
Appendix: A Chance-Constrained Generative Framework for Sequence
Optimization

Xianggen Liu 1 2 Qiang Liu 3 Sen Song 1 Jian Peng 2

A. Lower Bound of Validity that Meets the
Constraint

Based on the objective J of CCGF defined in Eqn. (11) in
the manuscript, below, we analyze the lower bound of the
generation validity that meets the constraint.

Let v be the mean validity of the sequences generated by
Gθ, i.e., v = 1

N

∑N
i=1 1[g(Gθ(ξi)) > T ], where 1[·] is the

indicator function. For notational simplicity, we assume
that the function g is a binary indicator, then we will have
v = 1

N

∑N
i=1 g(Gθ(ξi)), so we know there are Nv valid

sequences and N(1 − v) invalid ones. Note that it is not
hard to obtain a similar analysis for arbitrary g function.

Since the scale of the objective J is affected by α, α should
be updated slowly to make the learning process stable. For
a given α, the constraint defined in our CCO problem (i.e.,
Eqn. (11) in the manuscript) is equivalent to

h(a, v) ≥ 0,

where h(α, v) = ε− 1

N

N∑
i=1

e−α(g(Gθ(ξi))−T )

= ε− [ve−α(1−T ) + (1− v)eαT ].

The partial derivative of h(a, v) with respect to v is

∂h(a, v)

∂v
= −e−α(1−T ) + eαT , (1)

Notice that eαT ≥ 1 ≥ e−α(1−T ) for all values of T and
α ≥ 0, leading to ∂h(a,v)

∂v ≥ 0. For a certain value of α, let

1Laboratory for Brain and Intelligence and Department of
Biomedical Engineering, Tsinghua University, Beijing, China.
2Department of Computer Science, University of Illinois at Urbana
Champaign, IL, USA. 3Department of Computer Science, Univer-
sity of Texas at Austin, TX, USA. Correspondence to: Xianggen
Liu <liuxg16@mails.tsinghua.edu.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

h(α, v0) = 0, we have

v0 =
eαT − ε

eαT (1− e−α)
. (2)

For a given α and any v ≥ v0, we have h(α, v) ≥ 0, in-
dicating v0 is the lower bound of validity of the generated
sequences that meets the constraint.

B. Trend of the Lower Bound of Validity
Eqn. (2) shows that, besides T and ε, the lower bound of
validity v0 will also vary with α when the optimization
process proceeds.

Considering the partial derivative of v0 with respect to α,

∂v0
∂α

= εe−αT (1− 2e−α) + e−α (3)

= εe−αT (1− e−α) + e−α(1− εe−αT ) ≥ 0, (4)

we know the lower bound of validity always keeps pace
with the changes of α.

Theorem 1. For any T ∈ (0, 1), ε ∈ (0, 1) and v ∈ [0, 1],
there exists α̂ ∈ [0,+∞) and once the variable α ≥ α̂, we
have ∂J (θ,α)

∂α ≤ 0.

Proof.

∂J (θ, α)
∂α

= λ
∂[h(α, v)]−

∂α
. (5)

(1) If h(α, v) > 0, we have [h(α, v)]− = 0 and
∂[h(α,v)]−

∂α = 0. Therefore, for all α ∈ (0,+∞) we have

∂J (θ, α)
∂α

= 0. (6)

In this case α̂ could be any non-negative value.

