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Abstract

We introduce a new way of learning to encode
position information for non-recurrent models,
such as Transformer models. Unlike RNN and
LSTM, which contain inductive bias by loading
the input tokens sequentially, non-recurrent mod-
els are less sensitive to position. The main reason
is that position information among input units is
not inherently encoded, i.e., the models are per-
mutation equivalent; this problem justifies why
all of the existing models are accompanied by a
sinusoidal encoding/embedding layer at the input.
However, this solution has clear limitations: the
sinusoidal encoding is not flexible enough as it is
manually designed and does not contain any learn-
able parameters, whereas the position embedding
restricts the maximum length of input sequences.
It is thus desirable to design a new position layer
that contains learnable parameters to adjust to dif-
ferent datasets and different architectures. At the
same time, we would also like the encodings to
extrapolate in accordance with the variable length
of inputs. In our proposed solution, we borrow
from the recent Neural ODE approach, which may
be viewed as a versatile continuous version of a
ResNet. This model is capable of modeling many
kinds of dynamical systems. We model the evo-
lution of encoded results along position index by
such a dynamical system, thereby overcoming the
above limitations of existing methods. We evalu-
ate our new position layers on a variety of neural
machine translation and language understanding
tasks, the experimental results show consistent
improvements over the baselines.
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1. Introduction
Transformer based models (Vaswani et al., 2017; Devlin
et al., 2018; Yang et al., 2019; Radford et al., 2019; Lan
et al., 2019; Raffel et al., 2019) have become one of the
most effective approaches to model sequence data of vari-
able lengths. Transformers have shown wide applicability to
many natural language processing (NLP) tasks such as lan-
guage modeling (Radford et al., 2019), neural machine trans-
lation (NMT) (Vaswani et al., 2017), and language under-
standing (Devlin et al., 2018). Unlike traditional recurrent-
based models (e.g., RNN or LSTM), Transformer utilizes a
non-recurrent but self-attentive neural architecture to model
the dependency among elements at different positions in the
sequence, which leads to better parallelization using modern
hardware and alleviates the vanishing/exploding gradient
problem in traditional recurrent models.

It is known that the self-attentive architecture corresponds
to a family of permutation equivalence functions. Thus,
for applications where the ordering of the elements matters,
how to properly encode position information is crucial for
Transformer based models. There have been many attempts
to encode position information for the Transformer. In
the original Transformer paper (Vaswani et al., 2017), a
family of pre-defined sinusoidal functions was adapted to
construct a set of embeddings for each position. These fixed
position embeddings are then added to the word embeddings
of the input sequence accordingly. To further construct
these position embeddings in a more data-driven way, many
recent Transformer variants such as (Devlin et al., 2018;
Liu et al., 2019) include these embeddings as learnable
model parameters in the training stage. This data-driven
approach comes at the cost of limiting the maximum length
of sequence Lmax and the computational/memory overhead
from additional Lmax × d parameters, where Lmax is usually
set to 512 in many applications, and d is the dimension
of the embeddings. (Shaw et al., 2018) propose a relative
position representation to reduce the number of parameters
to (2K + 1)d by dropping the interactions between tokens
with a distance greater than K. In addition to just the input
layer, (Dehghani et al., 2018) and (Lan et al., 2019) suggest
that the injection of position information to every layer
leads to even better performance for the Transformer. More
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recently, (Wang et al., 2019) proposes to encode positions
by complex numbers of different phases and wave-lengths.
Despite being successful in several tasks, it increases the
embedding matrix size by a factor of three.

An ideal position encoding approach should satisfy the fol-
lowing three properties:

1. Inductive: the ability to handle sequences longer than
any sequence seen in the training time.

2. Data-Driven: the position encoding should be learnable
from the data.

3. Parameter Efficient: number of trainable parameters
introduced by the encoding should be limited to avoid
increased model size, which could hurt generalization.

In Table 1, we summarize some of the existing position
encoding approaches in terms of these three properties.

In this paper, we propose a new method to encode position
with minimum cost. The main idea is to model position
encoding as a continuous dynamical system, so we only
need to learn the system dynamics instead of learning the
embeddings for each position independently. By doing so,
our method enjoys the best of both worlds – we bring back
the inductive bias, and the encoding method is freely train-
able while being parameter efficient. To enable training
of this dynamical system with backpropagation, we adopt
the recent progress in continuous neural network (Chen
et al., 2018), officially called Neural ODE. In some gen-
erative modeling literature, it is also called the free-form
flow model (Grathwohl et al., 2018), so we call our model
FLOw-bAsed TransformER (FLOATER). We highlight
our contributions as follows:

• We propose FLOATER, a new position encoder for Trans-
former, which models the position information via a con-
tinuous dynamical model in a data-driven and parameter-
efficient manner.

