Exploration Through Reward Biasing: Reward-Biased Maximum Likelihood Estimation for Stochastic Multi-Armed Bandits

Appendix
A. Proof of the Index Strategy in (8)
Recall that pRBMLE — (ﬁfBMLE, e A]RBMLE) is the reward-biased MLE for 7 and from (6) that NRBMLE is a maximizer of

the following problem:

e {L(Hs;m) max exp(mio(t)) }- (30)

Define an index set and a parameter set as

7, = argmax{f " (31)
1€[N]
Hy; = argmax {L(H¢;n)exp(nia(t))} (32)
nin; ENVj

Note that at each time t, RBMLE would select an arm from the index set Z;, as shown in (7). For each arm ¢, consider an
(i) _ (1)

estimator 1), (nt 1T, ‘N) € Hy ;. Accordingly, we further define an index set
I = argr[n?x{L(Ht; ") exp(7; (1)) }. (33)
ic[N

Next, we show that the two index sets are identical, i.e. Z; = Z;. Since L(Hy; ARBMLE) does not depend on %, we know

argmax{ﬁfBMLE} = argmax {L(Hy; poMEE) exp(ﬁfl?MLE )} (34)
i€[N] €[N]
Moreover, we have
max { L(HeARME) expEPa (1) ) = L ) - ma exp TR Fa(r) (39)
1€[N] i€[N]

= n:nrjne%w{ (Hesm) - max exp(n;o (t))} (36)
= n:nﬁne%(,\fj { 32%3(] {L Hi;m) - exp(ma(t))}} (37

— L(H,: 1) - ,
g%{n-n%af\)f(w{ (Hesm) eXp(ma(t))}} (38)
= ma (L) exp( (1)}, (39)

where (35) follows from the fact that L(#H,; nREMLE) does not depend on 4, (36) holds by the definition of RREMLE | (37)-(38)
follow from that interchanging the order of the two max operations does not change the optimal value and the optimizers,

and (39) follows from the definitions of H; ; and ngz) By (32), (33), and (35)-(39), we conclude that Z; = Z;, and hence (8)
indeed holds.

B. Proof of Proposition 1

Recall from (8) that

RBMLE __ L(H,: ot 40
O < g (g (Ot e )} o

By plugging L(H;; n) into (40) using the density function of the Exponential Families and taking the logarithm of (40),

t
7BMLE _ argmax}{ max {Z N, Xr — F (N )) + nia(t) }} 41
=1

ie{l, N} { mmEN V]

=:;(Hism)
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Note that the inner maximization problem for ¢;(H;; m) over 1 is convex since F'(-) is a convex function. Recall that N;(t)
and S;(t) denote the total number of trials of arm 7 and the total reward collected from pulling arm ¢ up to time ¢, as defined
in Section 2. By taking the partial derivatives of ¢;(#;; 1) with respect to each 7;, we know that ¢;(?,; 77) is maximized

. S; a
when F'(n;) = [W]@

i =1,---, N, we then define

and F(n;) = ffj((?) , for j # i, where [-]o denotes the clipped value within the set ©. For each

m= P T (42)
kk —1 1<t) + Oé(t)
= (| (@) o) (43)
By substituting {n;} and {n;*} into (41), we have

WfMLE = argmax {éi (’Ht;nf*,{r];*}j#)} (44)

i€{l,- ,N}
= argmax {ei (Hes 0™ An; Yii) — Li(Hes {n] Y=, N)} (45)

i€{l,-,N}
— argmax { [(Sit) + alt))ni = Na@F ()| = [Siltyns = No(t) F ()] } (46)

i€{l,-- ,N}

By substituting N;(¢)p;(t) for S;(t) in (46), we then arrive at the index as

1(pi(t), Ni(t), at) = [(Ni®)pa(t) + a()) i = N(F(577)] = [Na(hpi(t)n = Na@F )] @7)

]
C. Proof of Corollary 1
Recall from (47) that for the Exponential Family rewards, the BMLE index is
Ipi(t), Nit), at) = [(Ni(®)pa(t) + o)™ = N(F ()] = [Na(Opi(t)n; = Na®F )] @8)
For the Bernoulli case, we know F () = log(1 + €"), F(n) = 15, F'(0) = log(1%;). and F(F~'(9)) = log(7%5).

