
Hallucinative Topological Memory for Zero-Shot Visual Planning

Kara Liu * 1 Thanard Kurutach * 1 Christine Tung 1 Pieter Abbeel 1 Aviv Tamar 1 2

Abstract
In visual planning (VP), an agent learns to plan
goal-directed behavior from observations of a
dynamical system obtained offline, e.g., images
obtained from self-supervised robot interaction.
Most previous works on VP approached the prob-
lem by planning in a learned latent space, re-
sulting in low-quality visual plans, and difficult
training algorithms. Here, instead, we propose
a simple VP method that plans directly in image
space and displays competitive performance. We
build on the semi-parametric topological memory
(SPTM) method: image samples are treated as
nodes in a graph, the graph connectivity is learned
from image sequence data, and planning can be
performed using conventional graph search meth-
ods. We propose two modifications on SPTM.
First, we train an energy-based graph connectivity
function using contrastive predictive coding that
admits stable training. Second, to allow zero-shot
planning in new domains, we learn a conditional
VAE model that generates images given a context
describing the domain, and use these hallucinated
samples for building the connectivity graph and
planning. We show that this simple approach sig-
nificantly outperform the SOTA VP methods, in
terms of both plan interpretability and success
rate when using the plan to guide a trajectory-
following controller. Interestingly, our method
can pick up non-trivial visual properties of ob-
jects, such as their geometry, and account for it in
the plans.

1. Introduction
We are interested in goal-directed planning problems where
the state observations are high-dimensional images, the sys-

*Equal contribution 1Berkeley AI Research, University of
California, Berkeley 2Technion. Correspondence to: Kara
Liu <karamarieliu@berkeley.edu>, Thanard Kurutach <tha-
nard.kurutach@berkeley.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

tem dynamics are not known, and only a data set of state
transitions is available. In particular, given a starting state
observation and a goal state observation, we wish to gen-
erate a sequence of actions that transition the system from
start to goal. One application for such problems is in self-
supervised robot learning, where it is relatively easy to ac-
quire such data by letting the robot explore its environment
randomly, and the problem becomes how to process this
data for solving various tasks (Nair et al., 2017; Wang et al.,
2019; Pinto & Gupta, 2016; Finn & Levine, 2017).

Given a reward function, deep reinforcement learning (RL)
can plan with high-dimensional inputs, and batch off-policy
RL algorithms (Lange et al., 2012) can be applied to the
problem above (Haarnoja et al., 2018; Ebert et al., 2018;
Mnih et al., 2015; Schulman et al., 2015). However, goal-
based planning is a sparse reward task, which is known to
be difficult for RL (Andrychowicz et al., 2017). Moreover,
RL provides black-box decision policies, which are not in-
terpretable, and can only be evaluated by running them on
a robot. Addressing both data-driven modeling and inter-
pretability, the visual planning (VP) paradigm seeks to first
generate a visual plan – a sequence of images that transition
the system from start to goal, which can be understood by a
human observer – and only then take actions that follow the
plan using visual servoing methods.

Bearing similarity to model-based RL (Sutton et al., 1998),
most VP approaches learn a low-dimensional latent variable
model for the system dynamics, and plan a state-to-goal
sequence by searching in the latent space (Kurutach et al.,
2018; Asai, 2019; Ebert et al., 2018; Hafner et al., 2018;
Nair & Finn, 2019). There are two shortcomings to this
approach: training deep generative models with a structured
latent space can be tricky in practice (Watter et al., 2015;
Kurutach et al., 2018), and consequentially, the resulting
visual plans are often of low visual fidelity.

In this work, we propose a simple VP method that plans
directly in image space. We build on the semi-parametric
topological memory (SPTM) method proposed by Savinov
et al. (Savinov et al., 2018). In SPTM, images collected
offline are treated as nodes in a graph and represent the
possible states of the system. To connect nodes in this
graph, an image classifier is trained to predict whether pairs
of images were ‘close’ in the data or not, effectively learning

Hallucinative Topological Memory for Zero-Shot Visual Planning

which image transitions are feasible in a small number of
steps. The SPTM graph can then be used to generate a visual
plan – a sequence of images between a pair of start and goal
images – by directly searching the graph. SPTM has several
advantages, such as producing highly interpretable visual
plans and the ability to plan long-horizon behavior. Here, we
ask – is such a simple scheme competitive with VP methods
that plan in latent space?

To answer this question, we need to address a limitation of
SPTM compared to VP methods such as visual foresight
(Finn & Levine, 2017; Ebert et al., 2018). Since SPTM
builds the visual plan directly from images in the data, when
the environment changes – for example, the lighting varies,
the camera is slightly moved, or other objects are displaced –
SPTM requires recollecting images in the new environment;
in this sense, SPTM does not generalize in a zero-shot
sense. To tackle this issue, we assume that the environment
is described using some context vector, which can be an
image of the domain or any other observation data that
contains enough information to extract a plan (see Figure 1
top left). We then train a conditional generative model that
hallucinates possible states of the domain conditioned on the
context vector. Thus, given an unseen context, the generative
model hallucinates exploration data without requiring actual
exploration. Using the hallucinated images, we can then
perform planning in image space.

