-size γk = γ ≤ µ

L(µ+2ρ) satisfy:

E[H(xk)] ≤ (1− γµH)
k

[H(x0)] +
LHγσ

2

µH
. (19)

Using the above Theorem and by following the approach of
Gower et al. (2020), we can obtain the following corollary
on the convergence of deterministic Hamiltonian gradient
descent (HGD) (8). It shows linear convergence of HGD to
the min-max solution. Note that for the deterministic case
σ = 0 and ρ = 0 (14).

Corollary 6.6. Let us have a deterministic sufficiently-
bilinear game. Then the iterates of HGD with step-size
γ = 1

LH
satisfy:

H(xk) ≤ (1− γµH)
kH(x0) . (20)

The result of Corollary 6.6 is equivalent to the conver-
gence of HGD as proposed in Abernethy et al. (2019).

Let us now show that with decreasing step-size (switching
strategy), SHGD can converge (with sub-linear rate) to the
min-max solution.
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Theorem 6.7 (Decreasing stepsizes/switching strategy).
Let us have a stochastic sufficiently-bilinear game. Let
k∗ := 2Lµ

(
1 + 2 ρµ

)
and

γk =


µH

LH(µH+2ρ) for k ≤ dk∗e

2k+1
(k+1)2µH

for k > dk∗e.
(21)

If k ≥ dk∗e, then SHGD given in Algorithm 1 satisfy:

E[H(xk)] ≤ 4LHσ
2

µ2
H

1
k + (k∗)2

k2e2 [H(x0)].

In the next Theorem we show how the updates of L-SVRHG
with Restart (Algorithm 3) converges linearly to the min-
max solution. We highlight that each step t of Alg. 3 requires
K = 4

µHγ
updates of the L-SVRHG.

Theorem 6.8 (L-SVRHG with Restart). Let us have a
stochastic sufficiently-bilinear game. Let p ∈ (0, 1] and
γ ≤ min

{
1

4LH
, p2/3

361/3(LHρ)1/3
,
√
p√
6ρ

}
and let K = 4

µHγ
.

Then the iterates of L-SVRHG (with Restart) given in
Algorithm 3 satisfies

E[H(xt)] ≤ (1/2)
t
[H(x0)].

7. Numerical Evaluation
In this section, we compare the algorithms proposed in this
paper to existing methods in the literature. Our goal is to
illustrate the good convergence properties of the proposed
algorithms as well as to explore how these algorithms be-
have in settings not covered by the theory. We propose
to compare the following algorithms: SHGD with con-
stant step-size and decreasing step-size, a biased version
of SHGD (Mescheder et al., 2017), L-SVRHG with and
without restart, consensus optimization (CO)6 (Mescheder
et al., 2017), the stochastic variant of SGDA, and finally
the stochastic variance-reduced extragradient with restart
SVRE proposed in Chavdarova et al. (2019). For all our ex-
periments, we ran the different algorithms with 10 different
seeds and plot the mean and 95% confidence intervals. We
provide further details about the experiments and choice of
hyperparameters for the different methods in Appendix F.

7.1. Bilinear Games

First we compare the different methods on the stochastic
bilinear problem (9). Similarly to Chavdarova et al. (2019),
we choose n = d1 = d2 = 100, [Ai]kl = 1 if i = k = l
and 0 otherwise, and [bi]k, [ci]k ∼ N (0, 1/n).

6CO is a mix between SGDA and SHGD, with the follow-
ing update rule xk+1 = xk − ηk(ξi(xk) + λ∇Hi,j(xk)) (See
Appendix F.5)

We show the convergence of the different algorithms in
Fig. 1a. As predicted by theory, SHGD with decreasing
step-size converges at a sublinear rate while L-SVRHG
converges at a linear rate. Among all the methods we com-
pared to, L-SVRHG is the fastest to converge; however, the
speed of convergence depends a lot on parameter p. We
observe that setting p = 1/n yields the best performance.

To further illustrate the behavior of the Hamiltonian meth-
ods, we look at the trajectory of the methods on a simple
2D version of the bilinear game, where we choose x1 and
x2 to be scalars. We observe that while previously proposed
methods such as SGDA and SVRE suffer from rotations
which slow down their convergence and can even make them
diverge, the Hamiltonian methods converge much faster by
removing rotation and converging “straight” to the solution.

7.2. Sufficiently-Bilinear Games

In section 6.2, we showed that Hamiltonian methods are also
guaranteed to converge when the problem is non-convex
non-concave but satisfies the sufficiently-bilinear condi-
tion (10). To illustrate these results, we propose to look
at the following game inspired by Abernethy et al. (2019):

min
x1∈Rd

max
x2∈Rd

1

n

n∑
i=1

(
F (x1) + δ x>1 Aix2 +

b>i x1 + c>i x2 − F (x2)
)
, (22)

where F (x) is a non-linear function (see details in Ap-
pendix F.2). This game is non-convex non-concave and
satisfies the sufficiently-bilinear condition if δ > 2L, where
L is the smoothness of F (x). Thus, the results and theorems
from Section 6.2 hold.

