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Abstract The problem of learning fair classifiers has mainly been ad-
dressed in three ways. First, pre-processing approaches alter

We address the problem of classification under the labels of the examples or their representation to increase
fairness constraints. Given a notion of fairness, the intrinsic fairness of a dataset. A classifier learned on
the goal is to learn a classifier that is not discrimi- this modified data is then more likely to be fair (Feldman
natory against a group of individuals. In the liter- et al., 2015; Calmon et al., 2017; Kamiran & Calders, 2012;
ature, this problem is often formulated as a con- Dwork et al., 2012; Zemel et al., 2013). Second, post-hoc
strained optimization problem and solved using procedures transform existing accurate but unfair classifiers
relaxations of the fairness constraints. We show into fair classifiers (Chzhen et al., 2019; Hardt et al., 2016;
that many existing relaxations are unsatisfactory: Woodworth et al., 2017; Kamiran et al., 2010). Finally, di-
even if a model satisfies the relaxed constraint, it rect methods learn a fair and accurate classifier in a single
can be surprisingly unfair. We propose a princi- step (Kamishima et al., 2012; Zafar et al., 2017b;a; Calders
pled framework to solve this problem. This new & Verwer, 2010; Wu et al., 2019; Donini et al., 2018; Cotter
approach uses a strongly convex formulation and et al., 2019; Agarwal et al., 2018; Goh et al., 2016). In this
comes with theoretical guarantees on the fairness paper, we focus on the latter kind of approaches.
of its solution. In practice, we show that this
method gives promising results on real data. Motivation: relaxations sometimes fail to produce fair

solutions. Recently, several direct methods have been pro-
posed that use relaxed versions of the considered fairness
constraint. These approaches work reasonably well for some

1. Introduction applications. However, their relaxations are quite coarse and
we demonstrate below that they can fail to find fair classi-Informally, a classifier is considered unfair when it unjustly
fiers. In particular, there is typically no guarantee on thepromotes a group of individuals while being detrimental
relationship between the relaxed fairness and the true fair-to others; it is considered fair when it is free of any unjust
ness of a solution: a classifier that is perfectly fair in termsbehavior. However, the details of what is fair and unfair
of relaxed fairness can be highly unfair in terms of truecan be vastly different from one application to another. For
fairness (see Figure 1 for an illustration). In this paper, weexample, a college might want to admit a diverse student
study the limitations of a number of popular approachespool with respect to gender or race. This notion of fairness
(Zafar et al., 2017b;a; Wu et al., 2019; Donini et al., 2018).is called demographic parity. On the other hand, consider a

bank giving out loans. If a group of individuals repays less Algorithmic contributions. We propose a new principled
frequently than others, it is normal that they receive fewer framework to tackle the problem of fair classification that is
loans. However, it does not mean that all requests should be particularly relevant for application scenarios where formal
declined. In particular, any individual that is likely to repay fairness guarantees are required. Our approach is based on
a loan should be given the opportunity to get one, regardless convex relaxations and comes with theoretical guarantees
of group membership. This is called equality of opportunity. that ensure that the learned classifier is fair up to sampling

1 2 errors. Furthermore, we use a learning theory framework forUniversity of Tubingen,¨ Germany Max Planck Institute for
Intelligent Systems, Tubingen,¨ Germany 3Univ Lyon, UJM-Saint- similarity-based classifiers to exhibit sufficient conditions
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thor(s).



Too Relaxed to Be Fair

Figure 1. The goal is to separate the positive class (+) from the neg-
ative class (−) while remaining fair with respect to two sensitive
groups: the blue and the red group. We evaluate the true fairness
(DDP) and a linear relaxation of the fairness (Zafar, Section 3.1) of
three linear classifiers learned with no fairness constraint (Uncon-
str., orange), a linear relaxation of the fairness constraint (Linear
Constr., green), and our framework (SearchFair, red). We also
plot the classifier obtained by translating Linear (Linear (shifted),
brown). It has the same relaxed fairness as Linear but a different
true fairness: the relaxation is oblivious to the intercept parameter.
SearchFair finds the fairest classifier.

(x, s, y) ∼ DZ . Our goal in fair classification is to obtain
a classifier, a mapping h : X → Y defined as h(x) =
sign(f(x)) where f : X → R is a real valued function, that
is fair with respect to the sensitive attribute while remaining
accurate on the class labels. In this paper, we study two
notions of fairness: demographic parity and equality of
opportunity.