Additionally, similar to (Eysenbach et al., 2019), we find
that training the graph connectivity classifier as originally
proposed by (Savinov et al., 2018) requires extensive man-
ual tuning. We replace the vanilla classifier used in SPTM
with an energy-based model that employs a contrastive loss.
We show that this alteration drastically improves planning
robustness and quality. Finally, for planning, instead of
connecting nodes in the graph according to an arbitrary
threshold of the connectivity classifier, as in SPTM, we
cast the planning as an inference problem, and efficiently
search for the shortest path in a graph with weights propor-
tional to the inverse of a proximity score from our energy
model. Empirically, we demonstrate that this provides much
smoother plans and barely requires any hyperparameter tun-
ing. We term our approach Hallucinative Topological Mem-
ory (HTM). A visual overview of our algorithm is presented
in Figure 1.
We evaluate our method on a set of simulated VP prob-
lems that require non-myopic planning, and accounting
for non-trivial object properties, such as geometry, in the
plans. In contrast with prior work, which only focused
on the success of the method in executing a task, here
we also measure the interpretability of visual planning,
through mean opinion scores of features such as image
fidelity and feasibility of the image sequence. In both
measures, HTM outperforms state-of-the-art data-driven
approaches such as visual foresight (Ebert et al., 2018)

and the original SPTM. The codebase and videos can
be found at https://sites.google.com/view/
hallucinativetopologicalmemory.

2. Preliminaries
Context-Conditional Visual Planning and Acting (VPA)
Problem. We consider the context-conditional visual plan-
ning problem from (Kurutach et al., 2018; Wang et al.,
2019). Consider deterministic and fully-observable envi-
ronments E1, ..., EN that are sampled from an environment
distribution PE . Each environment Ei can be described
by a context vector ci that entirely defines the dynamics
oit+1 = m(oit, a

i
t|ci), where oit, a

i
t are the observations

and actions, respectively, at timestep t from context ci.
For example, in the illustration in Figure 1, the context
could represent an image of the obstacle positions, which
is enough to predict the possible movement of objects in
the domain.1 As is typical in VP problems, we assume
our data D = {oi1, ai1, ..., oiTi

, ci}i∈{1,...,N} is collected in a
self-supervised manner 2, and that in each environment Ei,
the observation distribution is defined as Po(·|ci).

At test time, we are presented with a new environment, its
corresponding context vector c, and a pair of start and goal
observations ostart, ogoal. Our goal is to use the training
data to build a plannerKh(ostart, ogoal, c) and an h-horizon
policy πh(ocurrent, otarget). The planner’s task is to gen-
erate a sequence of observations between ostart and ogoal,
in which any two consecutive observations are reachable
within h time steps. The policy outputs an action that brings
the current image to the target image within h steps which
can be used to follow the generated plan. This requires both
the planner and the policy to work together in zero-shot.

In this work, we first evaluate the planner and policy sepa-
rately – the planner by measuring the fidelity of its plans,
and the policy, by measuring its success rate in tracking
a feasible plan. We then also evaluate the combined plan-
ner+policy by measuring the total success rate of the policy
applied to the planned trajectories. For simplicity we will
omit the subscript h for the planner and the policy.

Semi-Parametric Topological Memory (SPTM) (Savi-
nov et al., 2018) is a visual planning method that can be used
to solve a special case of VPA, where there is only a single
training environment, E and no context image. SPTM builds

1We used such a context image in our experiments. We assume
that in practice it is feasible to remove the robot from the domain,
making this setting relevant to applications.

2Like Nair et al. (2017) and Wang et al. (2019), we assume that
random actions allow us to sufficiently explore the environment
for the tasks we consider. Depending on the task, this may require
some engineering of the set of possible actions, e.g., a focused
pick-and-place action set in Nair et al. (2017). In our domains,
basic movements and rotations sufficed.

https://sites.google.com/view/hallucinativetopologicalmemory
https://sites.google.com/view/hallucinativetopologicalmemory

Hallucinative Topological Memory for Zero-Shot Visual Planning

…

…

…

…… … … …

Context 1

Context 2

Context N

Training Data

HTM Model
Conditional Generative Model

Random
Noise

Connectivity Energy

Low High

Context

Test Context

HTM Visual Planning

Test Start

Test Goal

Hallucinated Graph

Visual Plan

Hallucinated Images

Figure 1. HTM illustration. Top left: data collection. In this illustration, the task is to move a green object between gray obstacles. Data
consists of multiple obstacle configurations (contexts), and images of random movement of the object in each configuration. Bottom
left: the elements of HTM. A conditional generative model is trained to hallucinate images of the object and obstacles conditioned on
the obstacle image context. A connectivity energy model is trained to score pairs of images based on the feasibility of their transition.
Right: HTM visual planning. Given a new context image and a pair of start and goal images, we first use the conditional generative
model to hallucinate possible images of the object and obstacles. Then, a connectivity graph (blue dotted lines) is computed based on
the connectivity energy, and we plan for the shortest path from start to goal on this graph (orange solid line). For plan execution, visual
servoing is later used to track the image sequence.

a memory-based planner and an inverse-model controller.
At training, a classifier R is trained to map two observation
images oi, oj to a score ∈ [0, 1] representing the feasibility
of the transition, where images that are ≤ h steps apart are
labeled positive and images that are ≥ l are negative. The
policy is trained as an inverse model L, mapping a pair of
observation images oi, oj to an appropriate action a that
transitions the system from oi to oj .

