Min-Max Optimization without Gradients for ICML 2020

Appendix
A. Detailed Convergence Analysis

A.1. Table of Parameters

In Table A1, we summarize the problem and algorithmic parameters used in our convergence analysis.

Table Al: Summary of problem and algorithmic parameters and their descriptions.

parameter description

# of optimization variables
mini-batch size
# of random direction vectors used in ZO gradient estimation
learning rate for ZO-PGD
learning rate for ZO-PGA
strongly concavity parameter of f(x,y) with respect to y
upper bound on the gradient norm, implying Lipschitz continuity
Lipschitz continuous gradient constant of f(x,y) with respect to x and y respectively
diameter of the compact convex set X or )
lower bound on the function value, implying feasibility
o2, 02 variances of ZO gradient estimator for variables x and y, bounded by (3)
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A.2. Proof of Lemma 1

Before going into the proof, let’s review some preliminaries and give some definitions. Define /,(x, £) to be the smoothed
version of h(x, £) and since £ models a subsampling process over a finite number of candidate functions, we can further
have h,,(x) = Eg[h,(x, €)] and Vxh,(x) = E¢[Vxh,(x, €)]

Recall that in the finite sum setting when ; parameterizes the jth function, the gradient estimator is given by

~ 9. d[h ;&) — h(x; &
vxh(x):b—lqzz [hlox + if) &)1, (15)

JET i=1
where 7 is a set with b elements, containing the indices of functions selected for gradient evaluation.

From standard result of the zeroth order gradient estimator, we know

E; [Euiyie[q} [@xh(x)} |I} —E; %va Fu(%,€) | = Vi (x). (16)
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Now let’s go into the proof. First, we have

E [[9h(x) — Vichu()[3]

L -
~ 1 1
:EI Eui,ie[q] Vxh(x) - g vafu(xa E]) + 5 vafu(x7 é]) - vxhu(x) ’I
JjET JET 9
2 _2
~ 1 1
<27 | Euielq) ||[Vah(x) = 3> Vafulx )| + (15D Vafu(x:€5) = Vachu(x) \I . an
JET 9 JET 9

Further, by definition, given Z, ?xh(x) is the average of ZO gradient estimates under ¢ i.i.d. random directions, each of
which has the mean 3 Y7 Vi f, (%, &;).
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Thus for the first term at the right-hand-side (RHS) of the above inequality, we have

2 2
~ 1 1 1 p2L2 d>
Euhie[q] vxh(x) - g Z vxfu(X7 53) ‘Z S; 2d g Z fo(x, Sj) + 2h
JjET 5 JjeET
1 2L2 2
< <2d772 + ot 2"d ) (18)

where the first inequality is by the standard bound of the variance of zeroth order estimator and the second inequality is by
the assumption that || Vch(x; €)||> < 7* and thus [|§ 3= ;o7 Vi f(x,€;)I1> < n°.

In addition, we have

2

1
Ez Eui,ie[q] Hb Z vx.fu(xv 5]) - vxhu(x) ‘I

JjeET 9

2

_E, % 3 Vafu(x.€;) — V()

jez

2

1 2
= Be [V fu(x,€) = Vo 0)]13] < 2 19)

where the second equality is because &; are i.i.d. draws from the same distribution as £ and E[V f,.(x, £)] = Vxh,(x), the
last inequality is because ||V f,,(x, €)[|3 < n? by assumption. Substituting (18) and (19) into (17) finishes the proof. [

A.3. Convergence Analysis of ZO-Min-Max by Performing PGA

In this section, we will provide the details of the proofs. Before proceeding, we have the following illustration, which will
be useful in the proof.

The order of taking expectation: Since iterates x(*), y(*), V¢ are random variables, we need to define
FO 2 {x0 y0) x@=D) =1 ) )y (20)

as the history of the iterates. Throughout the theoretical analysis, taking expectation means that we take expectation over
random variable at the tth iteration conditioned on F(*~1) and then take expectation over F(!~1).

Subproblem: Also, it is worthy noting that performing (4) and (5) are equivalent to the following optimization problem:

. 1

x(*) = min <vxf<x<t‘1>,y“—”),x —x“—”} + ool x—xCT 1)
- 1

t) — <v ) =1y o _ <H>>_7 _ =12, 2

y" =max (Vy f(x 0y )y -y 2Blly y (22)

When f(x,y) is white-box w.r.t. y, (22) becomes

1
) = I e 23
y r;lg§<vyf(x YUy -y > oy =yl (23)

In the proof of ZO-Min-Max, we will use the optimality condition of these two problems to derive the descent lemmas.