Demographic Parity. A classifier f is fair for demographic
parity when its predictions are independent of the sensitive
attribute (Calders et al., 2009; Calders & Verwer, 2010).
Formally, this can be written as

P [f(x)>0|s=1] = P [f(x)>0|s=−1] .
(x,s,y)∼DZ (x,s,y)∼DZ

In practice, enforcing exact demographic parity might be too
restrictive. Instead, we consider a fairness score (Wu et al.,
2019) called Difference of Demographic Parity (DDP):

DDP(f) = (1)[ ] [ ]
E If(x)>0|s=1 − E If(x)>0|s=−1 ,

(x,s,y)∼DZ (x,s,y)∼DZ

where Ia is the indicator function that returns 1 when a
is true and 0 otherwise. The DDP is positive when the
favoured group is s = 1 and negative when it is s = −1.
Given a threshold τ ≥ 0, we say that a classifier f is τ -DDP
fair if |DDP(f) | ≤ τ . When τ = 0, exact demographic
parity is achieved and we say that the classifier is DDP fair.

Equality of Opportunity. A classifier f is fair for equality
of opportunity when its predictions for positively labelled

examples are independent of the sensitive attribute (Hardt
et al., 2016). Formally, it is

P [f(x) > 0|y = 1, s = 1] =
(x,s,y)∼DZ

P [f(x) > 0|y = 1, s = −1] .
(x,s,y)∼DZ

Again, instead of only considering exact equality of oppor-
tunity, we use a fairness score (Donini et al., 2018) called
Difference of Equality of Opportunity (DEO):[ ]

DEO(f) = E If(x)>0|y = 1, s = 1
(x,s,y)∼DZ [ ]
− E If(x)>0|y = 1, s = −1 . (2)

(x,s,y)∼DZ

This quantity is positive when the favoured group is s= 1
and negative when it is s=−1. Given a threshold τ ≥ 0,
we say that a classifier f is τ -DEO fair if |DEO(f) | ≤ τ .
When τ = 0, exact equality of opportunity is achieved and
we say that the classifier is DEO fair.

It is worth noting that demographic parity and equality of
opportunity are quite similar from a mathematical point of
view. In the remainder of the paper, we focus our exposition
on DDP as results that hold for DDP can often be readily ex-
tended to DEO by conditioning on the target label. We only
provide details in the supplementary when these extensions
are more involved.

Learning a fair classifier. Given a function class F , a τ -
DDP fair and accurate classifier f∗ is given as the solution
of the following problem:

f∗ = arg min L(f) ,
f∈F

|DDP(f)|≤τ

where L(f) = E(x,s,y)∼DZ [`(f(x) , y)] is the true risk of
f for a convex loss function ` : X × Y → R. In practice,
we only have access to a set D̂ n

Z = {(xi, si, yi)}i=1 of n
examples drawn fromDZ . Hence, we consider the empirical
version of this problem:

fβ = arg min L̂(f) + βΩ(f) , (3)
f∈F

|DDP(f)|≤τ

where Ω(f) is a convex regularization term used to pre-
vent over-fitting, β is a trade-off parameter, and L̂(f) =
1
∑

n (x,s,y)∈D̂ `(f(x) , y)
Z

is the empirical risk. The main
difficulty involved in learning a fair classifier is to ensure
that |DDP(f)| ≤ τ .

3. When Fairness Relaxations Fail
To obtain a τ -DDP fair classifier, most approaches consider
the fully empirical version of Optimization Problem 3:

ˆmin L(f) + βΩ(f)
f∈F

subject to |DDP̂(f) | ≤ τ, (4)
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(a) DDP. (b) Linear. (c) Convex-concave. (d) Wu - Lower. (e) Wu - Upper.

Figure 2. Consider linear classifiers for the dataset in Figure 1. The decision boundaries are of the form x2 = a1x1 + a0 where a1
controls the slope and a0 the intercept. For given intercepts and slopes, we plot normalized values of (a) the DDP score (yellow is fair), (b)
the linear relaxation (Section 3.1), (c) the convex-concave relaxation (Section 3.2), (d) the concave Wu lower bound, and (d) the convex
Wu upper bound (Section 3.2). The black dotted area in (a) corresponds to trivial constant classifiers—the predicted class is the same for
all points. The colored crosses correspond to the classifiers in Figure 1. A good relaxation should capture the true DDP reasonably well,
in particular the yellow regions should match. However, none of the considered relaxations manage to achieve this.

where the empirical version of DDP is: approximation of If(x)>0 and obtain the constraint:∣ ∣
1 ∑ 1 ∑ ∣ ( ) ∣∑DDP̂(f) = If(x)>0 − I ∣

f(x)>0. ∣ 1 1 s+ 1 ∣
n n ∣∣ − p̂1 f(x)∣ ≤ τ,

(x,s,y)∈D̂Z (x,s,y)∈D̂Z ∣n p̂1(1− p̂̂ 1) 2 ∣
s=1 s=−1 (x,s,y)∈DZ

The main issue with this optimization problem is the non- where p̂1 is an empirical estimate of p1. In their origi-
convexity of the constraints that makes it hard to find the nal formulation, Zafar et al. (2017b) get rid of the factor
optimal solution. A standard approach is then to first rewrite