(2) If h(α, v) ≤ 0, the partial derivatives of h(α, v) with
respect to α are given by

∂h(α, v)

∂α
= eαT (v(1− T )e−α − (1− v)T ), (7)

∂

∂α
(
∂h(α, v)

∂α
) = −[eαT (v(1− T )2e−α + (1− v)T 2] < 0,

(8)



Appendix: A Chance-Constrained Generative Framework for Sequence Optimization

where we notice the second partial derivative of h(α, v)
regarding α is negative, leading to the monotonically de-
creasing trend of ∂h

δα along α. Let ∂h
δα (α1, v1) = 0, we

have

α1 = − log
(1− v1)T
v1(1− T )

. (9)

Thus, when α ≥ α1, we have ∂h
δα (α, v1) ≤ 0. It also lead to

∂J (θ,α)
∂α ≤ 0 when v = v1. To make ∂J (θ,α)

∂α ≤ 0 for all v,
we choose the maximum of α1 to be α̂, given by

α̂ = max
v1∈[0,1]

[α1] (10)

s.t.,
∂h

δα
(α1, v1) = 0 and h(α1, v1) ≤ 0. (11)

α̂ is essentially the intersection of h(α, v) = 0 and
∂h(α,v)
∂α = 0, which can be numerically solved (See Ap-

pendix C for more details).

Therefore, there exists an α̂ that makes ∂J (θ,α)
∂α ≤ 0 for all

T, ε and v when α ≥ α̂ . �

Remarks 1. The above theorem shows that, once α ≥ α̂,
both the value of α and the lower bound of validity v0 will
continue to increase to minimize J (θ, α). That is to say,
under the condition of α ≥ α̂, our CCGF framework will
gradually improve the lower bound of validity as the opti-
mization process proceeds. According to Eqn. (2), when
α → +∞, v0 → 1. This coincides with the idea of sim-
ulated annealing (Kirkpatrick et al., 1983): the initial low
validity requirement enables the searching agent escape
from the realm of locality in the beginning of learning. Af-
terwards, the stricter validity requirement would reduce the
search space and accelerate the optimization.

To make Theorem 1 work throughout the optimization pro-
cess, one of the easiest ways is to initialize α with the value
of α̂. Fortunately, the value of α̂ can be numerically ob-
tained and its determination is provided in Appendix C.

C. Determination of α̂
We are going to solve the following problem

α̂ = max
v1∈[0,1]

[α1] (12)

s.t.,α1 = − log
(1− v1)T
v1(1− T )

(13)

h(α1, v1) ≤ 0. (14)

However, we are not able to derive the analytic solution
of α̂ or the exact value of α̂ since the function h is a tran-
scendental function. We resort to obtain α numerically. For
example, we enumerate the values of v1 from 0 to 1 and
keep the maximum value of α1 that meets Eqn. 14 in a
greedy manner. At the end of searching, the kept α1 is the
approximate numeric solution of α̂.

To intuitively understand the process of searching α, we
show the approximate location of α̂ in Figure 1 under the
setting of T = ε = 0.5. The gray shadow indicates the
region that satisfies h(α1, v1) ≤ 0. The red dash line stand
for the function α1 with respect to v1. We notice the max-
imum of α1 that satisfies h(α1, v1) ≤ 0 locates at the in-
tersection of the two functions, i.e., h(α1, v1) = 0 and
α1 = − log (1−v1)T

v1(1−T ) .

Figure 1. The approximate location of α̂

D. Analysis on the classification threshold Tacc
We investigate the influences of classification threshold Tacc
to the performance of CCGF on the task of optimizing
the penalized logP of molecules. We choose Tacc from
{0.05, 0.10, 0.15, 0.20} and fix other hyperparameters of
CCGF. As shown in Table 1, a lower classification threshold
leads to higher property scores but lower diversity. To make
the diversity of generated sequences by CCGF higher or
comparable to those of other methods, we choose 0.1 to
be the value classification threshold Tacc. The effects of
classification threshold Tacc on the domains of expressions
and programs are similar. Therefore, we set the global value
of Tacc to 0.1.

Table 1. The diversity and the optimization performance of the
sequences generated by CCGF with different classification thresh-
olds Tacc. We use the pair-wise distance to indicate the diversity.
It is calculated by 1 − s, where s is the similarity score of two
molecules based on their MorganFp fingerprints.