Given an unseen environment E∗, new observations are man-
ually collected and organized as nodes in a graph G. Edges
in the graph connect observations oi, oj if R(oi, oj) ≥
sshortcut, where sshortcut is a manually defined threshold.
To plan, given start and goal observations ostart and ogoal,
SPTM first uses R to localize, i.e., find the closest nodes in
G to ostart and ogoal. A path is found by running Dijkstra’s
algorithm, and the method then selects a waypoint owi

on
the path which represents the farthest observation that is
still feasible under R. Since both the current localized state
oi and its waypoint owi are in the observation space, we
can directly apply the inverse model and take the action ai
where ai = L(oi, owi

). After localizing to the new observa-
tion state reached by ai, SPTM repeats the process until the

node closest to ogoal is reached.

Contrastive Predictive Coding (CPC) (Oord et al., 2018)
is a method for learning low-dimensional representations of
high-dimensional sequential data. CPC learns both an en-
coding of the data at every time step, and an energy function
for any two observations in different time steps in suggest-
ing their temporal correlation. A non-linear encoder genc
encodes the observation ot to a latent representation zt =
genc(ot). We maximize the mutual information between
the latent representation zt and future observation ot+k
with a log-bilinear model3 fk(ot+k, ot) = exp(zTt+kWkzt).
This model is trained to be proportional to the density ratio
p(ot+k|zt)/p(ot+k) by the CPC loss function: the cross en-
tropy loss of correctly classifying a positive sample from a
set of random observations consisting of 1 positive sample
(ot, ot+k) from the paired data Dpair and N − 1 negative
samples (ot, o′) where o′ is sampled separately from the full
data Dsingle:

3The original CPC model has an additional autoregressive mem-
ory variable (Oord et al., 2018). We drop it in our formulation as
our domains are fully observable and do not require memory.

Hallucinative Topological Memory for Zero-Shot Visual Planning

I(ot, ot+1) ≥ −E(ot,ot+k)∼Dpair

[
log

f(zt, zt+1)∑
õ∈Dsingle

f(õ, zt)

]
.

Note that the model fk is not necessary symmetric, and
therefore can capture asymmetric transition in the data. fk
can also be viewed as an inverse energy model whose out-
puts are high for positive samples and low for negative
samples.

3. Hallucinative Topological Memory
By planning directly in image space, and composing the
plan from real images (vs. planning in a learned latent
space (Kurutach et al., 2018)), SPTM is guaranteed to pro-
duce high-fidelity visual plans. In addition, SPTM has been
shown to solve long-horizon planning problems such as
navigation from first-person view (Savinov et al., 2018).
However, SPTM is not zero-shot: even a small change to
the training environment requires collecting substantial ex-
ploration data for building the planning graph. This can be
a limitation in practice, especially in robotic domains, as
any interaction with the environment requires robot time,
and exploring a new environment can be challenging (in-
deed, Savinov et al. 2018 applied manual exploration). In
addition, similarly to Eysenbach et al. (2019), we found that
training the connectivity classifier as proposed by Savinov
et al. (2018) requires extensive hyperparameter tuning.

In this section, we propose an extension of SPTM to over-
come these two challenges by employing three ideas – (1)
using a conditional generative model such as CVAE (Sohn
et al., 2015) or CGAN (Mirza & Osindero, 2014) to hallu-
cinate samples in a zero-shot setting, (2) using contrastive
loss for a more robust score function and planner, and (3)
planning based on an approximate maximum likelihood
formulation of the shortest path under uniform state distri-
bution. We call this approach Hallucinative Topological
Memory (HTM), and next detail each component in our
method.

3.1. Hallucinating Samples
We propose a zero-shot learning solution for automatically
building the planning graph using only a context vector of
the new environment. Our idea is that, after seeing many dif-
ferent environments and corresponding states of the system
during training, given a new environment we should be able
to effectively hallucinate possible system states. We can
then use these hallucinations in lieu of real samples from the
system in order to build the planning graph. To generate im-
ages conditioned on a context, we implement a conditional
generative model as depicted in Figure 1. During training,
we learn the conditional distribution pθ(o|c). During test-
ing, when prompted with a new context vector ctest, we
generate samples ô1, ..., ôN ∼ pθ(o|ctest) in replacement

of exploration data.

3.2. Algorithm
We now describe the HTM algorithm. Given a start ob-
servation ostart, a goal observation ogoal sampled from a
potentially new environment E∗, and the context vector c,
we propose a 4-step planning algorithm.

1. We hallucinate exploration data ô1, ..., ôN by sampling
from the conditional generative model pθ(·|c).

2. We build a fully-connected weighted graph G(V,E)
by forming connections between all generated image
pairs ôi, ôj with learned directed edge weight wij .

3. We find the shortest path using Dijkstra’s algorithm on
the learned connectivity graph G between the start and
goal node.

4. We apply a local policy to follow the visual plan, at-
tempting the next node in our shortest path for h time
steps, and replan every fixed number of steps until we
reach ogoal.

In step 2, the weights should reflect difficulty in transitioning
from one state to another using a self-supervised exploration
policy. The learned connectivity graph G can be viewed as
a topological memory upon which we can use conventional
graph planning methods to efficiently perform visual plan-
ning. In step 4, for the policy, we train an inverse model
which predicts an action given the current observation and
a nearby goal observation. In practice, given a transition
(ot, at, ot+1), we train a deep convolutional neural network
π(ot, ot+1) = ât to minimize the L2 loss between at and
ât (Nair et al., 2017; Wang et al., 2019).