• Due to the use of a continuous dynamic model,
FLOATER can handle sequences of any length. This
property makes inference more flexible.

• With careful design, our position encoder is compatible
with the original Transformer; i.e., the original Trans-
former can be regarded as a special case of our proposed
position encoding approach. As a result, we are not only
able to train a Transformer model with FLOATER from
scratch but also plug FLOATER into most existing pre-
trained Transformer models such as BERT, RoBERTa,
etc.

• We demonstrate that FLOATER consistent improvements
over baseline models across a variety of NLP tasks rang-
ing from machine translations, language understanding,
and question answering.

Table 1. Comparing position representation methods
Methods Inductive Data-Driven Parameter Efficient

Sinusoidal (Vaswani et al., 2017) 3 7 3

Embedding (Devlin et al., 2018) 7 3 7

Relative (Shaw et al., 2018) 7 3 3

This paper 3 3 3

2. Background and Related Work
2.1. Importance of Position Encoding for Transformer

We use a simplified self-attentive sequence encoder to illus-
trate the importance of position encoding in the Transformer.
Without position encoding, the Transformer architecture can
be viewed as a stack of N blocks Bn : n = 1, . . . , N con-
taining a self-attentive An and a feed-forward layer Fn. By
dropping the residual connections and layer normalization,
the architecture of a simplified Transformer encoder can be
represented as follows.

Encode(x) = BN ◦BN−1 ◦ · · · ◦B1(x), (1)
Bn(x) = Fn ◦An (x) , (2)

where x = [x1,x2, . . . ,xL]> ∈ RL×d, L is the length of
the sequence and d is the dimension of the word embedding.
An(·) and Fn(·) are the self-attentive and feed-forward layer
in the n-th block Bn(·), respectively.

Each row of A1(x) can be regarded as a weighted sum of
the value matrix V ∈ RL×d, with the weights determined
by similarity scores between the key matrixK ∈ RL×d and
query matrixQ ∈ RL×d as follows:

A1(x) = Softmax
(QK>√

d

)
V ,

Q = [q1, q2, ..., qL]>, qi = Wqxi + bq,

K = [k1,k2, ...,kL]>, ki = Wkxi + bk,

V = [v1,v2, ...,vL]>, vi = Wvxi + bv,

(3)

Wq/k/v and bq/k/v are the weight and bias parameters in-
troduced in the self-attentive function A1(·). The output
of the feed-forward function F1(·) used in the Transformer
is also a matrix with L rows. In particular, the i-th row is
obtained as follows.

the i-th row of F1(x) = W2σ(W1xi + b1) + b2, (4)

where W1/2 and b1/2 are the weights and biases of linear
transforms, and σ(·) is the activation function. It is not
hard to see from (3) and (4) that both A1(·) and F1(·) are
permutation equivalent. Thus, we can conclude that the
entire function defined in (1) is also permutation equivalent,
i.e., Π× Encode(x) = Encode (Π× x) for any L× L per-
mutation matrix Π. This permutation equivalence property
restricts the Transformer without position information from
modeling sequences where the ordering of elements matters.
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Figure 1. The architecture of our model (FLOATER). The main differences between FLOATER and the original Transformer model are:
1) the position representation is integrated into each block in the hierarchy (there are N blocks in total); and 2) there is a dynamical model
(see (8)) that generates position encoding vectors for each block. The dynamics are solved with a black-box ODE solver detailed in the
supplementary material.

2.2. Position Encoding in Transformer

As mentioned in Section 1, there are many attempts to inject
position information in self-attentive components. Most of
them can be described in the following form:

Bn(x) = Fn ◦An ◦ Φn(x), n ∈ {1, ..., N}, (5)

where Φn(x) is a position encoding function.