Relationship with smoothing function We denote by f, (x,y) the smoothing version of f w.r.t. x with parameter
g > 0. The similar definition holds for f, ,(x,y). By taking f, »(x,y) as an example, under A2 f and f, , has the
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following relationship (Gao et al., 2014, Lemma4.1):

L,p? wrd*L?
wx\XY) = J\XY)) S —— xJux\XY) = VxJ (XY )llg = ———
[fux(,y) = fxy))l < —5— and [V fux(x,y) = Vi f( )3 < 1 (24)
L2 (2d2L2
Fuy(e,3) = [ < 755 and |[Vy fuy (x3) = Vy fxy)IE < 2 @5)
First, we will show the descent lemma in minimization as follows.
A.3.1. PROOF OF LEMMA 2
Proof: Since f(x,y) has L, Lipschtiz continuous gradients with respect to x, we have
L,
fu(x(t"’_l)’ y(t)) gf#(x“), y(t)) + <fo#(x(t), y(t))7 x(t+1) _ X(t)> + 7“ x(t+1) _ (®) ||2
y® y®), xt) _ 50y 4 Loy g2
=fu(x' ) + (Ve f (x! ), x xV)+ 5 lx x|
+ <foﬂ(x(”, y ) = Vif (X(”, y ), xHD — x @) (26)
Recall that
x(t+D) — pI‘OjX(X(t) — a%xf(x(t), y(t))), 27
From the optimality condition of x-subproblem (21), we have
~ 1
(Vaef (x1, 0, 0D — 1) < —= || — O 2. (28)

Here we use the fact that the optimality condition of problem (21) at the solution x®*t1D yields
(Ve f(x® y®) 4 (xt+D) —x1) /o, x(+D _x) < 0 for any x € X. By setting x = x(!), we obtain (28).

In addition, we define another iterate generated by V f, (x(t), y(t))
g+ — pron(x(t) — anf/L(X(t)v Y(t)))~ (29)
Then, we can have
(VoS y ™) =
=(Vifu(x®,y®) =
+ <fou(x(t)’ )

\V/ S (xD gy 1) ()
Vi f(x® y ) xt+D _x(0) (gD _ x(®)y)
v

o (xO,y @), %D — x (1)), (30)

Due to the fact that Ey [V, f(x®, y(0)] = V, £, (x®), y®), we further have

Eu[(Vaefu(x®,y®) — Vi f(x®, y®), 20D —xOy] = 0. 31)

Finally, we also have
(Ve fu(xD,y®) — Vo f(x®, y ), xHD —x® —(g(t+D — x®))
1 ~
sguvxmx“% y®) - vxf<x“),y<”>||2 ol - @D x)2
<a|| Vi fu(x®, y 1) = Vi f(x ),y )2 (32)

where the first inequality is due to Young’s inequality, the second inequality is due to non-expansiveness of the projection
operator. Thus

Equxfp,(X(t)a y(t)) _ ﬁxf(x(t), y(t))’ (D) _ (8 _(g(t+1) _ X(t))>]
<Eulol|Vafu(x®,y 1) = Vi f(x®, D)%) < ac? (33)
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where 02 := 02(L,, b, q, d) which was defined in (3).
Combining all above, we have

1 L,

E[fu(x(t+1)7y(t))] SE[fM(X(t),y(t))] _ <a _ 2) [ (D) _ (1) ”2 + aag,

and we request « < 1/L,, which completes the proof.

Using | fu..(x,y) — f(x,¥))] <

L p? L p?
B{f (x*D,y )] - 22— < E[f, (", yO)] S B[,y )] + 22,

so we are able to obtain from (3)

1 L,

LG,y )] < BLA, ) - (= 22 )10 x| 4 a0+ Lo

a 2

O

Corollary 1.

E <Vf(x(t)ay(t_1)) - vfu(x(t)ay(t_l))vy( ) — (t 1)> < ﬂag
o7 == 02(Ly,b,q,d) which was defined in (3).
Proof:
Define

¥ = projy(y" — BVy £, (x,y 1)),

we have
xf(x (t)7y(t’1)),y(t) -yt )
yf(xB,yt=1) y 0y (=1 (Gt y =Dy
Vo f(x (t) yE= Dy 30 — =1y,

(v yfu( ’yt 1)) 6
=(V yfu( ’yt 1)) 6
+ (Vy (), y 1) —

Due to the fact that E,, [ﬁyf(x(t), y)] = Vg £.(x®, y =) we further have
Eu[<Vny(x(t), y(t—l)) — Vyf(x(t), y(t—l))7 y — y(t—1)>] —=0.

Finally, we also have
Eu[(Vy fu(x®, y710) =V f(x 0, y70), y 0 —y =D (1) — y=1y)]

<E [

<Eu[B|Vy fu(x®,y D) = Vy f(x®, y* D)2 < 8o
where o7 := 0*(Ly, b, ¢, d) which was defined in (3).

_ E _ 1 _ ~ _
SV fulx® y ) = Ty x5 1))||2+@Ily(”ﬂy°t R AR S|

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

O

Next, before showing the proof of Lemma 3, we need the following lemma to show the recurrence of the size of the

successive difference between two iterations.

