
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

1. Training a Neural ODE model in Transformer
We discuss the details of training the dynamical model h(τ,pτ ;wh), recall in our FLOATER model, function h joins in
the computational graph implicitly by generating a sequence of position encoding vectors {p1,p2, . . . ,pN}, conditioning
on a freely initialized vector p0. The generation steps are computed iteratively as follows (suppose we choose the interval
between two consecutive tokens to be ∆)

p1 = p0 +

∫ ∆

0

h(τ,pτ ;wh) dτ,

p2 = p1 +

∫ 2∆

∆

h(τ,pτ ;wh) dτ,

...

pN = pN−1 +

∫ N∆

(N−1)∆

h(τ,pτ ;wh) dτ.

(1)

Finally, the loss L of this sequence is going to be a function of all position encoding results L = L(p0,p1, . . . ,pN ), which
is further a function of model parameters wh. The question is how to calculate the gradient dL

dwh
through backpropagation.

This question is fully solved in Neural ODE method (Chen et al., 2018b) with an efficient adjoint ODE solver. To illustrate
the principle, we draw a diagram showing the forward and backward propagation in Figure 1.

ps pt

L = L(p0 . . . pN) Forward

Backward

+
∫ t
s h(τ, pτ ;wh)dτ

Figure 1. Direction of forward and backward propagation. Here we consider a simplified version where only position encodings ps and
pt are in the computational graph.

From (Chen et al., 2018b), we know that the gradients d
dwh

L
(
ps +

∫ t
s
h(τ,pτ ;wh) dτ

)
, dL

dwh
can be computed by

dL

dwh
= −

∫ s

t

a(τ)ᵀ
∂h(τ,pτ ;wh)

∂wh
dτ, (2)

where a(τ) defined in τ ∈ [s, t] is called the “adjoint state” of ODE, which can be computed by solving another ODE

da(τ)

dτ
= −a(τ)ᵀ

∂h(τ,pτ ;wh)

∂pτ
. (3)

Note that the computation of (3) only involves Jacobian-vector product so it can be efficiently calculated by automatic
differentiation.

2. Implementation details
2.1. Settings of ODE solver

To setup the ODE server, we need to first choose the numerical algorithms (Press et al., 1992). We have different setups for
different datasets. For neural machine translation problems (WMT14 En-De and En-Fr), we use the more accurate Runge-
Kutta scheme with discretization step ∆

5.0 to solve the adjoint equation (recall that we set the interval of two neighboring



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

tokens to be ∆ = 0.1 globally). While for datasets with long sentences such as GLUE and RACE benchmarks, we found
that solving the adjoint equation with high order scheme is too slow, in such case we adopt simple midpoint method with
discretization step ∆

5.0 , and the gradients are calculated by automatic differentiation rather than adjoint method. The third
party implementation of ODE solver can be found at https://github.com/rtqichen/torchdiffeq.

2.2. Training NMT tasks

We run the same preprocessing script provided by fairseq (Ott et al., 2019), which is also used in ScalingNMT (Ott et al.,
2018). With the standard training script, we first successfully reproduce all the results in Transformer paper (Vaswani et al.,
2017). Based on that we execute the following protocol to get our results:

1. Train the original Transformer model for 30 epochs.

2. Random initialize FLOATER model of same shape configuration.

3. Copy tensors from the best performing checkpoint (validation set) to initialize FLOATER model. Initialize weights in
the dynamical model with small values.

4. Half the peak learning rate (e.g. in Transformer-base + En-De, the peak learning rate is changed from 7.0× 10−4 to
3.5× 10−4).

5. With the warm-initialized FLOATER checkpoint, retrain on the same dataset for 10 epochs (En-De) or 1 epoch (En-Fr).

6. Averaging last 5 checkpoints and compute BLEU score on test split.

2.3. Training language understanding tasks

For GLUE/SQuAD/RACE benchmarks, our experiments are all conducted upon RoBERTa, in which both base and large
configurations are available. Due to resource constraint (and to show the compatibility to existing models), we initialize our
FLOATER model with pretrained RoBERTa, which is similar to NMT task. However, the weights wh in dynamic function
h(τ,pτ ;wh) are not trained in large corpus, given that GLUE/SQuAD/RACE datasets are too small to train dynamics from
scratch, we decided to pretrain h alone in WikiText103 (Merity et al., 2016) data using masked language modeling loss. We
have found that when we train wh alone, it only takes a few hours (2x Titan V100) and one epoch to convergence.