(Vaswani et al., 2017) propose to keep Φn(x) = x,∀n ≥
2 and inject position information only at the input block
with a family of pre-defined sinusoidal functions: Φ1(x) =

x + p(1), where p(1) = [p
(1)
1 ,p

(1)
2 , ...,p

(1)
L ] is a position

embedding matrix with the i-th row corresponding to the
i-th position in the input sequence. In particular, the j-th
dimension of the i-th row is defined as follows.

p
(1)
i [j] =

{
sin(i · c j

d ) if j is even,
cos(i · c j−1

d ) if j is odd,
(6)

where c = 10−4. (Dehghani et al., 2018) and (Lan et al.,
2019) observe better performance by further injecting the
position information at each block, i.e., Φn(x) = x+ p(n)

as follows:

p
(n)
i [j] =

{
sin(i · c j

d ) + sin(n · c j
d ) if j is even,

cos(i · c j−1
d ) + cos(n · c j−1

d ) if j is odd.
(7)

Note that for the above two approaches, position encoding
functions Φn(·) are fixed for all the applications. Although
no additional parameters are introduced in the model, both
approaches are inductive and can handle input sequences of
variable length.

Many successful variants of pre-trained Transformer models,
such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al.,
2019), include the entire embedding matrix p(1) ∈ RL×d

in Φ1(x) as training parameters. As the number of training
parameters needs to be fixed, the maximum length of a
sequence, Lmax, is required to be determined before the
training. Although it lacks the inductive property, this data-
driven approach is found to be effective for many NLP tasks.
Note that, unlike the fixed sinusoidal position encoding,
there is no attempt to inject a learnable position embedding
matrix at each block for Transformer due to a large number
of additional parameters (NLmaxd).

3. FLOATER: Our Proposed Position
Encoder

We introduce our method in three steps. In the first step,
we only look at one Transformer block, and describe how
to learn the position representation driven by a dynamical
system; in the second step, we show how to save parameters
if we add position signals to every layer; lastly, we slightly
change the architecture to save trainable parameters further
and make FLOATER “compatible” with the original Trans-
former (Vaswani et al., 2017). The compatibility means our
model is a strict superset of the vanilla Transformer so that
it can be initialized from the Transformer.

3.1. Position Encoding with Dynamical Systems

Position representations in Transformer models are a se-
quence of vectors {pi ∈ Rd : i = 1, ..., L} to be added to
the sequence of the input representations {xi : i = 1, ..., L}.
Existing position encoding approaches either apply a fixed
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sinusoidal function to obtain {pi}, or include them as uncor-
related learnable parameters. Both of them fail to capture
the dependency or dynamics among these position represen-
tations {pi}. In this paper, we propose to use a dynamical
system to model these position representations; that is, there
is a “latent force” denoted by hi that drives the changes
from pi to pi+1. To encourage smoothness, we consider
p(t) : R+ 7→ Rd as the continuous version of the discrete
sequence {pi}. In particular, our proposed continuous dy-
namical system is characterized as follows:

p(t)=p(s)+

∫ t

s

h(τ,p(τ);θh) dτ, 0 ≤ s ≤ t <∞, (8)

together with an initial vector p(0), where h(τ,p(τ);θh)
is a neural network parameterized by θh and takes the pre-
vious state (τ,p(τ)). Notice that the domain of p(·) is R+.
The position sequence {pi} can be obtained by taking p(·)
on a series of points {ti : 0 ≤ t1 < · · · ≤ tL}: pi = p(ti).
One simple strategy is to set ti = i ·∆t so that the points are
equidistant, where ∆ is a hyperparameter (e.g., ∆ = 0.1).
With this strategy, we are implicitly assuming the position
signals evolve steadily as we go through each token in a
sentence. In general, {ti} can be any monotonically in-
creasing series, which allows us to extend our work to more
applications where the elements in the sequence are not
always observed with the same interval. More discussions
about the applicability for this general setting is included
in the Supplementary material. For the NLP applications
discussed in this paper, we choose ti = i ·∆t.
Eq. (8) is equivalent to an ODE problem dp(t)

dt =
h(t,p(t);θh), which is guaranteed to have a unique so-
lution under mild conditions (Tenenbaum & Pollard, 1985).
We follow the efficient approach by (Chen et al., 2018) to
calculate the gradients of θh with respect to the overall
training loss, which allows us to include this parameterized
dynamical position encoder into the end-to-end training
of Transformer models. More details can be found in the
Supplementary material.