1—
Since © = [0, 1] for Bernoulli rewards, we need to analyze the following two cases when substituting the above F ~1(#) and
F(F~'(0)) into (48):
e Case 1: a(t) < N;(t)(1 — p;(t)) (or equivalently p;(t) < 1)
We have

I(pi(t), Ni(t), (1)) (49)

— (N (). ’ Y N;i(t)
=600+ o0)108 (6= (v + a) ~ VO (mE = mop@ram)

Ni(t)ps(t N;(t)
- MmOl (N eam) VO (FE s oD GD
_Ni(t){(pi(t) i ;i((tt))) log (pi(t) + ;Z(g)) + (1 (pilt) + ]‘\Jf‘i((%)) log (1 — (i) + ;i((tz))) (52)
~ pult) log(pi(£)) — (1 — pu(t)) log(1 — pz-<t>>}, 53

where (52)-(53) are obtained by reorganizing the terms in (50)-(51).
e Case2: a(t) > N;(t)(1 — p;(t)) (or equivalently p;(t) = 1)
In this case, the index would be the same as the case where p;(t) + «(t)/N;(t) = 1. Therefore, we simply have

I(pi(t), Ni(t), a(t)) = Ni(t){ — pi(t) log(pi(t)) — (1 — pi(t)) log(1 — pi(t))} (54)
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D. Proof of Corollary 2
Recall from (47) that for the Exponential Family rewards, the BMLE index is
1(pi(t), Ni(t), a(0)) = [((NiOpi() + a(0)i* = N F ()] = [Nitwwteyi = NaEG)], 59)

where 7 = F~1 (f;((t))

have F(1;) = 0?12 /2, F(n;) = o?n;, F~(6;) = 6; /02, and F(F~"(6;)) = 62 /202, for each arm i. Therefore, the BMLE
index becomes

) and " = -1 (%) For Gaussian rewards with the same variance o2 for all arms, we

I(pi(t), Ni(t), (1)) (56)
_Si) +alt) o 02 Si(t) + aft)\2 _ Si(t) a2 Sit) N2
- O'zNi(t) (Sz(t)+a(t)) 7N1(t)7( O'ZNi(t) ) 7Sz(t)o_2Ni(t) +Nl(t)7(02Ni(t)> (57)
_25i(t)a(t) + at)?
B 202N, (t) (58)
Equivalently, for the Gaussian rewards, the selected arm at each time ¢ is
ABMLE _ , a(t)
lsggmax} {p2 (t) + IN,0) } (59)
(Il
E. Proof of Corollary 3
Recall from (47) that for the Exponential Family distributions, the BMLE index is
1(pi(t), Ni(t), at) = [(N(®)ps(t) + a ()™ = N F (577)] = [Ni(hpi ()0 = Na@F )], 60)
where 77 = F~ o Z((?)) and n* = Ffl(%m(t)) For the exponential distribution, we have F(n;) = log(;—J),
F(n) = n—l F7'(0;) = ;—1 and F(F~'(6;)) = log6;, for each arm 7. Therefore, the BMLE index becomes
I(pi(t), Ni(t), a(t)) (61)
N (v s Ni(t) Y Ni(O)pi(t) + a(t)
=Ni(Opi(t) + ) (= 50 Tam) ~ MOl (F ) (©2)
1
= (M= ) + N0 logil) (63)
=N 1)+ ath)) o
(]
F. Proof of Lemma 1
(i) Recall that
I(v,n,a(t)) =(nv+ o) P (v + ?) —nwF ' (v) — nF(F_l(z/ + ?)) +nF(F(v).
By taking the partial derivative of I (v, n, «(t)) with respect to n, we have
or ... af OF '(v+ 2ty
= vE( T) + (nv + a(t)) o —vE  (v) (65)
L al) P ONY L e BT
G ) —nb(F =) — + F(F () (66)
_ « t 1 -1 a(t) -1
v [P+ ) B } [F(F (v+22)) - P W)). 67)
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Since F () is strictly increasing for the Exponential Families, we know F‘1(~) is also strictly increasing and F v+
a(t)/n) > F~'(v). Moreover, by the strict convexity of F'(-), we have

P+ ?)) —FP(EW) > (7 v+ alt)y _ F ) F(P7 W) (68)

Therefore, by (65)-(68), we conclude that g—i < 0 and hence I (v, n,«(t)) is strictly decreasing with n.
(i1) Recall that
I _ S—1 a(t> H—1 ~—1 a(t) ~—1
(v,n,a(t)) =(nv+ o)) F ' (v+ —2) —nvF ' (v) = nF(F ' (v+ —=) ) + nF(F~'(v)).
n n

By taking the partial derivative of I (v, n, «(t)) with respect to v, we have

or .., a(t) OF " (v + 1) - OF(v)
= nF~ ' (v+ T) + (nv + oz(t))a—y - (nF (v)+ m/T> (69)
e at) o OF () R (v)
_nF(F (v+ = )) - +nF(F ) = (70)
———
<vta(t)/n =v
—1 a(t) -1
> 0, (72)

where the last inequality follows from the fact that F! (+) is strictly increasing for the Exponential Families. Therefore, we
can conclude that I (v, n, «(t)) is strictly increasing with v, for all «(¢) > 0 and for all n > 0.