Lemma 5. Under assumption 1, assume iterates xt) | y(*) generated by algorithm 1. When f (X(t), y) is white-box, we have

2
B[yt —y @2 -

2 _ 212
B2 = E| y(t) - y(t 2 ”2 < WEH x(HD) — x(® H2

B2y

2 4 2L2
+BEHY“+”—y“) 12— ( S )Elly —yUVP 42

B
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Proof: from the optimality condition of y-subproblem (23) at iteration ¢ and ¢t — 1, we have the following two inequalities:

1
—(Vy f(xHD, y ) — B(y“*” —y),yH —y) <o, (43)
1 .
(Vy D,y ) = 2 =y, y Y -y ) <0, (44)

Adding the above inequalities, we can get
(v, y D) - y0) < (T fxHD, 1) = 7 (x,y®), y ) -y )

+ (Vy f (0. y0) = Uy fx @,y ),y D -y ) (45)

| =

where v(t+1) = y(t+1D) _ y(®) _(y(®) _ y(t=1)),

According to the quadrilateral indentity, we know
1
(VD YD —y®) = = (3D =y O |2 4 D2 -y -y D ) (46)

Based on the definition of vt we substituting (46) into (45), which gives

1 1 B ]
sl =y <oy y O e )
* <Vyf(x(t+l)7 y(t)) - vyf(x(t)a y(t))a y(t+1) — y(t)>
+ <V f(x(t)7 y(t)) _ Vyf(x(t), y(tfl))7 y(t+1) _ y(t)> @

—y D2 4 (T S,y ) — Ty (0,5 ©), y D - y0)

way
2
+ TyH y O —y D2 — ) y® — y =12
®) 1
(t=1) 12 | X o+ _ () |12
_wl\y -y I +2||y vy
L2 BL: ,
+2—§le<’*“)—><“) = (=5 Hly O =y (48)

where in (a) we use the strong concavity of function f(x,y) in y (with parameter v > 0) and Young’s inequality, i.e.,

(Ve f(x®, y®) = vy, f(x®, yt=D) y+1 _ (1)
=(Vyf(x y" )—Vyf(x(t’,y“ Dy, vt 4 y®) _ylt=1)y

L2
<y —y D |2 4 L Py y e 2 (49)
2 23
and in (b) we apply the Young’s inequality, i.e.,

L?
<v fxED y(”)fvyf(x(”?y(t))?y(t“)fy(”>S Qvllx”lbx“) 12+ ||yt+1 —y® 2. (50)

Therefore, we have

2
+ == x(t+1) _ x(®) &

1 1
Ly @2 < Ly _ -1 2
551y y fzﬁlly y 2

T+ ()12 6L12/ (t—1) |12
+§|Iy -y =7 Iy —y [ (51)
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which implies

2 ) o2 — 2 o) o= 2 L 2L ) o) g2
BQVIIy -y SBQVIIY -y l ﬂtﬁvgllX x|
2 4 2L2 B
+ Blly““) -y P - (5 - ,f’) |y® —y =12, (52)

By taking the expectation on both sides of (52), we can get the results of Lemma 5. [J

Lemma 5 basically gives the recursion of ||A_,(f) [|%. It can be observed that term (4/3 — 2L2 /) HAg,t ) || provides the descent
of the recursion when g is small enough, which will take an important role in the proof of Lemma 3 when we quantify the
descent in maximization.

Then, we can quantify the descent of the objective value by the following descent lemma.

A.3.2. PROOF OF LEMMA 3

Proof: let f/(x(TD y(t+1)) = f(x(t+D) y(t+1)) _ 1(y(*+1) and 1(y) denote the indicator function with respect to the
constraint of y. From the optimality condition of sub-problem y in (22), we have

1
Vy f(xD, y®) — E(y““) —yW)—¢ =0 (53)

where £() denote the subgradient of 1(y®)). Since function f’(x,y) is concave with respect to y, we have

JOD D) — D),y O) < (v fD) y0) D _y(0) (g0, y () _y0)

(@)1
S 3 [ y(t+1) _y(t) ||2 _ <§(t) _ §(t+1)’y(t+1) _ y(t)>
1 _
=3l yH —y® 12 ¢ <Vyf(x(t“), y ) = Vy f(x®,y =)yt - y“)>

1
-3 <V(H—1)7 ytt) — y(t)> (54)

where in (a) we use £ =V f(x(HD) y®) — %(y(”l) —y®W)y.

The last two terms of (54) is the same as the RHS of (45). We can apply the similar steps from (47) to (48). To be more
specific, the derivations are shown as follows: First, we know

/(o (t+1) (t+1)\ _ pri (t+1) (t) < (t+1) _ ,(t) 12
frET y ) — Ty ) < <y vy

1
E
- 1
(T Oy ) = Ty ey 0y 50 g0 (VD YD g0 s5)
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Then, we move term 1/4(v(¢+1) y(+1D _ y(®)) to RHS of (54) and have
f( (t+1) y+D) _ p(xtHD y(®)

1
(t+1) _ (t) H2 +
2

1
- (t) _ @t=1)yp2 _ ~ (t+1) 12
S1YO =y = v

_2ﬂ||y
+ <Vyf(x(t“),y(”) — Wy f(,y), y#40) —y )
+ (Vy S, y0) = 7y fx®, y 1), y D)y )