3.3. Learning the Connectivity via Contrastive Loss
A critical component in the SPTM method is the connec-
tivity classifier that decides which image transitions are
feasible. False positives may result in impossible short-cuts
in the graph, while false negatives can make the plan un-
necessarily long. In (Savinov et al., 2018), the classifier
was trained discriminatively, using observations in the data
that were reached within h steps as positive examples, and
more than l steps as negative examples, where h and l are
chosen arbitrarily. In practice, this leads to three important
problems. First, this method is known to be sensitive to the
choice of positive and negative labeling (Eysenbach et al.,
2019). Second, training data are required to be long, non-
cyclic trajectories for a high likelihood of sampling ‘true’
negative samples. However, self-supervised interaction data
often resembles random walks that repeatedly visit a similar
state, leading to inconsistent estimates on what constitutes
negative data. Third, since the classifier is only trained to
predict positively for temporally nearby images and neg-
atively for temporally far away images, its predictions of
medium-distance images can be arbitrary. This creates both

Hallucinative Topological Memory for Zero-Shot Visual Planning

false positives and false negatives, thereby increasing short-
cuts and missing edges in the graph.

To solve these problems, we propose to learn a connectivity
score using contrastive predictive loss (Oord et al., 2018).
We initialize a CPC encoder genc that takes in both obser-
vation and context, and a density-ratio model fk that does
not depend on the context. Through optimizing the CPC
objective, fk is trained such that positive pairs, which ap-
pear sequentially, have higher score, i.e., lower energy, than
negative pairs, which are sampled randomly from the data.
Thus, it serves as a proxy for the temporal distance between
two observations in the sense that sequential observations
should have lower energy, leading to a connectivity score
for planning in the next section. Compared to the heuristic
classification loss in SPTM, the CPC loss is derived from a
clear objective: maximize the mutual information between
the latent encodings of current and future observations. In
practice, this results in less hyperparameter tuning and a
smoother distance manifold in the representation space mit-
igating the first and the third problems.

To tackle the second problem, instead of only sampling neg-
ative data within the same trajectory as an anchor image ot
as done in SPTM, we sample any õ that shares the same
context c as ot from the replay buffer. We also find that
adding negative data sampled from pθ(.|c) can help fk eval-
uate more consistently on hallucinated images. Without this
trick, we find that the SPTM classifier suffers from false
negatives and fails to train on short, cyclical trajectories
collected by self-supervised interaction.

3.4. Edge Weight Selection
We would like edge weights to reflect the difficulty in
transitioning from one state to another according causal-
ity in the data – low weight when the transition is feasi-
ble. Based on the connectivity score from the contrastive
loss, we proposed two choices of computing the weight
wij from node j to node i: (1) an energy model or an
inverse of fk, i.e., 1/fk(i, j), and (2) a density ratio or
an inverse of normalized fk over outgoing edges from j,
i.e.,

∑
s∈V fk(s, j)/fk(i, j). With this heuristic, the short-

est path in G tries to predict reachable visual plans. In
Appendix, we argue that the shortest path in graph G ac-
cording to the weights in option 2 leads to maximizing
trajectory likelihood bound under uniform data assumption,
thus, casting planning as inference.

4. Related work
Reinforcement Learning. Most of the study of data-
driven planning has been under the model-free RL frame-
work (Schulman et al., 2015; Mnih et al., 2015; Silver et al.,
2016). However, the need to design a reward function, and
the fact that the learned policy does not generalize to tasks

that are not defined by the specific reward, has motivated the
study of model-based approaches. Recently, Kaiser et al.
(2019); Ichter & Pavone (2019) investigated model-based
RL from pixels on Mujoco and Atari domains, but did not
study generalization to a new environment. Finn & Levine
(2017); Ebert et al. (2018) explored model-based RL with
image-based goals using visual model predictive control (vi-
sual MPC). These methods rely on video prediction, and are
limited in the planning horizon due to accumulating errors.
In comparison, our method does not predict full trajectories
but only individual images, mitigating this problem. Our
method is orthogonal to and can be combined with visual
MPC as a replacement for the inverse model.

Concurrently with our work, Nair & Finn (2019) propose
a hierarchical visual MPC method that, similarly to our
approach, optimizes a sequence of hallucinated images as
sub-goals for a visual MPC controller, by searching over
the latent space of a CVAE. To compute a search update
over a proposed plan, the algorithm evaluates the video
prediction score between consecutive subgoals making it
more expensive and challenging to optimize as the number
of subgoals increases. In practice, it is shown to work with
the maximum of 2 subgoals. We also find that it takes
approximately to 2 hours to plan a single task comparing to
a few seconds in HTM making the algorithm impractical to
evaluate without access to a large GPU cluster and especially
in a closed-loop setting.

Self-supervised learning. Several studies investigate plan-
ning goal directed behavior from data obtained offline, e.g.,
by self-supervised robot interaction (Agrawal et al., 2016;
Pinto & Gupta, 2016). Nair et al. (2017) use an inverse
model to reach local sub-goals, but require human demon-
strations of long-horizon plans. Wang et al. (Wang et al.,
2019) solve the visual planning problem using a conditional
version of Causal InfoGAN (Kurutach et al., 2018). Our
work is not tied to specific types of generative models and
in the experiments we opted for the CVAE-based approach
for stability and robustness.

Classical planning and representation learning. Studies
that bridge between classical planning and representation
learning include (Kurutach et al., 2018; Asai & Fukunaga,
2018; Asai, 2019; Eysenbach et al., 2019). These works,
however, do not consider zero-shot generalization. While
Srinivas et al. (2018) and Qureshi et al. (2019) learn repre-
sentations that allow goal-directed planning to unseen envi-
ronments, they require expert training trajectories. Ichter &
Pavone (2019) also generalizes motion planning to new envi-
ronments, but require a collision checker and valid samples
from test environments.