G. Proof of Lemma 2
Recall that we define
1, -y 1 - - 1 -
£(k; v) :k{(y + D v+ ) —vE (u)} - k:[F(F (v+ E)> — F(F (y))}, (73)
K*(0',0") =inf{k : F(0") > £(k; 0")}. (74)

Moreover, we have I (1, ka(t), a(t)) = a(t)(k; p1). By Lemma 1.(i), we know that I(u1, ka(t), a(t)) decreases with k,
forall k > 0. Let z = +. Under any fixed 411 € © and a(t) > 0, we also know that

(1 +2) 7 (1 + 2) — B ()] = [F(E7 (p + 2)) — F(E (u1))]

Jim & (ks 1) zlzifol . (75)
~tim o+ 2) G+ 2) 2D (i 4 A g
=F""(m), (77)
where (75) is obtained by replacing 1/k with z, and (76) follows from L’Hopital’s rule. Therefore, we have
Jim I(pa, ka(t), a(t)) = a(t) - I~ (). (78)
By Lemma 1.(i) and (78), we know
I(p1, ka(t), a(t)) > a(t)F~ (), forall k > 0. (79)
For any ny > K* (1, t2)a(t), we have
I(pn, (1)) = a(t) ™ (1) (80)
> I(p2, K (pa, po)e(t), a(t)) (81)

> I(p2,n2, at)), (82)
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where (80) follows from (79), (81) holds from the definition of K*(,-), and (82) holds due to Lemma 1.(i). Finally, we
show that K* (1, o) is finite given that p; > po. We consider the limit of £(k; o) when k approaches zero and again let
z=3:

Bl

(2 + 2) F " (na + 2) = vF " (pa)] = [F(F 7 (p2 + 2)) — F(F ' (n2))]

Mg sUipa) = iy : ®
. OF (ua +2) - -, OF (2 + 2)
= lim F (p2 + 2) + (p2 + 2) (872 —F(F ' (p2 + 2)) — 5 (84)
>0 <po+z >0
> lim F~ ' (pg + 2) (85)
Z—r00
>F (), (86)

where (84) follows from L’Hdpital’s rule and (86) holds due to the fact that F'is increasing. By (83)-(86) and since &(k; p2)
is continuous and strictly decreasing with k, we know there must exist a finite &’ > 0 such that " (uy) = £(k'; pu2). This
implies that K*(p1, p2) is finite given that g > po. O

H. Proof of Lemma 3

Similar to the proof of Lemma 2, we leverage the function K *(+,-) as defined in (74). By (74), we know that for any
k> K*(po, i2), we have §(k; pi2) < F'*(po). Therefore, if ny > K*(po, p2)ex(t),

I(p2,m2, o(t)) < I(pz, K*(po, p2), (1)) (87)
= a(t)§(K (po, p2); i) (88)
= a(t)F™ (o). (89)

Similarly, for any k& < K*(p, p11), we have &(k; j11) > F~" (o). Then, if ny < K*(po, pu1)a(t), we know

I(p,ma, 0t)) > I(pa, K (po, p1), at)) (90)
= a(t)&(K " (pos p11); 1) o1
= a(t)F (o). 92)

Hence, by (87)-(92), we conclude that I(pq1,ny,a(t)) > I(p2,n2,a(t)), for all ny < K*(po, p1)a(t) and ny >
K*(po, p2)e(t). O

L. Proof of Proposition 2

Proof Sketch: Our target is to quantify the expected number of trials of each sub-optimal arm a up to time 7. The
regret bound proof starts with a similar demonstration as for UCB1 (Auer et al., 2002) by studying the probability of the
event {I(p1(t), N1(t), a(t)) < I(pa(t), No(t), a(t))}, using the Chernoff bound for Exponential Families. However, it is
significantly different from the original proof as the dependency between the level of exploration and the bias term «(t) is
technically more complex, compared to the straightforward confidence interval used by the conventional UCB-type policies.
Specifically, the main challenge lies in characterizing the behavior of the RBMLE index for both regimes where N (t) is
small compared to «(t), as well as when it is large compared to «(t). Such a challenge is handled by considering three
cases separately: (i) Consider Ny (¢) > m log t and apply Lemma 2; (ii) Consider Ny (¢) < m log t
and N (1) < K*(01 — §A,0)a(t) and apply Lemma 3; (iii) Use Lemma 3 to show that { V() < W logt} and
1—548,01
{N1(t) > K*(61 — §A,0)c(t)} cannot occur simultaneously.
To begin with, for each arm 7, we define p; ,, to be the empirical average reward collected in the first n pulls of arm 3.
For any Exponential Family reward distribution, the empirical mean of each arm : satisfies the following concentration
inequalities (Korda et al., 2013): For any § > 0,
P(pin — 0; > 6) < exp(—nD(0; + 6,6;)), (93)
P(0; — pin > 9) < exp(—nD(6; — 6,6;)). 94)
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Next, for each arm ¢, we define the following confidence intervals for each pair of n,¢ € N:

. 1

57 (n,t) ;= inf {5 sexp(—nD(0; + 0,6;)) < 74}’ (95)
. 1

d; (n,t) := inf {6 cexp(—nD(0; — 0,6;)) < t74} (96)

Accordingly, for each arm 7 and for each pair of n,¢ € N, we define the following events:
G;r(n, t) = {pi,n -0, < 6j(n,t)}, (97)
G7 (n,) = {0: = pin <07 (n,1)}. 98)
By the concentration inequality considered in Section 2, we have