1
p̂1(1−p̂1) by replacing the right hand side of the constraint

the DDP in an equivalent, but easier to handle form1 and with c = p̂1(1− p̂1)τ .
then replace the indicator functions with a relaxation. Zafar Similarly, Donini et al. (2018) rewrite the DDP:
et al. (2017b) and Donini et al. (2018) use a linear relaxation
to obtain a fully convex constraint. Zafar et al. (2017a) use a s

DDPconvex relaxation that leads to a convex-concave constraint. (f) = E If(x)>0,
(x,s,y)∼D ps

Wu et al. (2019) combine a convex relaxation with a con-
Z

cave one to obtain a fully convex problem. Below, we show where p = P ′
s (x′,s′,y′)∼D (s = s) is the proportion of in-

that these approaches only loosely approximate the true con-
Z

dividuals in group s. Then, using the same linear relaxation
straint and might lead to suboptimal solutions (see Figure 2). as Zafar et al. (2017b) with p̂s, an empirical estimate of ps,
Furthermore, when theoretical guarantees accompany the they obtain the constraint2
method, they are either insufficient to ensure that the learned ∣ ∣classifier is fair (Wu et al., 2019) or they make assumptions ∣ ∣∣ 1 ∑ s ∣that are hard to satisfy in practice (Donini et al., 2018). ∣ f(x)∣∣ ∣ ≤ τ.∣n p̂s ∣

(x,s,y)∈D̂
3.1. Linear Relaxations

Z

Both constraints are mathematically close and only differWe first study methods that use a linear relaxation of the indi-
in terms of the multiplicative factor in front of in thecator function to obtain a convex constraint in Optimization f(x)
inner sum. Thus, they can be rewritten asProblem 4. First, Zafar et al. (2017b) rewrite the DDP: ∣ ∣( ) ∣ ∣∣ ∣ ∣ ∑ ( )1 s+ 1 1 ∣

DDP(f) = E − p1 I ∣ ∣ ∣ ̂
f(x)>0, LR̂ (f) = ∣ C s,DZ f(x)∣ ≤ τ.

(x,s,y)∼DZ p1(1− p ) 2 DDP ∣
1 ∣n ̂ ∣

(x,s,y)∈DZ

where p1 = P(x,s,y)∼DZ (s = 1) is the proportion of in- 2Donini et al. (2018) originally consider τ -DEO fairness rather
dividuals in group s = 1. Then, they consider a linear than DDP. In the constraint, instead of drawing the examples from

DZ , they use the conditional distribution DZ|y=1. However, this
1In the supplementary, we provide the derivations for all the does not change the intrinsic nature of the constraint, and the issues

alternate formulations of DDP presented in this paper. raised here remain valid.
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where C s, D̂Z can be chosen to obtain any of the two
constraints. In the following, we use this general formula-
tion to show that both formulations have shortcomings that
can lead to undesired behaviors.

Linear relaxations are too loose. In Figures 2(a) and 2(b)
we illustrate the behaviors of DDP̂(f) and LRDDP̂(f). In
the figures, we consider linear classifiers of the form
f(x) = −x2 + a1x1 + a0 where a1 controls the slope
of the classifier and a0 the intercept. The underlying data
is the same as in Figure 1. It shows that the linear relax-
ation of DDP can behave completely differently compared
to the true DDP. It is particularly striking to notice that
the intercept does not have any influence on the constraint.
This behavior can be formally verified. Let f be a pre-
dictor of the form f(x) = g(x) + b where b is the in-
tercept. Then, LRDDP̂(f) is independent of changes in( ) b

since 1
∑

n (x,s,y)∈D̂ C s, D̂Z = 0
Z

for both constraints
presented above. The proofs are given in the supplementary.

Theoretical guarantees for linear relaxations are not sat-
isfactory. Donini et al. (2018) study a sufficient condition
under which the linear fairness relaxation LRDDP̂(f) of a
function∣ f∣ is close to its true fairness, that is it holds that∣ ∣ ∣ ∣∣DDP̂(f)∣ ≤ ∣LRDDP̂(f)∣ ˆ+ ∆. The condition that needs to
be satisfied by f is∣ ∣∣ ∣∣ ∣

1 ∑ ∣1 ∑ ∣∣ sign − ˆ∣ ( (f(x)) f(x))∣∣ ≤ ∆.
2 2
s′∈{−1,1} ∣ ∣∣ (x,s,y)∈D̂Z ∣

s=s′

Unfortunately, the left hand side of this condition is non-
convex and thus, it is difficult to use in practice. In particu-
lar, when they learn a classifier with their linear relaxation,
Donini et al. (2018) do not ensure that it also has a small ∆̂.
They only verify this condition when the learning process is
over, that is when a classifier f has already been produced.
However, at this time, it is also possible to compute DDP̂(f)
directly, so the bound is not needed anymore.