Hallucinative Topological Memory for Zero-Shot Visual Planning

5. Experiments
We evaluate HTM on a suite of simulated tasks inspired by
robotic manipulation domains. We note that recent work in
visual planning (e.g., Kurutach et al. 2018; Wang et al. 2019;
Ebert et al. 2018) focused on real robotic tasks with visual
input. While impressive, such results can be difficult to
reproduce or compare. For example, it is not clear whether
manipulating a rope with the PR2 robot (Wang et al., 2019)
is more or less difficult than manipulating a rigid object
among many visual distractors (Ebert et al., 2018). Our suite
of tasks is reproducible, contains clear evaluation metrics,
and our code will be made available for evaluating other
algorithms in the future.

We consider four domains in varying difficulty using Mu-
joco simulation (Todorov et al., 2012), as seen in Figure 2:

1. Block wall: A green block navigates around a static
red obstacle, which can vary in position.

2. Block wall with complex obstacle: Similar to the
above, but here the wall is a 3-link object which can
vary in position, joint angles, and length, making the
task significantly harder.

3. Block insertion: Moving a blue block, which can
vary in shape, through an opening.

4. Robot manipulation: A simulated Sawyer robot
reaching and displacing a block.

Figure 2. Evaluation suite. Block wall, block wall with complex
obstacle, block insertion, and robot manipulation domains.

With the first three domains, we aim to assess how well
HTM can generalize to new environments in a zero-shot
manner, by varying the position of the obstacle, the shape
of the obstacle, and the shape of the object. With the forth
domain, we aim to assess whether HTM can plan temporally-
extended robotic manipulation.

We ask the following questions. First, does HTM improve
visual plan quality over state-of-the-art VP methods (Savi-
nov et al., 2018; Ebert et al., 2018)? Second, how does
HTM execution success rate compare to state-of-the-art
VP methods? We discuss our evaluation metrics for these
attributes in Section 5.1.

We compare HTM with two state-of-the-art baselines:
SPTM (Savinov et al., 2018) and Visual Foresight (Ebert
et al., 2018). When evaluating zero-shot generalization,
SPTM requires samples from the new environment. For a

fair comparison, we use the same samples generated by the
same CVAE as HTM. Thus, in this case, we only compare
between the SPTM classification scores as edge weights in
the graph, and our CPC-based scores.4

The same low-level controller is also used to follow the
plans. The Visual Foresight baseline trains a video pre-
diction model, and then performs model predictive control
(MPC), which searches for an optimal action sequence us-
ing random shooting. For the random shooting, we used 3
iterations of the cross-entropy method with 200 sample se-
quences. The MPC acts for 10 steps and then replans, where
the planning horizon T is set to 15 as in the original im-
plementation. Experiments with different horizons yielded
worse performance. We use the state-of-the-art video predic-
tor as proposed by Lee et al. (Lee et al., 2018) and the public
code provided by the authors. For evaluating trajectories
in random shooting, we studied two cost functions that are
suitable for our domains: pixel MSE loss and green pixel
distance. The pixel MSE loss computes the pixel distance
between the predicted observations and the goal image. This
provides a sparse signal when the object pixels in the plan
can overlap with those of the goal. We also investigate a
cost function that uses prior knowledge about the task – the
position of the moving green block, which is approximated
by calculating the center of mass of the green pixels. As
opposed to pixel MSE, the green pixel distance provides a
smooth cost function which estimates the normalized dis-
tance between the estimated block positions of the predicted
observations and the goal image. Note that this assumes
additional domain knowledge which HTM does not require.

5.1. Evaluation Metrics
We design a set of tests that measure both qualitative and
quantitative performance of an algorithm. While the quan-
titative tests evaluate how successful the algorithm is in
solving a task, our qualitative tests provide a measure of
plan interpretability, which is often desired in practice.

Qualitative evaluation: Visual plans can be inspected by
a human to assess their quality. Since human assessment
is subjective, we devised a set of questionnaires, and for
each domain, we asked 5 participants to visually score 5
randomly generated plans from each model by answering
the following questions: (1) Fidelity: Does the pixel quality
of the images resemble the training data?; (2) Feasibility: Is
each transition in the generated plan executable by a single
action step?; and (3) Completeness: Is the goal reachable
from the last image in the plan using a single action? An-
swers were in the range [0,1], where 0 denotes No to the

4In practice, we found that exponentiating the SPTM classifier
score instead of thresholding worked slightly better, without re-
quiring tuning a threshold. We therefore report results using this
method.

Hallucinative Topological Memory for Zero-Shot Visual Planning

Figure 3. HTM plan examples (top 3 rows) and Visual Foresight
plan examples (bottom 3 rows). Note Visual Foresight is unable
to conduct a long-horizon plan, and thus greedily moves in the
direction of the goal state using green pixel distance cost.

proposed question and 1 means Yes. The mean opinion
scores are reported for each model.

Quantitative In addition to generating visually sensible
trajectories, a planning algorithm must also be able to suc-
cessfully navigate towards a predefined goal. Thus, for each
domain, we selected 20 start and goal images, each with
an obstacle configuration unseen during training. Success
was measured by the ability to get within some L2 distance
to the goal in n steps or less, where the distance threshold
and n varied on the domain but was held constant across all
models. A controller specified by the algorithm executed ac-
tions given an imagined trajectory, and replanning occurred
every r steps. Specific details can be found in the Appendix.