P(G] (n,1)) < e PO 000 < = (99)

S

B(G; (n, 1)) < e P00 (1m0

K2

IN

(100)

Consider the bias term «(t) = C logt with C, > 4/(D(01 — §4A,61) - K*(61 — 5A,0)) and € € (0,1). Recall that we
assume arm 1 is the unique optimal arm. Our target is to quantify the total number of trials of each sub-optimal arm. Define

4

Qu(T) := max{—D(aa TER.00)

,Co K" (6 — %Aa,ea n gAa)} log T + 1. (101)

We start by characterizing E[N,(T)] foreacha =2,--- | N:

E[Na(T)) (102)
T
SQDFE| S H(H(pu(0), Na0,a(0) 2 1(0) Mi0). a0, No(0) > QulT))| (103)
t:Qa(T)+1
T
=Q.(T)+ Y P (I(pa(t),Na(t),a(t)) > I(p1(t), Ni(t), a(t)), Na(t) > Qa(T)) (104)
t:Qa(T)+1
T
S Qa (T) + t_QaZ(T)J’_l P (Qa(%z}éagt I(paﬂzaa Na, Ol(t)) Z lg'}Lllngt I(pl,n1 , Ny, C\{(t))) (105)
T t t
<D+ D>, Y Y P (I(pmna,na,a(t)) > I(pl,m,nl,a@))) (106)
t:Qa(T)+1 ny=1 na:Qa(T)
T t t
<Qum+ Y S (P(GT . 61) + P (G (na,1)) ) (107)
t=Qa(T)+111=11,=Q,(T) el e
T t t
+ > Y > P (I(pa,na,na,a(t)) > I(pl,m,nl,a(t)),G;(nl,t),G:(na,w) (108)
t=Qqo(T)+1n1=1n,=Q.(T)
2 T t t

S Qa(T) + % + Z Z Z IP (I(pa,naanav O[(t)) 2 I(pl,nlanla Ck(t)),G;(’le,t), Gz(navt))u (109)

t=Qu(T)+1n1=1n,=Q.(T)

where the last equation follows from the fact that ZtT:Qa(T) _H(t%) < 72/6 and (103) can be obtained by taking the
expectation on both sides of the first inequality of (6) in (Auer et al., 2002) and using the fact that arm ¢ is chosen implies
that ¢’s index is larger than the optimal arm’s. Next, to provide an upper bound for (109), we need to consider the following
three cases separately. As suggested by (109), we can focus on the case where 1, > Qo (7).
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e Casel: ny > mlogt

Since ny > m logt, we have p1,, > 61 — 5A on the event G (ny,t). Similarly, as n, > Q.(T) >

m logt, we have p, n, < 0, + 54, on the event G} (ng,t). Therefore, we know

Pl = Pam, > (1—€)A. (110)
Then, we have

I(prn,, 1, 0(t)) > I(6; — %A,nl,a(t)) (111)

> I(6, — %A,K*(Gl - EA,ea + EA)a(t) a(t)) (112)

> 100 = 580, K* (61 = 50,6, + S A)a(t), a(t)) (113)

> I(pan, K™ (61 - gA,ea + 5A)a(b), a(b) (114)

> 1(Pan,, Qa(T), a(t)) (115)

> I(pa,ng; Mas (1)), (116)

where (111) and (113)-(114) hold by Lemma 1.(i) (i.e., K*(0, ') is strictly decreasing with respect to 6 and strictly
increasing with respect to #), (112) holds by Lemma 2, and (115)-(116) follow from Lemma 1.(i). Hence, in Case 1, we

always have I (p1,n,,n1, a(t)) > I(pa,n, > a, a(t)).

e Case2: n; logtand n; < K*(01 — §A,0)a(t)

< D= €A9)

Similar to Case 1, since n, > Q.(T) > mlogt we have pg n, < 0, + 5A, on the event Gl (na,t).
2

Moreover, as n; < K*(61 — §A,0)a(t) and ng > Qu(T) > K*(01 — 54,00 + 5A)a(t ), by Lemma 3 we know

10,1, (t)) > I(0a + %A,na,a(t)). 117)
Therefore, we obtain that
I(p1nysn,a(t)) > I(0,n1,a(t)) (118)
> I(0, + %A,na,a(t)) (119)
> I(payna,na,a(t)), (120)

where (118) and (120) follow from Lemma 1.(ii), and (119) is a direct result of (117). Hence, in Case 2, we still have
I(pl,nl y N1, Oé(t)) > I(pa,na y Nas O[(t))
. 4 * _ €
e Case3: ng < DO —55.07) logtand ny > K*(01 — §A,0)a(t)
Recall that a(t) = C,logt with C, > 4/(D( —54A,01) - K*(61 — 5A,0)). Therefore, the two events {n; <
W logt} and {ny > K*(6; — £A,0)a(t)} cannot happen at the same time.