If one could show that for a given function class F , there
exists a small ∆̂ such that the condition holds for all f ∈ F ,
then any classifier learned from∣ this function∣ class would be
guaranteed to be fair when ∣LRDDP̂(f)∣ is small. However,
it is not clear whether such function class exists. Never-
theless, this argument hints that for linear relaxations of
the fairness constraint, the complexity of the function class
largely controls the DDP that can be achieved.

Linear relaxations should not be combined with com-
plex classifiers. We demonstrate that, if the class of clas-
sifiers F is complex, then the linear relaxation constraint
has almost no influence on the outcome of the optimization
problem. In Figure 3, we compare the performance, in terms

( )

(a) DDP. (b) Accuracy.

Figure 3. We consider a similarity-based classifier (Section 5) with
rbf kernel and 1000 train and test points from the Adult dataset.
Using a varying regularization parameter β and fairness parameter
τ , we train several classifiers using the linear fairness relaxation
(Section 3.1). We plot the empirical test DDP of the learned models
in Figure 3(a) (red and blue are bad, yellow is good) and their
accuracy in Figure 3(b) (red is bad, green is good). We can see that,
if β is small (complex model), the fairness relaxation parameter τ
has no influence on the DDP score. For higher values of β (simpler
models), decreasing τ improves the DDP. Best viewed in color.

of empirical DDP and accuracy, of several models learned
by Optimization Problem 4 equipped with the linear relax-
ation for different parameters β (for regularization) and τ
(for fairness). Intuitively, one would expect that varying τ
leads to changes in the fairness level while varying β leads
to changes in accuracy. However, this is not the case: τ only
has an effect on the result when β is sufficiently large. It
means that the fairness of the model is mainly controlled by
the regularization parameter rather than the fairness one.

This would not be an issue if the fairness of complex clas-
sifiers was small. Unfortunately, high-complexity models
have a high capacity to alter their decision boundaries. It
means that to achieve both high accuracy and high fairness
at the same time, they tend to alter their prediction margin
for a few selected examples. While this might not affect
the accuracy by a lot, the linear relaxation is sensible to this
kind of changes and thus can be largely improved—which
is what the optimization aims for. However, altering labels
of individual points does not have a big influence on the
true DDP: it remains high. This effect is reduced when one
learns models of low capacity, which have less freedom
to deliberately change labels of individual points. Overall,
linear relaxations are mainly relevant for simple classifiers
and tend to have little effect on complex ones. We outline
this undesirable behavior in the experiments.

3.2. Other Relaxations

In the previous section we demonstrated that linear relax-
ations are not sufficient to ensure fairness of the learned
classifier. We now focus on two approaches that use non-
linear relaxations of the indicator function to stay close to
the original fairness definition.
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Convex-concave relaxation. In a second paper, Zafar et al. choose τκ and τδ appropriately. To address this, Wu et al.
(2017a) use the same fairness formulation as Zafar et al. (2019) show that choosing
(2017b), but, instead of a linear relaxation of the indicator (

+
) −

function, they use a non-linear relaxation.3 Hence, given τκ = ψ τ −p̂ κ upper DDP̂ + DDP̂κ1 ( )defined as in Section 3.1, they obtain the constraint: ̂ − +
τδ = ψδ τlower + DDP + DDP̂∣ ∣ δ ,∣CCR̂ (f)∣ =DDP ∣ ∣ +∣ ( ) ∣ guarantees that −τlower ≤ DDP̂(f) ≤ τupper. Here DDP̂∣ ∑ s+1 ∣∣ 1 − p̂ ∣ ̂ −1∣ 2 min (0, f(x))∣ ≤ τ. and DDP are the worst possible scores of DDP̂(f): they∣n p̂1(1− p̂1) ∣

(x,s,y)∈D̂Z are attained by those functions in the given function class
that advantage either group s = −1 or group s = 1 the

In Figure 2(c) we give an illustration of CCR (f)DDP̂ . It most. The values DDP̂
− +

κ and DDP̂δ are defined in the same
more closely approximates the original DDP̂(f) than the way for the relaxed scores. The functions ψκ and ψδ are
linear relaxation. Nevertheless, it remains quite far from the invertible functions that depend on the selected surrogate.
original definition—in particular for classifiers that are not

While this solution is appealing at a first glance, it turnsconstant. Moreover, using such a convex relaxation leads
out that Optimization Problem 5 is often infeasible forto a convex-concave problem that turns out to be difficult to
meaningful values of andoptimize without guarantees on the global optimality. τupper τlower as the constraints
form disjoint convex sets. To illustrate this, consider

Lower-upper relaxation with guarantees. To derive their κ(x) = max{0, 1 + x} and δ(x) = min{1, x} as pro-
fairness constraint, Wu et al. (2019) propose to first equiva- posed by Wu et al. (2019) and the dataset used in Figure 1.
lently rewrite the DDP as follows: Then, if τupper = τlower ≤ 1.13, the problem is infeasible. If