5.2. Results on Block Domains
As shown in Table 1, HTM outperforms all baselines in
both qualitative and quantitative measurements across the
first two domains. In the simpler block wall domain, Visual
Foresight only succeed with the extra domain knowledge
of using the green pixel distance. In the complex obstacle
domain, Visual Foresight mostly fails to find feasible plans.
SPTM, on the other hand, performed poorly on both tasks,
showing the importance of our CPC-based edge weights
in the graph. Perhaps the most interesting conclusion
from this experiment, however, is that even such visu-
ally simple domains, which are simulated, have a single
moving object, and do not contain visual distractors or
lighting/texture variations, can completely baffle state-
of-the-art VP algorithms. For the complex obstacle do-
main, we attribute this to the non-trivial geometric infor-
mation about the obstacle shape that needs to be extracted
from the context and accounted for during planning. In
comparison, the real-image domains of Ebert et al. (2018),

Figure 4. HTM plan and execution. The top row demonstrates a
generated visual plan on an unseen block configuration, and the
bottom displays the execution to follow the plan.

Figure 5. HTM plans on real data. The agent plans to grab the
green block and/or go around the obstacle with goal directed plan-
ning (no reward signal) using dataset D on unseen starts and goals.

which contained many distractors, did not require much
information about the shape of the objects for planning a
successful pushing action.

In regards to perceptual evaluation, Visual Foresight gen-
erates realistic transitions, as seen by the high participant
scores for feasibility. However, the algorithm is limited in
creating a visual plan within the optimal T = 15 timesteps
consistent with that of (Ebert et al., 2018). Thus, when
confronted with a challenging task of navigating around
a concave shape where the number of timesteps required
exceeds T , Visual Foresight fails to construct a reliable
plan (see Figure 3), and thus lacks plan completeness. Con-
versely, SPTM is able to imagine some trajectory that will
reach the goal state. However, as mentioned above and was
confirmed in the perceptual scores, SPTM fails to select
feasible transitions, such as imagining a trajectory where
the block will jump across the wall or split into two blocks.
Our approach, on the other hand, received the highest scores
of fidelity, feasibility, and completeness. Finally, we show
in Figure 6 the results of our two proposed improvements to
SPTM in isolation. The results clearly show that a classifier
using contrastive loss outperforms that which uses Binary
Cross Entropy (BCE) loss, and furthermore that the inverse
of the score function for edge weighting is more successful
than the best tuned version of binary edge weights through
thresholding – 0 means no edge connection and 1 means an
edge exists.

Hallucinative Topological Memory for Zero-Shot Visual Planning

Algorithms Domain Fidelity Feasibility Completeness Execution Success

HTM 1 0.75 ± .09 0.88 ± .14 1.00 ± .00 95%
2 0.96 ± .03 0.96 ± .08 0.96 ± .08 100%

SPTM with CVAE 1 0.40 ± .11 0.00 ± .00 1.00 ± .00 55%
2 0.92 ± .07 0.00 ± .00 1.00 ± .00 30%

Visual Foresight (Ebert et al., 2018) 1 0.74 ± .08 0.84 ± .16 0.04 ±. 08 25%
(pixel MSE loss) 2 0.59 ± .16 0.64 ± .21 0.00 ± .00 0%

Visual Foresight (Ebert et al., 2018) 1 0.80 ± .07 0.84 ± .16 0.04 ± .08 90%
(green pixel distance) 2 0.69 ± .14 0.56 ± .21 0.00 ± .00 35%

Inverse Model 1 - - - 20%
2 - - - 25%

Table 1. Qualitative and quantitative evaluation for the the block wall (1) and block wall with complex obstacle (2) domains. Qualitative
data also displays the 95% confidence interval.

Algorithms Difficulty Execution Success

HTM Easy 100 %
Hard 70 %

Visual Foresight Easy 60 %
Hard 10 %

Inverse Model Easy 90 %
Hard 30 %

Table 2. Quantitative evaluation for block insertion domain. Visual
Foresight (Ebert et al., 2018) was trained using pixel MSE loss.

5.3. Results for Insertion and Manipulation Domains
Unlike previous block domains, we demonstrate the zero-
shot generalization ability of our approach by varying the
shape and volume of the moving object itself. The challenge
in planning is accounting for the orientation of a novel shape
when encountering obstacles, and figuring out the best angle
at which to approach a narrow passageway. We emphasize
that such geometrical reasoning must be learned from
the data, and must generalize to unseen shapes.

In practice, it might be very difficult to extract a context vec-
tor describing the environment every time the environment
changes. In this domain, instead, we show that conditioning
on a random image in that environmental configuration is
sufficient to generate possible image samples in the same
configuration, and therefore lead to successful plans. At test
time, we can simply use the current image as context.

For testing, we differentiated between ‘easy’ tasks (ie. block
stays on the same side of the wall) and ‘hard’ tasks (ie. block
must pass through the opening). Each task had 10 random
start/goal locations, and all configurations were unseen. As
seen in Table 2, our method is successfully able to tackle
these challenges, and an example plan and execution can
be found in Figure 4. While successful on the majority of
the ‘easy’ tasks, Visual Foresight proved unable to plan the
rotations necessary to move the block through the opening,

and thus failed on most of the ‘hard’ tasks.