Once having the pretrained FLOATER model, we can run following downstream tasks and compare with RoBERTa under
the same setting:

GLUE benchmark consists of eight datasets and each have different hyperparameter settings. For hyperparameters such
as learning rate, batch size, training iterations, warm-up iterations, etc., we use the same values recommended by official
repository of RoBERTa1.

SQuAD benchmark. For this benchmark we wrote our own finetuning code because currently there is no official code
available. During the implementation process, we mainly refer to the third-party repositories2. We are not able to exactly
match the official result reported in RoBERTa paper but quite close (∼0.1 difference in F1). For our FLOATER model, we
use the same hyperparameters as RoBERTa.

RACE benchmark. This benchmark has the longest context and sequence length. We follow the official training script3

and reproduce the result. Similar to other benchmarks, we then repeat the training process using exactly the same training
hyperparameters to make a fair comparison. In this benchmark we freeze the weights wh and only finetune the weights of
RoBERTa.

1Available at: https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
2Mainly https://github.com/ecchochan/roberta-squad and https://github.com/huggingface/

transformers
3https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.race.md

https://github.com/rtqichen/torchdiffeq
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.glue.md
https://github.com/ecchochan/roberta-squad
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.race.md


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

3. Cases suitable for non-equidistant discritization
Although our model allows continuous values of s and t in (8), limiting the scope to text modeling tasks, positions are
discrete values as {0, 1, 2, . . . }. Once the continuous version of position representation pt is obtained, we simply take the
discritized {p0,p∆,p2∆, . . . , } as the actual values to feed into Transformer model, where ∆ is a hyperparameter (e.g.
∆ = 0.1). By choosing positions t equidistantly, we are implicitly assuming the position signal evolves steadily as we go
through each token in a sentence. More generally, the dynamics in (8) can deal with the case in which positions are not
integers 0, 1, 2, . . . etc., but arbitrary monotone increasing series t0 < t1 < t2 < . . . which may not be equidistant. In
appendix, we exemplify this general situation with several widely deployed tasks; we regard this as a interesting future
direction. This makes our model particularly suitable for following scenarios yet traditional position representation may not
be good at:

• Hierarchical Transformer model (Liu & Lapata, 2019; Zhang et al., 2019). The model is a direct extension of
hierarchical RNN and is often used in long document processing. It works by first running a word-level Transformer
model on each sentence to extract the sentence embedding, and then applying a sentence-level Transformer scanning
through each sentence embedding sequentially. We argue that when processing at the sentence level, it could be better
to set the increment of position index ti+1 − ti proportional to the length of the i-th sentence. This is because longer
sentences tend to carry more information, so pi+1 is likely to move farther from pi.

• Transformer for time-series events. As measurement time is continuous, time-series data is another scenario when a
continuous position makes more sense than a discrete counterpart. More importantly, to predict the future values by
modeling historical values observed at irregular time grids, it is better to consider the length of time horizon between two
consecutive measures. A successful previous work is the Latent ODE (Chen et al., 2018a), except that they use RNN as
the backbone, and they model the hidden states rather than position representations with Neural ODE (because RNN
itself provides positional bias).

In this paper, we are not going to explore the more general cases discussed above. Instead, we decided to leave them as
interesting future work.

References
Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential equations. In Bengio, S.,

Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31, pp. 6571–6583. Curran Associates, Inc., 2018a. URL http://papers.nips.cc/paper/
7892-neural-ordinary-differential-equations.pdf.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential equations. In Advances in
Neural Information Processing Systems, pp. 6571–6583, 2018b.

Liu, Y. and Lapata, M. Hierarchical transformers for multi-document summarization. arXiv preprint arXiv:1905.13164,
2019.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling neural machine translation. arXiv preprint arXiv:1806.00187, 2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grangier, D., and Auli, M. fairseq: A fast, extensible toolkit for
sequence modeling. arXiv preprint arXiv:1904.01038, 2019.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical recipes in c++. The art of scientific
computing, 2:1002, 1992.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all
you need. In Advances in Neural Information Processing Systems, pp. 5998–6008, 2017.

Zhang, X., Wei, F., and Zhou, M. HIBERT: document level pre-training of hierarchical bidirectional transformers for
document summarization. CoRR, abs/1905.06566, 2019. URL http://arxiv.org/abs/1905.06566.

http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://arxiv.org/abs/1905.06566