τlower = 0 and τupper ≤ 1.95 the problem is also infeasible.
DDP(f) = [ ] Overall, the guarantees are often meaningless: they either

I I
E s=1 I s=−1 make statements about the empty set (no feasible solution)

f(x)>0 + If(x)<0 − 1
(x,s,y)∼DZ p1 1− p1 or they are too loose to ensure meaningful levels of fairness.

where p1 is defined as in Section 3.1. Replacing the indica-
tor functions with a convex surrogate other than the linear 4. New Approach with Guaranteed Fairness
one would lead to a convex-concave problem due to the In the previous section, we have seen that existing ap-
absolute value in the constraint. Instead, Wu et al. (2019) proaches use relaxations of the fairness constraint that lead
propose to use a convex surrogate function κ for the require- to tractable optimization problems but have little control
ment DDP(f) < τ and a concave surrogate function δ for over the true fairness of the learned model. For this reason,
DDP(f) > −τ . The corresponding relaxation is we propose a new framework that solves the problem of

finding provably fair solutions: given a convex approxima-DDPκ(f) = [ ] tion of the fairness constraint, our method is guaranteed to
Is=1 Is=−1 − − find a classifier with a good level of fairness.E κ(f(x)) + κ( f(x)) 1 ,

(x,s,y)∼DZ p1 1− p1 We consider the following optimization problem:
and DDPδ(f) is defined analogously by simply replacing κ β ˆf ̂ (λ) = arg minL(f) + λR̂ (f) + βΩ(f) , (6)
with δ. It leads to the following convex problem: DZ DDP

f∈F

ˆmin L(f) + βΩ(f) (5) where R̂ (f)DDP is a convex approximation of the signed
f∈F fairness constraint, that is we do not consider the usual ab-

subject to DDP̂κ(f) ≤ τκ solute value. In other words, we obtain a trade-off between
accuracy and fairness that is controlled by two hyperparam-−DDP̂δ(f) ≤ τδ. eters λ ≥ 0 and β > 0 and, given β fixed, we can vary
λ to move from strongly preferring one group to stronglyIndividually, the relaxations are far from the original fairness
preferring the other group. Our goal is then to find a pa-constraint (as illustrated in Figures 2(e) and 2(d)) but the
rameter setting that is in the neutral regime and does notidea is that combining the upper bound and the lower bound
favor any of the two groups. The main theoretical ingredientwill help to learn a fair classifier. However, one needs to
for this procedure to succeed is the( next theorem, which

3 )
Zafar et al. (2017a) originally consider other notions of fair- states that the function λ 7→ DDP βf (λ) is continuous

ness than DPP, among them is the ̂τ -DEO fairness (Equation (5) DZ
in their paper). Instead of drawing the examples from DZ , they under reasonable assumptions on the data distribution, the
consider the conditional distribution DZ|y=1. candidate classifiers, and the convex relaxation.
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Theorem 1 (Continuity of DDP βf ̂ (λ) Let F be a
D

).
function{space, we define the set of learnable

Z} functions as
βFΛ = f ∈ F : ∃λ ≥ 0, f = f ̂ (λ) . Assume that the
D

following conditions hold:
Z

(i) Optimization Problem 6 is m-strongly convex in f ,
(ii) ∀f ∈ F , R̂(f)DDP is bounded in [−B,B],
(iii) ∃ρ, a metric, such that (FΛ, ρ) is a metric space,
(iv) ∀x ∈ X , g(f) : f 7→ f(x) is continuous,
(v) ∀f ∈ FΛ, f is Lebesgue measurable and the set
{x : (x, s, y) ∈ Z, s = 1, f(x) = 0} is a Lebesgue null set,
as well as {x : (x, s, y) ∈ Z, s = −1, f(x) = 0},
(vi) the probability density functions fZ|s=1 and fZ|s=−1

are Lebesgue-measurable. ( )
Then, the function λ 7→ DDP βf

D̂
(λ) is continuous.
Z

The proof of this theorem is given in the supplementary. The
conditions (i) - (vi) are of a technical nature, but not very
restrictive: Condition (i) can be satisfied by using a strongly
convex regularization term, for example the squared L2

norm. Condition (ii) can be satisfied by assuming that X is
bounded. Condition (iii) is, for example, satisfied by any
Hilbert Space equipped with the standard dot product. This
includes, but is not restricted to, the set of linear classifiers.
Condition (iv) ensures that small changes in the hypothe-
sis, with respect to the metric associated to F , also yield
small changes in the predictions. Condition (v) ensures that
the number of examples for which the predictions are zero
is negligible, for example this happens when the decision
boundary is sharp. Condition (vi) is satisfied by many usual
distributions, for example the Gaussian distribution.