In addition, we applied HTM to robotic simulation of a
Sawyer robot arm as seen in Figure 5 in which the robot
needs to move a the green block to the desired location
around a wall. We collect 45,000 samples of random in-
teraction when the arm holds the green block, and 5,000
samples when the arm moves without the block. Here, we
do not have different contexts, but we evaluate on unseen
starts and goals. We apply HTM planning ability directly on
real images from the replay buffer achieving feasible plans
12 out of 14 test tasks. We find that our visual plans avoid
myopic behavior by planning to going around the thin wall,
and preferring to grab the block before moving to the goal.

Figure 6. Ablation study on weight functions. We show gain in
using our proposed score function and weighting function com-
paring to those proposed in the original SPTM by examining final
average distance to the goal state for 10 test start/goal pairs on
block with complex obstacle domain (the lower the distance, the
better). For the score function, we denote our proposed energy
model structured with contrastive loss as CPC and the classifier as
proposed in (Savinov et al., 2018) with BCE loss as SPTM. For the
edge weighting function, we test the binary thresholding from the
original SPTM paper, our proposed inverse of the score function,
and our proposed inverse of the normalized score function.

Hallucinative Topological Memory for Zero-Shot Visual Planning

6. Discussion
We proposed a simple visual planning method that plans
directly in image space, and generalizes in a zero-shot by
hallucinating possible images conditioned on a domain con-
text. On a suite of challenging visual planning domains, we
find that our method outperforms state-of-the-art methods,
and is able to pick up non-trivial geometrical information
about objects in the image that is crucial for planning.

Our results further suggest that combining classical plan-
ning methods with data-driven perception can be helpful for
long-horizon visual planning problems, and takes another
step in bridging the gap between learning and planning. In
future work, we plan to combine HTM with Visual MPC
for handling more complex objects, and use object-oriented
planning for handling multiple objects.

7. Acknowledgement
We thank Sudeep Dasari and Frederik Ebert for sharing code
for Visual Foresight baselines and helpful discussions. Tha-
nard Kurutach is funded by NSF Expedition grant 1730628.
Kara Liu was funded by Berkeley Deep Drive. Aviv Tamar
is partly funded by the Israel Science Foundation (ISF-
759/19) and the Open Philanthropy Project Fund.

References
Agrawal, P., Nair, A. V., Abbeel, P., Malik, J., and Levine,

S. Learning to poke by poking: Experiential learning
of intuitive physics. In Advances in Neural Information
Processing Systems, pp. 5074–5082, 2016.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, O. P., and
Zaremba, W. Hindsight experience replay. In Advances
in neural information processing systems, pp. 5048–5058,
2017.

Asai, M. Unsupervised grounding of plannable first-
order logic representation from images. arXiv preprint
arXiv:1902.08093, 2019.

Asai, M. and Fukunaga, A. Classical planning in deep latent
space: Bridging the subsymbolic-symbolic boundary. In
Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., and Levine,
S. Visual foresight: Model-based deep reinforcement
learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search on
the replay buffer: Bridging planning and reinforcement
learning. arXiv preprint arXiv:1906.05253, 2019.

Finn, C. and Levine, S. Deep visual foresight for planning
robot motion. In Robotics and Automation (ICRA), 2017
IEEE International Conference on, pp. 2786–2793. IEEE,
2017.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Ichter, B. and Pavone, M. Robot motion planning in learned
latent spaces. IEEE Robotics and Automation Letters, 4
(3):2407–2414, 2019.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374,
2019.

Kurutach, T., Tamar, A., Yang, G., Russell, S. J., and Abbeel,
P. Learning plannable representations with causal infogan.
In Advances in Neural Information Processing Systems,
pp. 8733–8744, 2018.

Hallucinative Topological Memory for Zero-Shot Visual Planning

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45–73.
Springer, 2012.

Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and
Levine, S. Stochastic adversarial video prediction. arXiv
preprint arXiv:1804.01523, 2018.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik,
J., and Levine, S. Combining self-supervised learning and
imitation for vision-based rope manipulation. In Robotics
and Automation (ICRA), 2017 IEEE International Con-
ference on, pp. 2146–2153. IEEE, 2017.

Nair, S. and Finn, C. Hierarchical foresight: Self-supervised
learning of long-horizon tasks via visual subgoal genera-
tion. arXiv preprint arXiv:1909.05829, 2019.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pinto, L. and Gupta, A. Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours. In 2016
IEEE international conference on robotics and automa-
tion (ICRA), pp. 3406–3413. IEEE, 2016.

Qureshi, A. H., Simeonov, A., Bency, M. J., and Yip, M. C.
Motion planning networks. In 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 2118–2124.
IEEE, 2019.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-
parametric topological memory for navigation. arXiv
preprint arXiv:1803.00653, 2018.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
Conference on Machine Learning, pp. 1889–1897, 2015.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Sohn, K., Lee, H., and Yan, X. Learning structured output
representation using deep conditional generative models.
In Advances in neural information processing systems,
pp. 3483–3491, 2015.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn,
C. Universal planning networks. arXiv preprint
arXiv:1804.00645, 2018.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge, 1998.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Wang, A., Kurutach, T., Liu, K., Abbeel, P., and Tamar, A.
Learning robotic manipulation through visual planning
and acting. arXiv preprint arXiv:1905.04411, 2019.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller,
M. Embed to control: A locally linear latent dynamics
model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

Hallucinative Topological Memory for Zero-Shot Visual Planning

A. Discriminative Models: Classifier vs.
Energy model

In this section, we assume the dataset as described in VPA,
D = {oi1, ..., oiTi

}ni=1. There are two ways of learning a
model to distinguish the positive from the negative transi-
tions.