1
S%II yUrD —y0 12 4 <Vyf(x(t“), y1) = Vy f(x®,y®), y 1) — y(t)>

4 2Ly 0y gy g e
LoD =y O 24 Ly -y
+57L92”||x“+”—x<”|\2—(v BZ)lly —y U (56)
where in (a) we use
(Vo F,50) = Ty 0,30 < 2204 5O 2 4 Ly g0 57

which is different from (50); also y(*), y 1) € Y so have f/(x(*1), y(t+1)) = f(x(“rl), y D) and f/(x¢+D) y®)) =
FxEHD 50,

Combing (52), we have

2 1 L2
FUTD y D) 4 <ﬁ2 + > Iy —y @ —4 (5 - 2§> Iy —y® 2

2 i 1 L2 7
<UDy @)+ <ﬁ2 + > [y® -yt 2 -4 (5 - ﬁ) [y® -y 2

1 2L 2Li 5L§
) (25 v > [y =y @+ (725 * 2) 1D —xO2. (58)

By taking the expectation on both sides of (52), we can get the results of Lemma 3. [J

Next, we use the following lemma to show the descent of the objective value after solving x-subproblem by (4).

A.3.3. PROOF OF THEOREM 1
Proof:
From Lemma 3, we know

B[ (x(+D), ()] 4 (; n ﬂ) B[]yt -y |3

1 L2
—4 (5 - 2;) E[| yD —y® 2] < EB[f (=T, y1)]

2 1 1 L
Ellv® — =D p21_4 [ 2 _ (t—1) 1|2
+ (5 + 55 ) Elly® =y P (5 27) B[y -y V|

1 2I2 212 L?
- (25 - j) E[lly*D —y® |7 + ( 5t o )E[x<f+l> —x |7, (59)
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Combining Lemma 2, we have

2 1
E[f(xt+D, yt+D) +<+)E[ (t+1) _ () 2}
[f( yrl 52 T35 |y y
1 L? 2 1
a2 L) g v @ 2] < B E(x® O 2 ARy Z g0 2
(6 %> [y =y O 2| < By O+ ( 5o+ 55 ) B[y =y V7]
1 L? 1 2L
BN ] E{ y® _y (=D 2} B E{ gD _y® 2}
(5 27) H )55 - =" )&l [
—_———
c1
1 LJ/’ 2Li ﬁLi ]E (t-‘,—l) (t) 112 2 L 2 60
a2 tes T 2 [ x5 = x| + a0y + Lop” (60)
c2
If )
Y
B<—— and a< ——— 5, (61)
ALY Le 2 4 Ok
then we have that there exist positive constants c¢; and ¢ such that
P,y ATY) - P(x0, y 0, AD)
< =B ||y =y || - B [I|xD - xO || +a0? + Lo®
<= (B [ly®D =y 2] + B [IxD —x® 2]} + a0? + Lop? (62)

where ¢ = min{ecy, co}.
From (6), we can have
1G(x®, y )]

1 1 , 1
<D = xO —[ XD —proj (x 1 —a Vs f(x1, y ) | + 3l y D -y

1 .
- EII y " —projy, (v +8Vy f(x, y 1))

L0 o
«

1 1
+ —Jlproj (xUHY —a (Vi f(x,y @) + ~(xHD —x)) — proj (x —aV f(xV, y))]
(0% «

1
4Lyt g
5l I

1 1 .
+ BllprOJy(y““) +B(Vy f(xTD, y ™)) — B(y(t“) —y®)) = projy, (y +8Vy f(x, y 1))

(®)
< 2% 0 || 4 7, £,y 0)) - Ty £, yO) | + %H y " -y
«

(©)
(2t ma) I x4 Sy ey

where in (a) we use x(t1) = proj . (x(*T) —aV f(x#+D y®) — (x(t+1) —x"));in (b) we use nonexpansiveness of the
projection operator; in (¢) we apply the Lipschitz continuous of function f(x,y) with respect to x and y under assumption
A2,

Therefore, we can know that there exist a constant ¢ = max{L, + %, %} such that

196,y )2 < e (11D —x |2 4 |y —y O |12). (©3)
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After applying the telescope sum on (62) and taking expectation over (63), we have

1 & c(P1—-P
= D EGY, yD)|? < c (1TT“ + ac? +Lxu2> . (64)
t=1

Recall from A1 that f > f* and ) is bounded with diameter R, therefore, P; given by (8) yields

R?, Vt. (65)

min{4 + 4B82L2 — 78,0
P>y {4+4B°Ly — 75,0}
28%y
And let (x(") y (")) be uniformly and randomly picked from {(x®), y®)}T_, based on (64) and (65), we obtain

1 & c(P— f"—vR?

T T 1 — -

B EI6< ¥ )1 = 3 S Elo Oy P < £ (L= oz v ), o9
t=1

4+4B°L2 —757,0
where recall that ¢ = min{cy, ¢z}, ¢ = max{L, + 2, ﬂ} and v = AT gﬁ? althy

The proof is now complete. [

A.4. Convergence Analysis of ZO-Min-Max by Performing ZO-PGA

Before showing the proof of Lemma 4, we first give the following lemma regarding to recursion of the difference between
two successive iterates of variable y.