To sum up, in all the above three cases, we have
P (I(pa,na, Na,(t)) = I(p1ny,n1,a(t)), Gy (n1, 1), GI(HM)) =0. (121)
By (109) and (121), we conclude that E[N,(T)] < Q.(T) + %2, for every a # 1.

Finally, the total regret can be upper bounded as

)< Z A, - E[N,(T)] (122)

N
4 . € £ 2
Z {max{lwwycaf( (912Aa,9a+2Aa)}logT+1+3} (123)
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J. Proof of Proposition 3

Proof Sketch: We extend the proof procedure of Proposition 2 for Gaussian rewards, with the help of Hoeffding’s inequality.
We then prove an additional lemma, which shows that conditioned on the “good” events, the RBMLE index of the optimal

arm (i.e., arm 1) is always larger than that of a sub-optimal arm a if N, () > 2 «(t) and a(t) > 256" , regardless of
Ny (t). '

We extend the proof of Proposition 2 to the case of Gaussian rewards. To begin with, we define the confidence intervals and
the “good” events. Recall that for each arm 7, we define p; ,, to be the empirical average reward collected in the first n pulls
of arm 7. For each arm 4, for each pair of n,t € N, we define

0;(n,t) ;= inf {5 : max { exp(—nD(0; + 6,0;)), exp(—nD(6; — 6,6;))} < %} (124)

~+

Accordingly, for each arm ¢ and for each pair of n, ¢ € N, we define the following events:

Gin,t) = {[pin — 0:] < 8:(n, 1)}, (125)

For the Gaussian rewards, we can leverage Hoeffding’s inequality for sub-Gaussian distributions as follows:

Lemma J.1 Under o-sub-Gaussian rewards for all arms, for any n € N, we have

n
P(|pin — 0s| > 6) < 2€Xp(—ﬁ52). (126)

Proof of Lemma J.1: This is a direct result of Proposition 2.5 in (Wainwright, 2019). O

Based on Lemma J.1, we focus on the case D(0,6") = 51:(|0' — 6”|)* and &;(n,t) = /(802 logt)/n. For ease of
notation, we use . to denote the constant 8c2.

Before providing the regret analysis, we first introduce the following useful lemma.

Lemma J.2 Suppose v > 0 and p1, o € R with py > po. Given a(t) = , > mzuz a(t)
and any ny > 0, we have I(py — +/(ylogt)/ni,ny, a(t)) > I(pe + /(v logt) /ng,ng,
Proof of Lemma J.2: We start by considering ny > M «(t), for some M > 0. Then, note that
logt logt aft
(= 2225 a(t)) = — 4| 2% L edd) (127)
nq ny 2’)11

logt logt t
I(p2 + /22855 o a(t)) = o + 4| 2% Lol (128)
N N 2n2

For ease of notation, we use x1 and x2 to denote /(7 logt)/ny and /(v logt)/ns, respectively. Then, we know

logt logt c
(=T al) = I 4|7 055 2 al)) 2 (= o) = () 4 5@l —ad) - (129)

¥ c 4 1
> (= pi) — a1 — 4] —— + — % — — 130
> (1 — p2) — 71 ot 27501 IR (130)

where (130) follows from ny > Ma(t). Define w(x1) := (u1 — p2) — 21—/ 757 + %x% The quadratic polynomial

ST
w(x1) remains positive for all 2; € R if the discriminant of w(z ), denoted by Disc(w(x1)), is negative. Indeed, we have
Disc(w(z)) = 1 — 4 <+ (= /<L — 1 4y — ) < —39 (131)

Y= 2y cM 2M b= H2)) = ’

where the last inequality follows from ¢ > 2“’ and M = O

M1 Mz

Now, we are ready to prove Proposition 3: Consider the bias term «(t) = C, logt with C,, > 327 , where v* = 802,
Recall that we assume arm 1 is the unique optimal arm. Our target is to quantify the total number of trials of each
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sub-optimal arm. Next, we characterize the expected total number of trials of each sub-optimal arm, i.e., E[N,(T")]. We
define Q% (T) = 2 C,logT. By using a similar argument to (102)-(109), we have

T

ENAT)] < @u(T)+ 3 P ((palt), Na(t), at) > 1(mn (1), Ni(1), a(0)), Na(t) > Q5(T)) (132)
t=Q; (T)+1
T t t
< Q;(T) + Z Z Z P (I(pa,navnaa O‘(t)) 2 I(pl’”“nl’ oz(t))) (139
t=Qx(T)+111=1n,=Qx(T)
T t t
<QiD)+ Y (P (G1(m1,)°) +P (Galnas 1)) ) (9
t=Qx(T)+1 n1=1n,=Qx(T) <z <&
T t t
Y Y P(Ienenesa®) = I (pramsalt), Giln, ), Galna, 1)) (13

2 T t t
s@;(T)+2%+ >y Y P(I(pa,na,na,a(t))zI(pl,m,m,a(t)),G1<n1,t),Ga(na7t)). (136)

t=Q;(T)+1m1=1n,=Q;(T)