Results are shown in Fig.1b. Similarly to the bilinear case,
the methods follow very closely the theory. We highlight
that while the proposed theory for this setting only guar-
antees convergence for L-SVRHG with restart, in practice
using restart is not strictly necessary: L-SVRHG with the
correct choice of stepsize also converges in our experiment.
Finally we show the trajectories of the different methods on
a 2D version of the problem. We observe that contrary to the
bilinear case, stochastic SGDA converges but still suffers
from rotation compared to Hamiltonian methods.

7.3. GANs

In previous experiments, we verify the proposed theory for
the stochastic bilinear and sufficiently-bilinear games. Al-
though we do not have theoretical results for more complex
games, we wanted to test our algorithms on a simple GAN
setting, which we call GaussianGAN.

In GaussianGAN, we have a dataset of real data xreal and
latent variable z from a normal distribution with mean
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Figure 1. a) Comparison of different methods on the stochastic bilinear game (9). Left: Distance to optimality ||xk−x
∗||2

||x0−x∗||2
as a function of

the number of samples seen during training. Right: The trajectory of the different methods on a 2D version of the problem.
b) Comparison of different methods on the sufficiently bilinear games (22). Left: The Hamiltonian H(xk)

H(x0)
as a function of the number of

samples seen during training. Right: The trajectory of the different methods on a 2D version of the problem.

0 and standard deviation 1. The generator is defined as
G(z) = µ + σz and the discriminator as D(xdata) =
φ0 + φ1xdata + φ2x

2
data, where xdata is either real data

(xreal) or fake generated data (G(z)). In this setting, the
parameters are x = (x1, x2) = ([µ, σ], [φ0, φ1, φ2]). In
GaussianGAN, we can directly measure the L2 distance
between the generator’s parameters and the true optimal
parameters: ||µ̂ − µ|| + ||σ̂ − σ||, where µ̂ and σ̂ are the
sample’s mean and standard deviation.

We consider three possible minmax games: Wasserstein
GAN (WGAN) (Arjovsky et al., 2017), saturating GAN
(satGAN) (Goodfellow et al., 2014), and non-saturating
GAN (nsGAN) (Goodfellow et al., 2014). We present the
results for WGAN and satGAN in Figure 2. We provide the
nsGAN results in Appendix G.2 and details for the different
experiments in Appendix F.3.
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(c) Hamiltonian for satGAN
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Figure 2. The Hamiltonian H(xk)
H(x0)

(left) and the distance to the
optimal generator (right) as a function of the number of samples
seen during training for WGAN and satGAN. The distance to the
optimal generator corresponds to ||µ̂−µk||+||σ̂−σk||

||µ̂−µ0||+||σ̂−σ0||
.

For WGAN, we see that stochastic SGDA fails to converge
and that L-SVRHG is the only method to converge linearly
on the Hamiltonian. For satGAN, SGDA seems to perform
best. Algorithms that take into account the Hamiltonian
have high variance. We looked at individual runs and found
that, in 3 out of 10 runs, the algorithms other than stochas-
tic SGDA fail to converge, and the Hamiltonian does not
significantly decrease over time. While WGAN is guaran-
teed to have a unique critical point, which is the solution
of the game, this is not the case for satGAN and nsGAN
due to the non-linear component. Thus, as expected, As-
sumption 3.8 is very important in order for the proposed
stochastic Hamiltonian methods to perform well.

8. Conclusion and Extensions
We introduce new variants of SHGD (through novel unbi-
ased estimator and step-size selection) and present the first
variance reduced Hamiltonian method L-SVRHG. Using
tools from optimization literature, we provide convergence
guarantees for the two methods and we show how they can
efficiently solve stochastic unconstrained bilinear games and
the more general class of games that satisfy the “sufficiently
bilinear” condition. An important result of our analysis
is the first set of global non-asymptotic last-iterate conver-
gence guarantees for a stochastic game over a non-compact
domain, in the absence of strong monotonicity assumptions.
We believe that our results and the Hamiltonian viewpoint
could work as a first step in closing the gap between the
stochastic optimization algorithms and methods for solving
stochastic games and can open up many avenues for further
development and research in both areas. A natural extension
of our results will be the proposal of accelerated Hamil-
tonian methods that use momentum (Loizou & Richtárik,
2017; Assran & Rabbat, 2020) on top of the Hamiltonian
gradient update. We speculate that similar ideas to the
ones presented in this work can be used for the develop-
ment of efficient decentralized methods (Assran et al., 2019;
Koloskova et al., 2020) for solving problem (3).
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