Lemma 6. Under assumption 1, assume iterates V), y) generated by algorithm 1. When function f (X(t), y) is black-box,
we have

2 . 2
72 Bl y Y —y @ P < _52 o Elly® -y P+ 5 y D —y @2
% 4 6L2+4 .
* 5 5Bl x Y —x|J? (ﬂ > )Elly(”y(t VP
40.2 3 M2d2L2
+—2 (244 ) - L. 67)
 (5+0)+

From the optimality condition of y-subproblem in (22) at iteration ¢ and ¢ — 1, we have
<v f( (t+1) y(t)) _
<§yf(x<t>,y<t1>) _

(D) —y®) 1) _ y(t)> <0, (68)

@I @

(y®) — y(t=D) y(+1) _ y<t>> <0. (69)

Adding the above inequalities and applying the definition of v(**1), we can get

<v(t+1),y(t+1) _y(t)> < <§yf( t+1) ) V f( (t),y(t)),y(“fl) _y(t)>
I
+ <§yf(x(“,y(“) — Vy f(x®,y D) yt+D - y(t)> : (70)

I

1
B

Next, we will bound E[I] and E[II] separably as follows.
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First, we give an upper bound of E[I] as the following,
E <§yf(x(t“),y(t)) — Vy f(x®,y®), y ) — y(t)>

3 EBI© ol
S*Hillvyf(x(t“),y“)) — Vy fuy (xEFD y )12 + EEH yr —yl0 )12

v
BV iy (1,5 ) = Ty iy (60, y O 2 4+ Ty 600) — 02

2
3 S gl
5 Bl Vy fuy (x 0,y ) = VI (<, y D)2 + SElly D -y |2
30,  3L2
<Y TR x| 4 TRy —y O P an
v 2

where Lemma 1 is used.

Second, we need to give an upper bound of E[II] as follows:
FO,y0) = T F(0, y D), y 1) — ()
(x ),y ) — Vf(x Ly t*l))’v(t+1) y® =1y

= <Vf(x(t), y®) = VF(xD, yt=D) 36 y(t*1)>

< y D) = 7 F(x®, y®), 0 y(t—1)>

(VIO y0) = V iy (x0, y<t>>, y® -y
- <Vfu,y(x(t),y( )) = Vf(x®, yt=D) y® y<t71)>
_ <§f(x(t), y ) VS, (X(t)’ yE=D) y® y(t_1)>
(VF(x®, y®) - T f(x®, y =) y+Dy,

<
;ﬁ
—

Next, we take expectation on both sides of the above equality and obtain

E(Vf(x",y®) = Vi, ytD),y ) —y0)

(a) 35L2 -
< ( 5 >|I yE I+ ﬂllv(”” 12 = ~lly® —y =2

272712
Ly + 4502 (72)
483 v

where in (a) we use the fact that 1) y-strong concavity of f with respect to y:

I
_|_

<Vf(x(”, y®) = V(D yE=Dy y® - y<t*1)> < —]ly® -y 2 (73)

and the facts that 2) smoothing property (25) and Young’s inequality

E(V fuy (3, y) = T/ (x,y®),y 0 —yt-1) < MQZ;L‘%; + gH y @ =y (74)
and the fact that 3) the ZO estimator is unbiased according to Lemma 1
E(VFx,y") = Uy (x50, 50 =y~ < 0; (75)
and 2d2L2 5
E <Vfu,y(x(t),y(t_1)) Vi(x®,yt=D) y® y<t—1>> <5 L Sy -yt (76)
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and from Corollary 1 we have

E <§f(x(”7 YD) =V iy (x,y 1),y — y“‘”> < BoZ; (77)
and
E(Vf(x®,y®) — Vf(x®, yt=b) vt

38 N 1
< EIVLy (< y) = VI, y I + ol v |2

38 B 1
GBIV iy () = Ty (O y )P

38 _ ~ _ 1
GBIV Ly (0,5 0) = VA y D) P v P
1 36L2 B
<BBoy + o= [ VIV P+ 2y @ —y V2, (78)
25 2
Then, from (70), we can have
1 1 1
SR vED _y® 12 <« LRl v® =D 12 _ g+ )2
35 =y O < By O -y v |
307 3L2 v
+ o GBI XY X O2 SE |y -y )2
Y gl 2

+ <§f(x(t), y®) = VD, yt =),y - y(t)>

1 Y
< FElv® vt 2 L LR yED @) 2
=% Iy =y + SElly vy
RY I 3BL2
+ SR K - xO |12 (7— ( +8 ) By -yt P
v 2
302 22 L2
Y 4 2 Y 7
+ =Y+ 4po) - (79)
which implies
2 (t+1) () 2 2 ® =12, 2 (1) () |12
T%EII}' -y S—B%Elly -y l +BEIIy -y
6L2 4 6L%2+4
L e o (2% E[y® — yt-1 |2
52 I | 3 || l
40.2 3 M2d2L2
+ 2 ( +4B> + = (80)
By \v B2y