We demonstrate the continuous behavior of DDP on a real
dataset in Figure 4. We plot the DDP score and the accu-
racy of classifiers learned with Optimization Problem 6 for
varying parameters λ and β. Given a fixed β, the results
support our theoretical findings: there is a smooth transition
between favouring the group s = 1 with small λ and favour-
ing the group s = −1 with higher λ. In between, there is
always a region of perfect fairness. In the next corollary,
we formally state the conditions necessary to ensure the
existence of such a DDP-fair classifier.

Corollary 1 (Existence of a DDP-fair classifier). Assume
that the conditions of Theorem 1 hold and that the
convex approximation R̂(f)DDP is chosen such that for
Optimization Problem((6) there e)xist
(i) λ+ such that DDP βf ̂ (λ+) >0,( DZ )
(ii) λ− such that DDP βf ̂ (λ−) <0.

D
Then, there exists at least

Z
one value λ0 in the in-

terval( [min)(λ+, λ−) ,max (λ+, λ−)] such that

DDP βf ̂ (λ0) = 0.
DZ

We prove this corollary in the supplementary. This sug-

( )

(a) DDP. (b) Accuracy.

Figure 4. We consider a similarity-based classifier (Section 5) with
rbf kernel and 1000 train and test points from the Adult dataset.
Using a varying regularization parameter β and fairness parameter
λ, we train several classifiers using Optimization Problem 6 with
the same loss, convex relaxation, and regularization as SearchFair
in the experiments. We plot the empirical test DDP of the learned
models in (a) (red and blue are bad, yellow is good) and their
accuracy in (b) (red is bad, green is good). We can see that, given
a fixed regularization β, we can move from positive DDP (small λ,
in red) to a negative DDP (large λ, in blue) with a region of perfect
fairness in between (in yellow).

gests a very simple framework to learn provably fair models.
First, we choose a convex fairness relaxation (e.g. the one
proposed by Wu et al. (2019)) and search for two initial
hyperparameters λ+ and λ− that fulfill the assumptions
of Corollary 1 (empirically, λ = 0 and 1 are good candi-
dates). Then, we use a binar(y search )to find a λ0 between
λ+ and λ− such that DDP βf

D̂
(λ0) = 0. We call this

procedure SearchFair and summarize
Z

it in Algorithm 1 in
the supplementary. Note that any convex approximation
RDDP̂(f) can be used as long as the conditions of Corol-
lary 1 are respected. In Appendix A we give more details
on how we choose this relaxation. Finally, SearchFair the-
oretically( requires) to evaluate the true population fairness
DDP βf

D̂
(λ) on the underlying distribution DZ . In prac-

tice, we follo
Z

w the example of existing fairness constraints
(Woodworth et al., 2017) and simply approximate( ) this quan-
tity by its empirical counterpart DDP̂ βf

D̂
(λ) .
Z

5. Towards Classifiers that are Fair and
Accurate

In the last section, we presented a method that is guaran-
teed to find a DDP fair classifier. However, there is one
important catch: we did not make any statement about the
classification accuracy of this solution. Here, we take a step
in this direction by proposing some sufficient conditions
that ensure the existence of a classifier that is both fair and
accurate. To this end, we focus on a particular set of clas-
sifiers: the family of similarity-based functions. Given a
similarity functionK : X ×X → [−1, 1] and a set of points
S = {(x′1, s′1, y′1), . . . , (x′d, s

′
d, y
′
d)}, we define a similarity



Too Relaxed to Be Fair

based classifier as d
f(x) = i=1 α

′
iK(x, xi). The goal is and, with p1 = P(x,s,y)∼DZ [s = 1],

then to learn the weights αi. ( )
A theory of learning with such functions has been devel- 1 1|DDP(α)| ≤ µ+ (ν + 2δ) max , .oped by Balcan et al. (2008). By defining a notion of good p1 1− p1

similarities, they provide sufficient conditions that ensure
the existence of an accurate similarity-based classifier. Here,
we build upon this framework and we introduce a notion 6. Experiments
of good similarities for both accuracy and fairness. Hence,

In this section, we empirically evaluate SearchFair by com-in Definition 1 we give sufficient conditions that ensure
paring it to 5 baselines onthe existence of a classifier that is—within a guaranteed 6 real-world datasets. In all
the experiments, SearchFair either reliably finds the fairestmargin—fair and accurate at the same time.
classifier and is comparable to a very recent non-convex

Definition 1 (Good Similarities for Fairness). A sim- optimization approach.
ilarity function K is (ε, γ, τ)-good for convex, posi-

We consider different datasets: CelebA (Liutive, and decreasing loss ` and (µ, ν)-fair for demo- Datasets. 6
et al., 2015), Adult (Kohavi & Becker, 1996), Dutchgraphic parity if there exists a (random) indicator func-
(Zliobaite et al., 2011), COMPAS (Larson et al., 2016),tion R(x, s, y) defining a (probabilistic) set of “reason-
Communities and Crime (Redmond & Baveja, 2002), andable points” such that, given that ∀x ∈ X , g(x) =

E ′
(x′,s′ ′

German Credit (Dua & Graff, 2017). In the supplementary,
,y )∼DZ [y K(x, x′) |R(x′, s′, y′)], the following con-

we give detailed descriptions of these datasets, how we pre-ditions hold: [ ( )]
yg(x) process the data, and the sizes of the train and test splits.