Conditioned on the events G;(n1,t) and G, (ng,t), we obtain that

I(plﬁnl,nl,oz(t)) > 1(01 — (v« logt)/n1,n1, at)) (137)
> I(0, + v/ (7« logt) /ng, ng, a(t)) (138)
> I(Pang» a» (t)), (139)

where (137) and (139) follow from Lemma 1.(i), and (138) follows from Lemma J.2. Hence, for n; > 0 and n, > Q%(T),
P (1(panasnas (1)) = 1(p1nssm1, (), G (m1,8), Ga(na, 1)) = 0. (140)

By (136) and (140), we know E[N,(T)] < Q(T) + 32, for every a # 1. Hence, the total regret can be upper bounded as
92

) < Z A, C log T + T] (141)

(|

K. Proof of Proposition 5

The proof of Proposition 2 can be easily extended to Proposition 5 by replacing the Chernoff bound with the sub-Exponential
tail bound. For sub-exponential reward distributions, we consider the sub-exponential tail bound as follows:

Lemma K.1 Under (p, k)-sub-exponential rewards for all arms, for any n € N, we have

252

n
P(pig — 05> ) Sexp (= 5 ). 142
(s 2 0) < exp 2(nkd + p?) (142)
Similar to the proof of Proposition 2, we consider the bias term «(t) = C,logt, but with C, >

16(keA + 2p%)/((eA)2K* (01 — 5, 0)). Note that here we simply replace D(6; — £, 6;) with 4(5((:‘%:;2) by com-
paring (142) with (93). Similarly, we define

~ 16(keA + 2p? . £ £
Qa(T) = max {((EAG)Q)) C(xK ((91 - iAm 911 + iAa)} logT + 1. (143)

Note that the proof of Proposition 2 relies only on Lemmas 1-3, and these lemmas are tied to the distributions for deriving the
RBMLE index, not to the underlying true reward distributions. Therefore, it is easy to verify that the same proof procedure
still holds here by replacing Q,(T") with Q. (T). O
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L. Proof of Proposition 6

Proof Sketch: An O(logT') regret bound can be obtained by considering the extensions as follows:

e By extending Lemma J.2, we show that for any two arms 4 and j, there exist constants M; > 0 and M> > 0 such that
I; > I; forany n; < My logT and nj > MylogT.

o We then extend (132)-(133) by using the fact that arm a is chosen implies that its index is larger than all the other arm’s.
e Extend (134)-(136) by considering the good events across all arms (instead of just arm a and the optimal arm).

e Finally, we extend (137)-(139) by using Lemma J.2 and the fact that under the good events, the estimated At is between
A/2 and A.

In Algorithm 1, since gradually learning the minimal gap A involves all the arms (see Line 7 of Algorithm 1), we need to
extend Lemma J.2 to remove the assumption p; > p5. The extension is conducted in Lemma L.1 below.

Lemma L.1 Let vy be a positive constant. For any two arms i and j with i;, pt; € Rand § :== p; — pu;, given a(t) = clogt

with ¢ > W then for any n; < Mm log(t) and n; > M logt, we have I(p; — /(ylogt)/ni, n;, a(t)) >
I(p; 4+ +/(vlogt)/n;,n;, ot)), where M = W.

Proof of Lemma L.1: For ease of notation, we use I; and I; to denote I(p; — +/(ylogt)/ni,n;,a(t)) and I(u; +

V (ylogt)/n;,n;,a(t)), respectively, within this proof. Then, we have
logt ot

ylogt | a(t)

I = p; — . o (144)
logt «ft

Ij = p;+ ! g +27(1,)' (145)
J J

Using « to denote +/ (v logt)/n;, we have

c c 2
=L 2 (= ) —w— 2+ o2 = = (4/7) (146)

M 2y 27 M
v ¢ € 2
P e N G R 14
o M9 + 7T — T (147)
where (146) follows from n; > M log(t). Since n; < £ M m log(t), we have
_ [ylogt 8vlogt _JA -max(5,A)
- \/ n; = \/32—y(N+2) A o 4N +2) (148)
A2 max(6,A)

By (148) and the fact that the cz?/(27) —  has its minimum at z = /¢ < A/(32(N + 2)), we can construct a lower
bound for cz?/(27) — z in (147):

imz_xziﬁmax(d,A) B 87’ymax(5,A). (149)
27 2y M A M A
Then we can obtain a lower bound of I; — I;:
/ 7 c c max(d,A) /8y max(d,A)
-1 > [ IR ~ St S A [Rnhisain St St
I —1; > —6 — —|— -8 A i A (150)

B 8y max ( 5 A) o max(d, A)
_%_,/ M ) (557 = o7 -5 =) (151)
vy max(5 A) c max(J, A)
A 7 s v R W (152)

Amax(0,A) 7
m + 5 max(6, A), (153)

>0, (154)

>0 (V8+1)
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where (152)-(153) follow from that ¢ > #2Y0V+2) 4pq py = 320(0+2), O