A.4.1. PROOF OF LEMMA 4

Proof: Similarly as A.3.2, let f/(x(*t1), y(t+1D) = f(x(t+1) y(t+1)) _ 1(y(*+1) 1(.) denotes the indicator function and
£ denote the subgradient of 1(y(*)). Since function f’(x,y) is concave with respect to y, we have

FxED gDy prxD) 30 < (7 f(xtD y0) D) 0y e0) ye41) _ g0y
(@1
=3 [y —y @ |2 — (g0 — D) yltrD) _y(0))

1 - - _
=5l y O —y @2 4 <Vf(x(t“), y W) = VW, ylth), yt+h - y(”>

1
-3 < (t+1) (41 _ y<t>> (81)
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where in (a) we use (D) = ¥ f(x(tH1) y (1) — %(y(”l) —y®). Then, we have
Ef(xtHD), y(tD) _Ef(xtD y0) 4 5 < (t+1) 3 (t+1) _y(t>>

1 ~
§B||y<f+1>—y(t>||2+<Vf(x“+”,y<t>) Vf(x®,yt=0), <t+1>_y(t>>'

Applying the steps from (72) to (79), we can have
Ef(x,y ) —Ef(xD,y®)

1 1 B 3ﬂL2 ~
BE”y (t+1) _ g )12 4 %]Eny(t) oy 2 (7 _ < > y Jrﬂ)) |y® —y =12

L2 2d2L2
i 35 wE”X(H—l)_x(t) ||2+760'2+M Y (82)
2 v 48
where we use
E <§yf(x(t+1),y“)) — Vy f(x®,y ),y —y(”>
36L2 1
<3P0y + B[ x"D —xO |+ Sy -y O (83)
Combing (80), we have
2 4 6L%2+4
Ef(x (), y(t+1) +<+>E @ gz (4 OB by e
f( y'r) 525 T35 |y vy 3 5 |y vy
2 4 6L%2+4
<FE X(t+1)’ (t) _|_<+> ) _ =12 _ | = _ y Ell v® — (=112
<Ef( ) 52 25 Ely" -y | 3 5 [y" —y l
1 6L2+4 6L2 3BL2
I R R B YIRS 2+(x+ >E D) (02
(25 - ) [ | 25 5 | [
27212
(i) (5 (547) o
-+ = B4+ —(=+78 (84)
B 4 By By
O

A.4.2. PROOF OF THEOREM 2
Proof: From (36), we know the “descent” of the minimization step, i.e., the changes from P’ (x(t),y(t),A;t )) to
fP/(X(t+1)’y(t)’A§,t)).
Combining the “descent” of the maximization step by Lemma 4 shown in (84), we can obtain the following:
pl(x(t+l)7 y D, A;“”)

1 6L2+4
<P'(xW,y" Al) — (25 - yv )E [Hy(t“’ —y® ||2] (85)

ay

2 2
-(3- (BB eI —xop
@ 2 424 2

az

L2 1 4 (3
2 . 2 = (2 2
1 (Lm-l- 3 (4+67>>+a01+(75+ﬁf}/ (’Y+4ﬁ)>0y.

b1 b2
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When S, « satisfy the following conditions:

ol 1
B < 5 and o<
; L. , 6L2 |, 3BL2"
4(3LZ +2) Loy O &

we can conclude that there exist by, b, > 0 such that

P/(X(t+1)7y(t+1),A§’t+l))
<P/ (x0,y0, A) — g [||y D) -y 2]
— as {H x (1) _ 5 (®) ||2} +bip? + ao? + bQO'Z

< = CE [y -y |24 | xD

where ¢’ = min{a;, as}.
From (6), we can have
EllG(",y )|

1 1
<—E[xUHD —x@ |+ ~E[ x“ —projy (x* —aVix f(x,y®))]
(% «

1 1 )
GBIy |+ By proiy (v + 4V £ (< y )]

(a)

2B x|+ ZE]y ¢ —y 0 |
«

1 1
B lproj  (x Y —a(Vie f(x®,y ) + = () —x)) — proj (x©) —a Vi f(x!
« «

1 . =
+ BEHpron(y“*” +B(Vy f(xTD, y ™)y —

®3

< ZE[xD —xO || + B[V f(x",y1) = Vi f(xD,y )]
«

3 ~
+ZEIY Dy O | 4 BTy Sy ) - Ty f ),y )|

x| + B[ Vs f (x,y “>>> — Vafuy x,yD))|

+ Envxfu?y( Ly ™)) = Vi f (xP,y D))

YO || + E[[Vy f(xUT, ) = Ty £y (D, y )|
+ E”vyfu,y(x(tﬂ)v y(t)) - Vyf#,y(x(t), y(t))H

+El|Vy fuy (x1,y") = Uy f(xB, y 0|

(2 1) B x4 SEpy D -y

SéEH <+ _

+*E y(t+1 _
3 |

|+ 20321 + ,Lt2d2L32/

x(®) “2} 4 b+ a0? + o

(86)

87)

Dyl

5(y(t+1) y( ))) - projy(y(t) +/vaf(x( )

yNI

where in (a) we use the optimality condition of x(*)-subproblem; in (b) we use nonexpansiveness of the projection operator;

in (c) we apply the Lipschitz continuous of function f(x,y) under assumption A2.