(i) E ` ≤ ε,
(∣x,s,y)∼D∣ Z γ Note that we remove the sensitive attribute s from the set of∣∣ features x so that it is not needed at decision time.

(ii) ∣∣ P [g(x) ≥ γ]− P [g(x) ≥ γ]∣∣ ≤ µ,
DZ|s=1 DZ|s=−1 Baselines. We compare SearchFair to 5 baselines. For 3 of

(iii) P [|g(x)| ≥ γ] ≥ 1− ν,
∼D them, we use Optimization Problem 4 with hinge loss and

(x,s,y) Z

(iv) P `[R(x, s, y)] ≥ a squared 2 norm as the regularization term. As a func-τ .
(x,s,y)∼DZ tion class F , we use similarity-based classifiers presented

in Section 5 with either the linear or the rbf kernel and with
Roughly speaking, a similarity is good for classification if 70% (at most 1000) of the training examples as reasonable
examples of the same class are on average closer to each points. As a fairness constraint, we use either the linear
other than examples of different classes up to a certain relaxation of Zafar et al. (2017b) (Zafar), the linear relax-
margin. Moreover, it is good for fairness if this margin is ation of Donini et al. (2018) (Donini), or no constraint at
independent of group membership. Given such a similarity, all (Unconst). The fourth baseline is a recent method for
we can prove the existence of a fair and accurate classifier non-convex constrained optimization by Cotter et al. (2019)
as is summarized in the next theorem. The proof is given in (Cotter). Our last baseline is the constant classifier (Con-
the supplementary. stant) that always predicts the same label but has perfect
Theorem 2 (Existence of a fair and accurate separator). fairness.
Let K ∈ [−1, 1] be a (ε, γ, τ)-good and (µ, ν)-fair metric SearchFair.4 For SearchFair we also use the hinge loss, a
for a given convex, positive and decreasing loss ` with lips- squared ` norm as the regularization term (it is strongly
chitz constant L. For any ε > 0 and 0 < δ < γε 2

1
1 2(L+ (̀0)) , let convex), and similarity-based classifiers. As a convex ap-

S = {(x′ , s′ ′ ′ ′ ′
1 1, y1), . . . , (x }d, sd, yd) be a set of d examples proximation of the fairness constraint, we use the bounds

drawn from DZ with with hinge loss proposed by Wu et al. (2019) (see Section A[
2

] in the supplementary for details).
1 L 3 4L √

d ≥ + + δ(1− τ) log(2/δ) .
2 2 Metrics. Our main goal is to learn fair classifiers. Hence,τ γ ε1 δ δγε1 our main evaluation metrics are the empirical DDP and

S d S ′ DEO scores on the test set (lower is better). As a secondaryLet φ : X → R be a mapping with φi (x) = K(x, xi),
metric (in case of ties in the fairness scores), we consider thefor all i ∈ {1, . . . , d}. Then, with probability at least 1− 5δ2

S classification performance of the models and we report theover the choice of S, the induced distribution over φ (X )×
errors on the test set (lower is better). All the experimentsS × Y has a linear separator α such that
are repeated 10 times and we report the mean and standard[ ( 〈 〉)]

S
deviation for all the metrics.

y α, φ (x)
E ` ≤ ε+ ε 41, The code is freely available online: github.com/

(x,s,y)∼DZ γ
mlohaus/SearchFair.

∑

github.com/mlohaus/SearchFair
github.com/mlohaus/SearchFair
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(a) Adult. (b) Dutch. (c) CelebA.

Figure 5. We report the average and standard deviation of classification error and absolute fairness scores DDP and DEO (closer to 0 is
better) over 10 repetitions. The constant classifier is perfectly fair as it always predicts the same label. Its classification error is shown by
the grey dashed vertical line. (a) To obtain good fairness on Adult, all DDP fair methods learn the constant classifier. Only SearchFair and
Cotter reliably find fair classifiers for both kernels. (b) On Dutch, SearchFair obtains the lowest DDP with a slight loss in accuracy. Cotter
performs comparably for both kernels, whereas the other methods only do well with a linear kernel but fail to learn fair classifiers with the
rbf kernel. (c) For CelebA, SearchFair and Cotter are the only methods that obtain a low DDP and DEO with only a slight loss in accuracy.
The other methods only provide little to no improvement.