Tacc Diversity Top 50 Avg. Validity

0.20 0.68 ± 0.09 4.47 93.6%
0.15 0.65 ± 0.16 8.21 96.4%
0.10 0.57 ± 0.29 10.15 98.8%
0.05 0.39 ± 0.31 11.58 99.6%



Appendix: A Chance-Constrained Generative Framework for Sequence Optimization

E. Hyperparameter Selection
The hyperparameters tuning process involves the constant
ε in the constraint, the two weights γ and λ in objective
functions of CCGF, hidden size m of RNN, the learning
rate r of generative model Gθ and the learning rate rα of
α, two weights γc and λc in objective functions of RL-
Linear, where γc, similar to γ, is a weight that coordinates
the importance of the property score. We perform grid
search procedures to calibrate the optimal values of all the
above hyperparameters for each task on a small subset of
the corresponding dataset (10%). The selected values of all
the above hyperparameters are listed in Table 2.

F. Examples
Figure 2 illustrates the 3D structures of the molecules with
the highest penalized logP scores found by CCGF and
GraphAF, the latter of which is the previously state-of-the-
art optimization approach. Following the color convention
in chemistry, individual sizes and colors of atoms stand for
different chemical elements, where black atoms stand for
carbon and red for oxygen. We notice that the molecules
generated by our CCGF framework possess higher penalized
logP scores.

G. Implementation Details of individual
baselines in Section 4.5

In Section 4.5, our goal is to optimize the penalized logP
score and in the meantime satisfy the Lipinski rule. We
include four baselines into comparison with our framework,
namely, MolDQN (Zhou et al., 2019), GVAE (Kusner et al.,
2017), SD-VAE (Dai et al., 2018), and GraphAF (Shi et al.,
2020).

However, the latter three models (i.e., GVAE, SD-VAE and
GraphAF) could not be directly applied into this task since
they are originally designed to optimize only one property
of molecules. Following Zhou et al. (2019), we extend
their objectives by imposing the Lipinski rule into the their
original objective function, which is given by

O(x) = 1

N

N∑
i

wOori(x) + (1− w)Lipinski(x), (15)

where Oori(x) is the original objective function and
Lipinski(x) is the binary function that checks whether the
sequence x meets the Lipinski rule. w is the weight that
coordinates the importance of Lipinski rule. For each com-
petitive method, we perform grid search procedures on
w ∈ {0.02, 0.05, 0.1, 0.2, 0.4} to obtain best results.

To obtain the results of MolDQN (Zhou et al., 2019), we

use its published source code1 and only modify its objective
as described above. The selected value of w is 0.02.

As for GVAE (Kusner et al., 2017) and SD-VAE (Dai et al.,
2018), we use their published codes2,3 and published pre-
trained models to conduct this experiment. Concretely,
based on the latent spaces learned by the pretrained mod-
els, we apply Bayesian optimization algorithm to search
sequences with highest scores (evaluated by the modified
objectives). The selected values of w are 0.1 for both mod-
els.

GraphAF (Shi et al., 2020) is a flow-based autoregressive
model that dynamically generates the nodes and edges based
on existing sub-graph structures. When it is required to op-
timize a desirable property, GraphAF is fine-tuned through
reinforcement learning algorithm (in practice, proximal pol-
icy optimization (Schulman et al., 2017)). We use its pub-
lished code4 and we fine-tune the pretrained model based
on modified objective function. The value of w is set to 0.2
by validation.

1https://github.com/google-research/
google-research/tree/master/mol_dqn

2GVAE: https://github.com/mkusner/
grammarVAE.