Therefore, we can know that

E[I(<®,y)12] < e (%D —x® |2 4 ||y —y® |2) + 202 4 p2a* L2, (88)
After applying the telescope sum on (87) and taking expectation over (88), we have
T
1 ¢ Py —Pri1 cby COzU cbs
7O E [HQ(X(“ )] } Sa otk 2 o ?U + 202 + 12 PL2. (89)
t=1
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Recall from Al that f > f* and ) is bounded with diameter R, therefore, P; given by (11) yields

min{4 + 4(3L2 +2)8% — 78~,0
7%2f*+< { ( yﬁ% )" = 78,0} R%* Vi (90)
And let (x(") y (")) be uniformly and randomly picked from {(x®), y®)}T_,  based on (90) and (89), we obtain
1 I
E, [E 1967y )] = % D E 1960, 59) 2]
t=1
cPr—f*—VR? by , cacl cby , 9 9979
S A —}—?,u + R +?Jy+20y+/t d°L, 91
. 2 2
where recall that ¢’ = min{a;, as}, ¢ = max{L, + %, %}, and v/ = mm{4+4(3L;§;2)ﬁ 77&/’0}.

The proof is now complete. [
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B. Toy Example in (Bogunovic et al., 2018): ZO-Min-Max versus BO
We review the example in (Bogunovic et al., 2018) as below,
maximize minimize f(x — 6) := —2(z; — §1)% + 12.2(x; — 6;)° — 21.2(x; — 6,)*

xeC  ||8]12<0.5
—6.2(£C1 - (51) + 64(1’1 - 51)3 + 47(1}1 - (51)2 - ({EQ - 52)6
+11(£L’2 — (52)5 — 43.3(.’)32 — (52)4 + 10(.%‘2 — (52) + 748(1‘2 — 52)3
—56.9(1‘2 - (52)2 + 4.1(331 — (51)(1‘2 — (52) + 0.1(.%‘1 — 51)2(.172 — 52)2
—0.4(%‘2 — 52)2(32‘1 — 61) — 04(561 — 51)2(332 — 52),

where x € R?, and C = {z; € (—0.95,3.2), 22 € (—0.45,4.4)}.
Problem (92) can be equivalently transformed to the min-max setting consistent with ours

minimize maximize —f(x — 9).
x€C  ||8]12<0.5

The optimality of solving problem (92) is measured by regret versus iteration ,

Regret(t) = minimize f(x* — &) — minimize f(x(*) — &),
gret(?) [16]l2<0.5 Ul ) I6]l2<0.5 I )

where minimize|5,<o.5 f(x* —8) = —4.33 and x* = [-0.195, 0.284]T (Bogunovic et al., 2018).

92)

93)

(94)

In Figure A1, we compare the convergence performance and computation time of ZO-Min-Max with the BO based approach
STABLEOPT proposed in (Bogunovic et al., 2018). Here we choose the same initial point for both ZO-Min-Max and
STABLEOPT. And we set the same number of function queries per iteration for ZO-Min-Max (with ¢ = 1) and STABLEOPT.
We recall from (2) that the larger q is, the more queries ZO-Min-Max takes. In our experiments, we present the best achieved
regret up to time ¢ and report the average performance of each method over 5 random trials. As we can see, ZO-Min-Max is
more stable, with lower regret and less running time. Besides, as ¢ becomes larger, ZO-Min-Max has a faster convergence
rate. We remark that BO is slow since learning the accurate GP model and solving the acquisition problem takes intensive

computation cost.

1201 .
—— ZO-Min-Max q=1 104 4
1004 ZO-M!n-Max q=5
—— ZO-Min-Max q=10
80 —— STABLEOPT 1034
---- optimal GEJ —— ZO-Min-Max gq=1
o
o = Z0-Min-Max q=5
(o)) 60 —_ 2 .
& & 1074 —— Z0-Min-Max q=10
o
401 )\ [ STABLEOPT
\ 101 4
20 \
O 1004
0 10 20 30 40 50 0 10 20 30 40 50
Number of iterations Number of iterations
(a) (b)

Figure A1: Comparison of ZO-Min-Max against STABLEOPT (Bogunovic et al., 2018): a) Convergence performance; b) Computation

time (seconds).
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C. Additional Details on Ensemble Evasion Attack
Experiment setup. We specify the attack loss F;; in (13) as the C&W untargeted attack loss (Carlini & Wagner, 2017),

Fiy () = (1/]9]) > max{g;(z + x); — I}glgfgj(z + %)k, 0}, (95)
z€Q;

where |€);| is the cardinality of the set €2;, g;(z + x); denotes the prediction score of class k given the input z + x
using model j. In (13), the regularization parameter A trikes a balance between the worse-case attack loss and
the average loss (Wang et al., 2019b). The rationale behind that is from two manifolds. First, as v = 0, then
maximizeweyy Z;le Zle [wi; Fij (x;8)] = Fi=j= (x;9;), where w;«;» = 1 and 0Os for (i,j) # (i*,7*), and
(i*,j*) = argmax; ; I (x;€2;) given x. On the other hand, as v — oo, then w — 1/(1.J).