Our dynamical system (8) is quite flexible to admit the
standard sinusoidal position encoding (6) as a special case:

pi+1[j]− pi[j]

=

{
sin
(
(i+ 1) · c j

d

)
− sin

(
i · c j

d

)
if j is even

cos
(
(i+ 1) · c j−1

d

)
− cos

(
i · c j−1

d

)
if j is odd

=

{∫ i+1

i
c−

j
d cos(τ · c j

d ) dτ if j is even∫ i+1

i
−c− j−1

d sin(τ · c j−1
d ) dτ if j is odd,

(9)
This indicates that for simple sinusoidal encoding, there
exists a dynamical system h(·) which is also sinusoidal
function.

3.2. Parameter Sharing among Blocks

As mentioned in Section 2, injecting position informa-
tion to each block for Transformer leads to better perfor-
mance (Dehghani et al., 2018; Lan et al., 2019) in some
language understanding tasks. Our proposed position en-
coder FLOATER (8) can also be injected into each block.
The idea is illustrated in Figure 1. Typically there are 6
blocks in sequence-to-sequence Transformer and 12 or 24
blocks in BERT. We add a superscript (n) to denote dynam-
ics at n-th block:

p(n)(t) = p(n)(s) +

∫ t

s

h(n)(τ,p(n)(τ);θ
(n)
h ) dτ.

As we can imagine, having N different dynamical models
h(n)(·;θ(n)h ) for each block can introduce too many pa-
rameters and cause significant training overhead. Instead,
we address this issue by sharing parameters across all the
blocks, namely

θ
(1)
h = θ

(2)
h = · · · = θ

(N)
h . (10)

Note that (10) does not imply that all the p(n)t are the same,
as we will assign different initial values for each block, that
is p(n1)(0) 6= p(n2)(0) for n1 6= n2.

3.3. Compatibility and Warm-start Training

In this section, we change the way to add position encod-
ing so that our FLOATER can be directly initialized from
Transformer. As an example, we use the standard Trans-
former model, which has a fixed sinusoidal encoding at
the input block and no position encoding at deeper levels.
Note that this technique can be extended to other variants
of Transformers with different position encoding methods,
such as embedding matrix. We first examine the standard
Transformer model, the query matrixQ(n) at block-n is

q∼(n)i = W (n)
q

(
xi + p∼(n)i

)
+ b(n)q , (11)

whereW (n)
q and b(n)q are parameters in An (3); p∼(n) is the

sinusoidal encoding; q∼(n)i is the i-th row ofQ(n). Here we
add a tilde sign to indicate the sinusoidal vectors. Formulas
for k
∼(n)
i and v∼(n)i have a very similar form and are omitted

for brevity.

Now we consider the case of FLOATER, where new position
encodings pi are added

q
(n)
i = W (n)

q

(
xi + pi

)
+ b(n)q

= W (n)
q (xi + p∼(n)i ) + b(n)q︸ ︷︷ ︸

Eq. (11)

+ W (n)
q (pi − p∼(n)i )︸ ︷︷ ︸

Extra bias term depends on i

= q∼(n)i + b
(n)
q,i .

(12)
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Transformer-Base Transformer-Large
En-De En-Fr En-De En-Fr

Position encoders at all blocks
FLOATER 28.6 41.6 29.2 42.7
Pre-defined Sinusoidal Position Encoder 28.2 40.6 28.4 42.0
Fixed-length Position Embedding 26.9 40.9 28.3 42.0

Position encoder only at input block
FLOATER 28.3 41.1 29.1 42.4
Pre-defined Sinusoidal Position Encoder 27.9 40.4 28.4 41.8
Fixed-length Position Embedding 27.8 40.9 28.5 42.4

Table 2. Experimental results of various position encoders on the machine translation task.

It is easy to see that the changing the position embed-
ding from {p∼(n)i } to {p(n)i } is equivalent to adding a
position-aware bias vector b(n)q,i into each self-attentive lay-
ers {An(·)}. As a result, we can instead apply (8) to model
the dynamics of b(n)q . In particular, we have the following
dynamical system:

b(n)q (t) = b(n)q (0) +

∫ t

0

h(n)(τ, b(n)q (τ);θh) dτ. (13)

After that, we set b(n)q,i = b
(n)
q (i · ∆t). We can see that if

h(·) = 0 and b(n)q (0) = 0, then b(n)q ≡ 0. This implies (12)
degenerates to (11). Note that (13) has the same form as (8),
except that we are now modeling the bias terms bq,i in (3).
We will apply the same technique toK and V .