3SD-VAE: https://github.com/PfizerRD/sdvae
4https://chenceshi.com/

https://github.com/google-research/google-research/tree/master/mol_dqn
https://github.com/google-research/google-research/tree/master/mol_dqn
https://github.com/mkusner/grammarVAE
https://github.com/mkusner/grammarVAE
https://github.com/PfizerRD/sdvae
https://chenceshi.com/


Appendix: A Chance-Constrained Generative Framework for Sequence Optimization

Table 2. The hyperparameters of CCGF and RL-Linear on individual tasks. We perform grid search procedures to calibrate their
optimal values in each task over ε ∈ {0.1, 0.5, 0.9}, λ ∈ {0.01, 0.02, . . . , 0.1}, λc ∈ {0.5, 1, 2, 3}, r ∈ {1 × 10−4, 5 × 10−4},
rα ∈ {0.01, 0.03, 0.05, 0.07}, and m ∈ {256, 512}. The searching ranges of γ and γc are task dependent.

Task Methods ε γ λ γc λc r rα m Range of γ/γc

Expressions CCGF 0.5 0.2 0.03 - - 1× 10−4 0.03 512 {0.1, 0.2, 0.3, 0.4, 0.5}

Programs CCGF 0.5 0.25 0.04 - - 1× 10−4 0.03 512 {0.1, 0.15, 0.2, 0.25, 0.3}
RL-Linear - - - 0.25 2 1× 10−4 - 512 {0.1, 0.15, 0.2, 0.25, 0.3}

Druglikeness CCGF 0.5 1 0.05 - - 1× 10−4 0.01 512 {0.5, 1, 1.5, 2, 2.5}

Solubility CCGF 0.5 0.4 0.05 - - 1× 10−4 0.01 512 {0.1, 0.2, 0.3, 0.4, 0.5}
RL-Linear - - - 0.4 2 1× 10−4 - 512 {0.1, 0.2, 0.3, 0.4, 0.5}

Solubility & Lipinski CCGF 0.5 0.08 0.1 - - 1× 10−4 0.01 512 {0.02, 0.04, 0.06, 0.08, 0.1}

CCGF

1st 2nd 3nd

GraphAF

1st 2nd 3nd

12.52 11.79 11.61

12.23 11.29 11.05

Figure 2. Molecules with high penalized logP scores generated by CCGF and GraphAF. Following the color convention in chemistry,
individual sizes and colors of atoms stand for different chemical elements, where black atoms stand for carbon and red for oxygen.



Appendix: A Chance-Constrained Generative Framework for Sequence Optimization

0.5

0.75

1

0

1

2

3

4

5

6

1

25
6

51
1

76
6

1
0

2
1

1
2

7
6

1
5

3
1

1
7

8
6

2
0

4
1

2
2

9
6

2
5

5
1

2
8

0
6

3
0

6
1

3
3

1
6

3
5

7
1

3
8

2
6

4
0

8
1

4
3

3
6

V
al

id
it

y

P
re

d
ic

te
d

 P
en

al
iz

ed
 L

o
gP

/ 
 

Training epochs

Penalized logP
Validity

（a）
（b）

0.5

0.75

1

0

1

2

3

4

5

6

1 201 401 601 801

V
al

id
it

y

P
re

d
ic

te
d

 P
en

al
iz

ed
 L

o
gP

Training epochs

Penalized logP

Validity

1 1001 2001 3001 4001

（b）

Figure 3. The learning curves of CCGF (a) and RL-Linear (b) regarding the average score of logP, average validity and α.



Appendix: A Chance-Constrained Generative Framework for Sequence Optimization

References
Dai, H., Tian, Y., Dai, B., Skiena, S., and Song, L. Syntax-

directed variational autoencoder for structured data. In
International Conference on Learning Representations,
2018.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. Science, 220(4598):
671–680, 1983.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. Proceedings of the
34th International Conference on Machine Learning, 70:
1945–1954, 2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang, J.
GraphAF: a flow-based autoregressive model for molec-
ular graph generation. In International Conference on
Learning Representations, 2020.

Zhou, Z., Kearnes, S., Li, L., Zare, R. N., and Riley, P. Op-
timization of molecules via deep reinforcement learning.
Scientific reports, 9(1):1–10, 2019.