Hyperparameters. Zafar, Donini and Cotter use a fairness vations. First, SearchFair always obtains fairness values
parameter, that we call τ , to control the fairness level. Since that are very close to zero. It learns the fairest classifiers
our goal is to learn classifiers that are fair, we set τ = 0 such out of all the methods and is only matched by Cotter, the
that perfect fairness is required. For SearchFair, there is no non-convex approach. This sometimes comes with a small
fairness parameter since λ0 is automatically searched for increase in terms of classification error. For example, in
between a lower bound λmin and an upper bound λmax. We order to achieve perfect DDP fairness on the Adult dataset,
set λmin = 0 and λmax = 1 as these values usually lead to SearchFair, and all the other fair methods, yield classifiers
classifiers with fairness scores of opposite sign (as needed). close to the trivial constant one. Second, the complexity
We use 10 iterations in the binary search. of the model greatly influences the performances of the lin-

ear relaxations. For example, using the complex rbf kernelWe use 5-fold cross validation to choose other hyperparam- almost always results in an increase in the fairness scoreeters. For Cotter, only the width of the rbf kernel has to of Zafar and Donini. This is particularly striking for Adultbe tuned since we use the framework of the original paper and Dutch where the linear kernel yields reasonable fairnesswith no regularization term. For all remaining methods scores. Note that this trend is not always respected. For ex-we need to choose the regularization parameter β and ample, on CelebA, using an rbf kernel improves the fairnessthe width of the rbf kernel. These values are respectively{ }−6 score compared to the linear kernel. However, neither ofchosen in the sets 10 , 10−5, 10−4, 10−3, 10−2 and
−dlog de−1 −dlog de −1 −dlog de+1 −dlog de+2

them obtain reasonable fairness levels in the first place.
{10 , 10 , d , 10 ,10 },
with d the number of features. We select the set of Discussion on hyperparameter selection. Apart from the
parameters that lead to the most accurate classifier on hyperparameter selection method used in our experiments,
average over the 5 folds. Indeed, the fairness level is one can think of other cross validation procedures. For
automatically taken care of by the methods. example, Donini et al. (2018) proposed NVP, a cross valida-

tion method where one selects the set of hyperparameters
Results. We present the results for 3 out of 6 datasets in that gives the fairest classifier while obtaining an average
Figure 5. The other results are deferred to the supplementary accuracy above a given threshold. Similarly, one could se-
as they follow the same trend. We make two main obser- lect the set of hyperparameters that yields the most accurate
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classifier under a given fairness threshold. In the supple- Conference on Data Mining and Knowledge Discovery,
mentary, we report results that empirically show that these 2010.
more complex procedures tend to improve the fairness of

Calders, T., Kamiran, F., and Pechenizkiy, M. Building clas-the baselines (SearchFair remains competitive on all the
sifiers with independency constraints. In Internationaldatasets). Unfortunately, they also blur the dividing line be-
Conference on Data Mining Workshops, 2009.tween hyperparameters that control the fairness of the model

and the ones that control its complexity. In other words, it Calmon, F., Wei, D., Vinzamuri, B., Natesan Ramamurthy,
becomes unclear whether fairness is achieved thanks to the K., and Varshney, K. R. Optimized pre-processing for
relaxation or thanks to the choice of hyperparameters (we discrimination prevention. In International Conference
already evoked this issue in Figure 3). We believe that it on Neural Information Processing Systems, 2017.
is better to have a method that is guaranteed to find a fair

Chzhen, E., Denis, C., Hebiri, M., Oneto, L., and Pontil,classifier for any given family of models and does not rely
M. Leveraging labeled and unlabeled data for consistenton a complex cross validation procedure.
fair binary classification. In International Conference on
Neural Information Processing Systems, 2019.

7. Conclusion
Cotter, A., Jiang, H., and Sridharan, K. Two-player games

In this paper, we have shown that existing approaches to for efficient non-convex constrained optimization. In In-
learn fair and accurate classifiers have many shortcomings. ternational Conference on Algorithmic Learning Theory,
They use loose relaxations of the fairness constraint and 2019.
guarantees that relate the relaxed fairness to the true fair-
ness of the solutions are either missing or not sufficient. Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J.,
We empirically demonstrated how these approaches can and Pontil, M. Empirical risk minimization under fair-
produce undesirable models. If “fair machine learning” is ness constraints. In International Conference on Neural
supposed to be employed in real applications in society, we Information Processing Systems, 2018.
need algorithms that actually find fair solutions, and ideally Dua, D. and Graff, C. UCI machine learning repository,
come with guarantees. We made a first step in this direc- 2017.
tion by proposing SearchFair, an approach that uses convex
relaxations to learn a classifier that is guaranteed to be fair. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,

R. Fairness through awareness. In Innovations in Theo-
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