To summarize, our model has a tight connection to the
original Transformer: if we set all dynamical models to
zero, which means h(τ,p(τ);θh) ≡ 0, then our FLOATER
model will be equivalent to the original Transformer with
the sinusoidal encoding. The same trick also works for
Transformer with position embedding such as BERT (Devlin
et al., 2018).

We strive to make our model compatible with the original
Transformer due to the following reasons. First of all, the
original Transformer is faster to train as it does not contain
any recurrent computation; this is in contrast to our dynami-
cal model (8), where the next position pi+1 depends on the
previous one pi. By leveraging the compatibility of model
architecture, we can directly initialize FLOATER model
from a pre-trained Transformer model checkpoint and then
fine-tune for the downstream task for a few more epochs. By
doing so, we enjoy all the benefits of our FLOATER model
but still maintain an acceptable training budget. Likewise,
for models such as BERT or Transformer-XL, we already
have well-organized checkpoints out of the box for down-
stream tasks. These models are costly to train from scratch,

and since our goal is to examine whether our proposed po-
sition representation method can improve over the original
one, we decided to copy the weights layer by layer for at-
tention as well as FFN layers, and randomly initialize the
dynamical model h(τ,p(τ);θh).

4. Experimental Results
In this section, we perform experiments to see if FLOATER
can improve over the existing position encoding approaches
for a given Transformer model on various NLP tasks. Thus,
all the metrics reported in this paper are computed from a sin-
gle (not ensemble) Transformer model over each evaluation
NLP task. Albeit lower than top scores on the leaderboard,
these metrics are able to reveal more clear signal to judge
the effectiveness of the proposed position encoder.

All our codes to perform experiments in this paper are based
on the Transformer implementations in the fairseq (Ott
et al., 2019) package. Implementation details can be found
in the Supplementary material. Our experimental codes will
be made publicly available.

4.1. Neural Machine Translation

Neural Machine Translation (NMT) is the first application
that demonstrates the superiority of a sequence-to-sequence
Transformer model over conventional recurrent sequence
models. We include the following three additive position
encoders: Φ(n)(x) = x+ p(n).

• Data-driven FLOATER: p(n) is generated by our pro-
posed continuous dynamical models with data-driven pa-
rameters described in (8).

• Pre-defined sinusoidal position encoder: p(n) is con-
structed by a pre-defined function described in (7), which
is proposed by (Vaswani et al., 2017) and extended by
(Dehghani et al., 2018).
• Length-fixed position embedding: p(n) is included as
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Table 3. Experimental results on GLUE benchmark

Model
Single Sentence Similarity and Paraphrase Natural Language Inference
CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE

Base model
RoBERTa 63.6 94.8 88.2 91.9 91.2 87.6 92.8 78.7
FLOATER 63.4 95.1 89.0 91.7 91.5 87.7 93.1 80.5

Large model
RoBERTa 68.0 96.4 90.9 92.2 92.4 90.2 94.7 86.6
FLOATER 69.0 96.7 91.4 92.2 92.5 90.4 94.8 87.0

Table 4. Experiment results on RACE benchmark. “Middle”
means middle school level English exams, “High” means high
school exams. Other details can be found in (Lai et al., 2017).

Model Accuracy Middle High

Single model on test, large model
RoBERTa 82.8 86.5 81.3
FLOATER 83.3 87.1 81.7

learnable training parameters. This is first introduced by
(Vaswani et al., 2017) and adopted in many variants of
Transformer (Devlin et al., 2018; Liu et al., 2019).

To better demonstrate the parameter efficiency brought by
FLOATER, for each above encoder, we also include two
experimental settings: position encoder at all blocks or only
at the input block (i.e., p(n) = 0,∀n ≥ 2).

In Table 2, we present the BLEU scores on WMT14 Ee-
De and En-Fr datasets with both Transformer-base and
Transformer-large models described in (Vaswani et al.,
2017). Among all the data/model combinations, our pro-
posed FLOATER at all blocks outperforms two other posi-
tion encoders.

On the other hand, we also observe that adding position
encoders at all blocks yields better performance than only
at the input block. While there is an exception in the fixed-
length position embedding approach. We suspect that this
phenomenon is due to over-fitting cased by LmaxdN learn-
able parameters introduced by this approach. In contrast,
our proposed FLOATER is parameter efficient (more discus-
sions in Section 4.3), so the performance can be improved
by injecting the position encoder at all the blocks of Trans-
former without much additional overhead.