Implementation of ZO-PGD for solving problem (13). To solve problem (13), the baseline method ZO-PGD performs
single-objective ZO minimization under the equivalent form of (13), minyex h(x), where h(x) = maxwew f(x, w). It
is worth noting that we report the best convergence performance of ZO-PGD by searching its learning rate over 5 grid
points in [0.01, 0.05]. Also, when querying the function value of h (at a given point x), we need the solution to the inner
maximization problem

J I
maximize D> wiFy (x,20)] = Mlw — 1/(17)|]3. (96)

j=1i=1
Problem (96) is equivalent to

minimize A|lw — 1/(1J) — (1/(2\))f(x)]|3 ©7

subjectto 17w =1,w >0
where f(x) := [F11(x), ..., fr7(x)]T. The solution is given by the projection of the point 1/(1.J) + (1/(2)))f(x) on the
the probabilistic simplex (Parikh et al., 2014)

wh = [1/(1T) + (1/(2A)f(x) — pl] ©8)

where []; is element-wise non-negative operator, and y is the root of the equation
17 [1/(17) + (1/ 2\)E(x) — 1], = > max{0,1/(1) + fi(x)/(2)) — p} = 1. 99)
i

The above equation in p can be solved using the bisection method at a given x (Boyd & Vandenberghe, 2004).

Additional results. In Figure A2-(a), We compare ZO-Min-Max with ZO-Finite-Sum, where the latter minimizes the
average loss over all model-class combinations. As we can see, our approach significantly improves the worst-case attack
performance (corresponding to M1C1). Here the worst case represents the most robust model-class pair against the attack.
This suggests that ZO-Min-Max takes into account different robustness levels of model-class pairs through the design
of importance weights w. This can also be evidenced from Figure A2-(b): M1C1 has the largest weight while M2C2
corresponds to the smallest weight.

In Figure A3, we contrast the success or failure (marked by blue or red in the plot) of attacking each image using the obtained
universal perturbation x with the attacking difficulty (in terms of required iterations for successful adversarial example) of
using per-image non-universal PGD attack (Madry et al., 2018). We observe that the success rate of the ensemble universal
attack is around 80% at each model-class pair, where the failed cases (red cross markers) also need a large amount of
iterations to succeed at the case of per-image PGD attack. And images that are difficult to attack keep consistent across
models; see dash lines to associate the same images between two models in Figure A3.
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Figure A2: Convergence performance of ZO-Min-Max in design of black-box ensemble attack. a) Attack loss of using ZO-Min-Max vs.
ZO-Finite-Sum, and b) importance weights learnt from ZO-Min-Max.
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Figure A3: Success or failure of our ensemble attack versus successful per-image PGD attack.
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D. Additional Details on Poisoning Attack

Experiment setup. In our experiment, we generate a synthetic dataset that contains n = 1000 samples (z;,t;). We
randomly draw the feature vector z; € R'%° from A/(0,I), and determine ¢; = 1if 1/(1 + ¢~ (=0 )} > 0.5. Here
we choose 8 = 1 as the ground-truth model parameters, and v; € A/(0,10~2) as random noise. We randomly split the
generated dataset into the training dataset Dy, (70%) and the testing dataset Dy, (30%). We specify our learning model as
the logistic regression model for binary classification. Thus, the loss function in problem (14) is chosen as F;,(x, 0; Dy,) :=
h(x,0;Dy1) + h(0,6; Dy, 2), where Dy, = Dy, 1 U Dy, 2, Dy, 1 represents the subset of the training dataset that will be
poisoned, [Dy:,1|/|De:| denotes the poisoning ratio, h(x, 8; D) = —(1/|D|) 3_,, 1.)eplti log(h(x, 6;2;))+(1—1;) log(1—

h(x,0;2;))], and h(x,0;2;) = 1/(1 + e~ @+X)"€) In problem (14), we also set e = 2 and A = 1073,

In Algorithm 1, unless specified otherwise we choose the the mini-batch size b = 100, the number of random direction
vectors ¢ = 5, the learning rate @« = 0.02 and S = 0.05, and the total number of iterations 7" = 50000. We report the
empirical results over 10 independent trials with random initialization.

Addition results. In Figure A4, we show the testing accuracy of the poisoned model as the regularization parameter A
varies. We observe that the poisoned model accuracy could be improved as A increases, e.g., A = 1. However, this leads to a
decrease in clean model accuracy (below 90% at A = 1). This implies a robustness-accuracy tradeoff. If A continues to
increase, both the clean and poisoned accuracy will decrease dramatically as the training loss in (14) is less optimized.

In Figure A5, we present the testing accuracy of the learnt model under different data poisoning ratios. As we can see, only
5% poisoned training data can significantly break the testing accuracy of a well-trained model.
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Figure A4: Empirical performance of ZO-Min-Max in design of poisoning attack: Testing accuracy versus regularization parameter \.
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Figure AS: Testing accuracy of data poisoning attacks generated by ZO-Min-Max (vs. FO-Min-Max) for different data poisoning ratios.