Proof of Proposition 6: First, we set v = 802. Recall that T := min{t € N : 8(t) > W} < oo. Within this proof,
we take 6;(n,t) = \/(202(N + 2)logt)/n and define the good events as G;(n,t) := {|p;, — 0;| < ;(n,t)}. By Lemma
J.1, we know P(G;(n;, t)¢) < 2/tN+2 for all t and i. We also define Q7 (T) := max{4 - w log T, Ty }. Denote by
E[N,(T)] the expected total number of trials of arm a. Then for each a, we can construct an upper bound of E[N,(T")] by:

T
ENGD] < QD)+ Y. P(I(palt) Nalt), a(®) = I(pit), Ni(t), a(t)) Vi # a, Na(t) = Qu(T))  (155)
t=Q; (T)+1
T t t
<D+ D> Y, P(I(pa,na,na,a(t))zl(pi,m,m,a(t),wyéa)) (156)
t=Qy; (T)+1 r;;;l na=Q%(T)
T t t N
<Qn+ Y (ZP(Gi(ni,t)c)) (157)
t:QZ(T)-HTz;é:alna:Q;(T) g

<ON/tN+2

T t t
+ Z Z Z P(I(pa’na,na,a(t)) > I(pi’n“n’a(t)),w # a,G1(n1,t),Ga(na,t),- - ,GN(nN,t))

t=Q; (T)+1ni=1n,=Q;(T)

i#a
(158)
2
< Qi(T) + N?” (159)

+ Z Z Z ]P’(I(paynwna,a(t)) 2I(pz-yn“ni,a(t)),w;éa,Gl(nl,t),GQ(ng,t),n- ,GN(nN,t)).

t=Qx(T)+1n1=1n,=Qx(T)

(160)
e Casel: n; > §327(A]\£+2) max(GaA—Qi,A) log t for all ¢ # a. Since n; is large enough, it is easy to check that the following
inequality holds under the good events for all ¢ # a:
2 _ 0, _ 0,
[— 202 logt < max (0, — 0;, A) < max (6, 0“A)' (161)

1 32v(N+2) A - / -
B ’YAQ max(0,—0;) 10gt AVN +2 8

Similarly, we have |pg n, — 0a| < s\ffﬁ' Moreover, by checking L;(t) and U;(¢) under the good events, we also
know ﬁt > %. This also implies that CA'a(t) < %7;2) and hence «o(t) < %7;2) log t. Therefore by Lemma J.2,
we know that I(an1 SN, a(t)) > I(pa’na Mg,y ().

e Case 2: There exists some ¢ # a such that n; < %32”(;\?2) max(@Afe- ) logt. By Lemma L.1, this implies that

I(pi,n,-vniv Oé(t)) > I<pa,na7naa Oé(f))

Therefore, we have for every a # 1,

N 2
EIN.(T)] < Qu(T) + =5 (162)
128v(N + 2) N2
:max{TlogT,To}—l— 3 (163)
Hence, the total regret can be upper bounded as
N
128v(N + 2) N2
R(T) < ZAa[max{TlogT,To} n T} (164)

a=2
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M. Additional Empirical Results

In this subsection, we present additional empirical results for more examples to demonstrate the effectiveness, efficiency and
scalability of the proposed RBMLE algorithm.

M.1. Effectiveness

Figures 3-4 illustrate the effectiveness of RBMLE with respect to the cumulative regret, under a different set of parameters,
for the three types of bandits. Tables 2-10 provide detailed statistics, including the mean as well as the standard deviation
and quantiles of the final regrets, with the row-wise smallest values highlighted in boldface. From the Tables, we observe
that RBMLE tends to have the smallest value of regret at medium to high quantiles, and comparable to the smallest values at
other lower quantiles among those that have comparable mean values (e.g., IDS, VIDS, KLUCB). Along with the presented
statistics of standard deviation, they suggest that RBMLE’s performance enjoys comparable robustness as those baselines
that achieve similar mean regret.

M.2. Efficiency

Figures 5-6 present the efficiency of RBMLE in terms of averaged computation time per decision (ACTPD) vs. averaged
final cumulative regret. The computation times are measured on a Linux server with (i) an Intel Xeon E7 v4 server operating
at a maximal clock rate of 3.60 GHz, and (ii) a total of 528 GB memory. While there are 64 cores in the server, we force the
program to run on just one core for a fair comparison.

M.3. Scalability

Tables 11-13 show the computation time per decision of different policies under varying numbers of arms.
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Figure 3: Averaged cumulative regret: (a) Bernoulli bandits with (6;)1%; = (0.655, 0.6, 0.665, 0.67, 0.675, 0.68, 0.685,
0.69, 0.695, 0.7) & A = 0.005; (b) Gaussian bandits with (91')1121 =(0.5,0.75, 0.4, 0.6, 0.55, 0.76, 0.68, 0.41, 0.52, 0.67) &
A = 0.01; (c) Exponential bandits with (91)1121 = (0.46,0.45,0.5,0.48,0.51, 0.4, 0.43, 0.42, 0.45, 0.44) & A = 0.01.
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Figure 4: Averaged cumulative regret: (a) Bernoulli bandits with (6;)12, = (0.755, 0.76, 0.765, 0.77, 0.775, 0.78, 0.785,
0.79, 0.795, 0.8) & A = 0.005; (b) Gaussian bandits with (;)12; = (0.65, 0.35, 0.66, 0.4, 0.65, 0.64, 0.55, 0.4, 0.57, 0.54)
& A = 0.01; (c) Exponential bandits with (6,)12, = (0.25, 0.28, 0.27, 0.3, 0.29, 0.22, 0.21, 0.24, 0.23, 0.26) & A = 0.01.