4.2. Language Understanding and Question Answering

Pretrained Transformer models such as BERT and RoBERTa
have become the key to achieving the state-of-the-art per-
formance for various language understanding and question

Table 5. Experiment results on SQuAD benchmark. All results are
obtained from RoBERTa-large model.

Model
SQuAD 1.1 SQuAD 2.0
EM F1 EM F1

Single models on dev, w/o data augmentation
RoBERTa 88.9 94.6 86.5 89.4
FLOATER 88.9 94.6 86.6 89.5

answering tasks. In this section, we want to evaluate the
effectiveness of the proposed FLOATER on these tasks. In
particular, we focus on three language understanding bench-
mark sets, GLUE (Wang et al., 2018), RACE (Lai et al.,
2017) and SQuAD (Rajpurkar et al., 2016). As mentioned
in Section 3.3, FLOATER is carefully designed to be com-
patible with the existing Transformer models. Thus, we
can utilize pretrained Transformer models to warm-start
a FLOATER model easily to be used to finetune on these
NLP tasks. In this paper, we download the same pre-trained
RoBERTa model from the official repository as our pre-
trained Transformer model for all NLP tasks discussed in
this section.

GLUE Benchmark. This benchmark is commonly used to
evaluate the language understanding skills of NLP models.
Experimental results in Table 3 show that our FLOATER
model outperforms RoBERTa in most datasets, even though
the only difference is the choice of positional encoding.

RACE benchmark Similar to the GLUE benchmark, the
RACE benchmark is another widely used test suit for lan-
guage understanding. Compared with GLUE, each item in
RACE contains a significantly longer context, which we be-
lieve requires more important to grasp the accurate position
information. Like in GLUE benchmark, we finetune the
model from the same pretrained RoBERTa checkpoint. We
keep the hyperparameters, such as batch size and learning
rate, to also be the same. Table 4 shows the experimental
results. We again see consistent improvement of FLOATER
across all subtasks.
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Figure 2. Comparing BLEU scores of different encoding methods.

Table 6. Performance comparison on WMT14 En-De data and
Transformer-base architecture. Both BLUE scores and the number
of trainable parameters inside each position encoder are included.

BLEU (↑) #Parameters (↓)

FLOATER 28.57 526.3K
1-layer RNN + scalar 27.99 263.2K
2-layer RNN + scalar 28.16 526.3K
1-layer RNN + vector 27.99 1,050.0K
1-Layer LSTM + scalar 28.17 1050.0K
1-Layer GRU + scalar 28.11 789.5K
2-Layer LSTM + scalar 28.10 2100.0K
2-Layer GRU + scalar 26.21 1580.0K

SQuAD benchmark SQuAD benchmark (Rajpurkar et al.,
2016; 2018) is another challenging task to evaluate the ques-
tion answering skills of NLP models. In this dataset, each
item contains a lengthy paragraph containing facts and sev-
eral questions related to the paragraph. The model needs
to predict the range of characters that answer the questions.
In SQuAD-v2, the problem becomes more challenging that
the questions might be unanswerable by the context. We
follow the same data processing script as BERT/RoBERTa
for fair comparison; more details about the training process
are described in the Supplementary material. The experi-
ment results are presented in Table 5. As we can see, the
FLOATER model beats the baseline RoBERTa model consis-
tently across most datasets. The improvement is significant,
considering that both models are finetuned from the same
pretrained checkpoint.

4.3. More Discussions and Analysis

How inductive is FLOATER? FLOATER is designed to
be inductive by a data-driven dynamical model (8). To
see how inductive FLOATER is when comparing to exist-
ing approaches, we design the following experiment. We
first notice that in WMT14 En-De dataset, 98.6% of the
training sentences are shorter than 80 tokens. Based on

that, we make a new dataset called En-De short to long (or
S2L for brevity): this dataset takes all the short sentences
(< 80 tokens) as the training split and all the long sentences
(≥ 80 tokens) as the testing split. We further divide the test-
ing split to four bins according to the source length fallen
in [80, 100), [100, 120), [120, 140), [140,+∞). BLEU
scores are calculated in each bin, and the results are pre-
sented in Figure 2.

Our FLOATER model performs particularly well on long
sentences, even though only short sentences are seen by the
model during training. This empirical observation supports
our conjecture that FLOATER model is inductive: the dy-
namics learned from shorter sequences can be appropriately
generalized to longer sequences.