Classifier: As noted above, SPTM first trains a classifier
which distinguishes between an image pair that is within
h steps apart, and the images that are far apart using ran-
dom sampling. The classifier is used to localize the cur-
rent image and find possible next images for planning. In
essence, the classifier contains the encoder gθ that embeds
the observation x and the the score function f that takes the
embedding of each image and output the logit for a sigmoid
function. The binary cross entropy loss of the classifier
LSPTM (θ, ψ;D) is

= −
∑

(zt,zt+k)∼D

(log
fψ(z, zt+k)

1 + fψ(zt, zt+k)

+ log
1

1 + fψ(zt, z
−
t)

)

= −
∑

(zt,zt+1)∼D

log

[
fψ(zt, zt+k)

fψ(zt, zt+k) + αtψ

]

where αtψ = 1 + fψ(zt, z
−
t) + fψ(zt, zt+k)fψ(zt, z

−
t), and

z−t is a random sample from D.

Energy model: Another form of discriminating the the
positive transition out of negative transitions is through
an energy model. Oord et al. (Oord et al., 2018) learn
the embeddings of the current states that are predictive of
the future states. Let g be an encoder of the input x and
z = gθ(x) be the embedding. The loss function can be
described as a cross entropy loss of predicting the correct
sample fromN+1 samples which contain 1 positive sample
and N negative samples LCPC(θ, ψ;D) is

= −
∑

(zt,zt+k)∼D

log

[
fψ(zt, zt+k)

fψ(zt, zt+k) +
∑N
i=1 fψ(zt, z

i−
t)

]

where fψ(u, v) = exp (uTψv) and z1−t , ..., zN−t are the
random samples from D.

Note that when the number of negative samples is 1 the loss
function resembles the SPTM.

B. Mutual Information (MI)
This quantity measures how much knowing one variable
reduces the uncertainty of the other variable. More precisely,
the mutual information between two random variables X
and Y can be described as

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y |X)

= EX,Y
[
pX,Y
pXpY

]
.

C. Planning as Inference
After training the CPC objective to convergence, we have
fk(ot+k, ot) ∝ p(ot+k|ot)/p(ot+k) (Oord et al., 2018).
To estimate p(ot+k|ot)/p(ot+k), we compute the normal-
izing factor

∑
o′∈V fk(o

′, ot) for each ot by averaging
over all nodes in the graph. Therefore, our non-negative
weight from ot to ot+k is defined as ω(ot, ot+k) =∑

o′∈V fk(o
′, ot)/fk(ot+k, ot) ≈ p(ot+k)/p(ot+k|ot).

A shortest-path planning algorithm finds T, o0, ..., oT
that minimizes

∑T−1
t=0 ω(ot, ot+1) such that

o0 = ostart, oT = ogoal. By Jensen’s inequality
and the Markovian property of o0, ..., oT we have that,
log 1

T

∑T−1
t=0 ω(ot, ot+1) ≥ 1

T

∑T−1
t=0 logω(ot, ot+1) =

1
T

∑T−1
t=0 (log p(ot+1) − log p(ot+1|ot)) =

1
T

∑T−1
t=1 p(ot) − log p(o1, ..., oT−1|o0 = ostart, oT =

ogoal). Thus, since p(ot) is fixed by uniform asssumption,
the shortest path algorithm with proposed weight ω
maximizes a lower bound on the trajectory likelihood given
the start and goal states. In practice, this leads to a more
stable planning approach and yields more feasible plans.

D. Block Insertion Domain
In this domain, we kept the obstacle constant and varied the
agent itself. In particular, we uniformly chose from 4 to 10
units, with 6 as the holdout, and then randomly placed those
units such that they resembled a contiguous shape. When
applying an action, we applied a vertical and horizontal
force to the middle block, and also a rotation force on the
first and last unit laid down, leading to a total action space of
four. As our context vector, we randomly chose any image
from all trajectories with that same context, as seen in Figure
7. During testing time, we randomly generated shapes from
3, 6, and 11 units. The L2 threshold distance for success
was thus the total L2 distance for all units divided by the
number of units.

E. Additional Results and Hyperparameters

Figure 7. Example of observations (top) and contexts (bottom) of
block insertion domain.

Hallucinative Topological Memory for Zero-Shot Visual Planning

Figure 8. HTM plan examples on the block wall domain. The hallucination allows the planner to imagine how to go around the wall even
though it has not seen the context before.

Figure 9. Visual Foresight plan examples on the block wall domain. The plans do not completely show the trajectory to the goal.

Table 3. Data parameters.
Domain 1 Domain 2 Domain 3 Domain 4

no. contexts 150 400 360 1
initializations per context 50 30 20 1000

trajectory length 20 100 50 50
action space [−.05, .05]2 [−.1, .1]2 [−.05, .05]4 [−1, 1]2

table size 2.8x2.8 2.8x2.8 .8x.8 .9x.7

Table 4. Planning hyperparameters.
Domain 1 Domain 2 Domain 3

no. of samples from CVAE 300 500 300
L2 threshold for success (for each unit) .5 .75 .1

n (timesteps to get to goal) 500 400 400
r (timesteps until replanning) 200 80 80