Is RNN a good alternative to model the dynamics? Re-
current neural network (RNN) is commonly used to perform
sequential modeling. RNN and our continuous dynamical
model (8) indeed share some commonality. Computing the
value at the i-th step relies on the results at the (i − 1)-st
step. Further, they all contain trainable parameters, allowing
them to adapt to each particular task. Lastly, they can be
extrapolated to any length as needed. To see if RNN works
equally well, we model the sequence {pi}i∈{1,2,... } with
RNN models:

pi+1 = RNN(zi,pi), (14)

where zi ∈ Rdin is the input to the RNN model at index i.
Recall in RNN language models, zi is the word embedding
or hidden feature of the i-th token. In our case, since we
apply RNN to learn the encodings as opposed to hidden
features, sensible inputs can be scalar value i or vectorized
value Vectorize(i) by sinusoidal encoding. We tried both
choices on WMT14 En-De data and found that vectorized
value generally works better, though not as good as our
FLOATER model. Detailed results can be found in Table 6.

What does each position encoding look like? To better
understand how different position encodings affect the se-
quence modeling, in Figure 3, we visualize the position
embedding matrix p obtained from four different position
encoding approaches for the Transformer-base backbone on
WMT14 En-De dataset. We can see that sinusoidal encod-
ing (3a) is the most structural, while position embedding
(3b) is quite chaotic. Our FLOATER model learns position
representation completely from data, but still exhibits some
regularities (3c). Finally, the RNN model (3d) fails to ex-
tract sufficient positional information, probably due to the
vanishing gradient problem. Another finding is that by look-
ing at (3b), we observe that the vectors are nearly constant
among different large positions (near the bottom of Fig-
ure 3b, we see patterns of vertical lines with the same color).
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Figure 3. Visualizing the four different position methods. All models are trained using the Transformer-base architecture and En-De
dataset. For better visualization, dimension indices are permuted in Figure 3b-3d.

This phenomenon is due to long sentences in the dataset
being scarce, and so the positional information carried by
lower indices cannot be extrapolated to higher indices. On
the contrary, the dynamical model proposed in this paper
enjoys the best of both worlds – it is adaptive to dataset
distribution, and it is inductive to handle sequences with
lengths longer than the training split.

4.4. Remarks on Training and Testing Efficiency

It is not surprising that during the training time, our flow-
based method adds a non-negligible time and memory over-
head; this is because solving the Neural ODE precisely
involves ∼100 times forward and backward propagations
of the flow model. Even though we deliberately designed
a small flow model (consisting of only two FFN and one
nonlinearity layers), stacking them together still increases
training time substantially. To make it possible to train big
models, we use the following optimizations:

• Initialize with pretrained models that do not contain flow-
based dynamics, as discussed in Section 3.3.

• From (8), we know that if h(·) is close to zero, then the
position information diminishes (derived in appendix).
In this way, our model degenerates to the original Trans-
former. Inspired by this property, we can initialize the
FLOATER with smaller weights. Combining with the
previous trick, we obtain an informed initialization that
incurs lower training loss at the beginning.

• We observed that weights in h(·) are more stable and easy
to train. Thus, we can separate the weights of h(·) from

the remaining parts of the Transformer model. Concretely,
we can 1) cache the positional bias vectors for some
iterations without re-computing, 2) update the weights
of flow models less frequently than other parts of the
Transformer, and 3) update the flow models with a larger
learning rate to accelerate convergence.

• For the RoBERTa model, we adopt an even more
straightforward strategy: we first download a pretrained
RoBERTa model, plug in some flow-based encoding
layers, and re-train the encoding layers on WikiText-
103 dataset for one epoch. When finetuning on GLUE
datasets, we can choose to freeze the encoding layers.

Combining those tricks, we successfully train our proposed
models with only 20-30% overhead compared to tradi-
tional models, and virtually no overhead when finetuning
RoBERTa model on GLUE benchmarks. Moreover, there
is no overhead during the inference stage if we store the
pre-calculated positional bias vectors in the checkpoints.

5. Conclusions
In this paper, we have shown that learning position encoding
with a dynamical model can be an advantageous approach
to improve Transformer models. Our proposed position
encoding approach is inductive, data-driven, and parameter
efficient. We have also demonstrated the superiority of our
proposed model over existing position encoding approaches
on various natural language processing tasks such as neural
machine translation, language understanding, and question
answering tasks.
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