Table 2: Statistics of the final cumulative regret in Figure 1(a). The best in each row is highlighted.

Algorithm RBMLE| IDS VIDS KLUCB| UCBT| TS UCB | MOSS| BUCB| KG KGMin| KGMN
Mean Regret 263.5 406.3 | 449.6 730.4 4747 | 426.9| 1809.5| 464.5 | 580.9 | 2379.5| 2384.2 | 1814.3
Std. Dev. 233.5 466.7 | 618.2 109.3 176.3 | 149.3| 113.0 | 93.1 105.8 | 2163.2| 355.4 344.0
Quantile .10 | 1424 74.7 54.2 584.4 309.9 | 283.2| 1647.3| 355.8 | 4529 | 3.7 1899.1 | 1344.8
Quantile .25 | 161.4 113.5 | 90.0 661.0 362.8 | 326.6| 1750.4| 394.2 | 519.2 | 1000.9| 2103.2 | 1555.3
Quantile .50 | 190.6 184.3 | 134.5 717.7 448.7 | 404.0] 1815.5| 458.9 | 563.77| 2001.4| 2411.6 | 1844.2
Quantile .75 | 237.8 461.4 | 1043.2 | 804.0 543.5 | 489.2 1874.3| 520.8 | 638.0 | 3999.8| 2620.3 | 2057.7
Quantile .90 | 430.0 1138.3 | 1116.4 | 860.9 655.0 | 595.1| 1963.1| 570.8 | 713.8 | 5013.8| 2809.4 | 2254.1
Quantile .95 | 993.1 12479 | 12479 | 926.3 759.7 | 647.6) 1996.6| 615.6 | 766.0 | 6992.2| 2911.4 | 2326.5
Table 3: Statistics of the final cumulative regret in Figure 3(a). The best in each row is highlighted.
Algorithm RBMLE| IDS VIDS KLUCB| UCBT| TS UCB | MOSS| BUCB| KG KGMin| KGMN
Mean Regret 361.5 3713 | 416.7 831.9 616.9 | 505.8] 1437.9] 582.9 | 712.5 | 1637.9| 1309.0 | 991.1
Std. Dev. 247.6 2859 | 3428 131.9 130.7 | 156.3| 78.5 | 169.9 | 120.3 | 1592.7| 214.1 198.4
Quantile .10 133.0 1163 | 77.2 650.3 440.6 | 334.4) 1335.8| 411.6 | 564.3 | 2.3 1013.3 | 7419
Quantile .25 165.1 164.4 | 147.0 732.4 532.3 | 385.0/ 1388.3| 461.1 | 641.2 | 501.5 | 1184.1 | 876.2
Quantile .50 223.5 262.8 | 248.3 823.1 598.0 | 477.9| 1436.7| 532.7 | 715.1 | 1002.6| 1338.8 | 987.8
Quantile .75 608.4 568.9 | 593.1 930.3 693.4 | 575.3| 1495.6| 654.8 | 782.6 | 2996.5| 1447.2 | 1119.8
Quantile .90 661.2 681.7 | 1003.2 | 1020.6 779.5 | 698.3 1540.4| 816.1 | 865.3 | 3499.3| 1538.3 | 1228.4
Quantile .95 722.9 835.1 | 1060.9 | 1062.0 857.9 | 793.4] 1561.2] 943.2 | 906.4 | 4497.6| 1620.9 | 1343.0
Table 4: Statistics of the final cumulative regret in Figure 4(a). The best in each row is highlighted.
Algorithm RBMLE| IDS VIDS KLUCB| UCBT| TS UCB | MOSS| BUCB| KG KGMin| KGMN
Mean Regret 313.2 355.7 | 425.5 740.5 669.5 | 493.0| 1445.6] 572.1 | 638.9 | 2131.2| 1301.0 | 757.2
Std. Dev. 228.1 386.5 | 474.7 126.9 120.3 | 171.9] 69.1 | 132.7 | 127.8 | 1336.5] 209.8 178.3
Quantile .10 | 142.2 95.1 70.2 581.4 506.7 | 328.9| 1347.8| 433.6 | 485.6 | 451.3 | 1024.6 | 531.2
Quantile .25 | 169.4 133.2 | 102.5 651.6 573.5 | 374.0] 1396.6| 463.5 | 542.7 | 1001.1| 1174.2 | 628.7
Quantile .50 | 203.7 179.0 | 173.9 725.9 680.5 | 463.3| 1446.4| 543.0 | 623.3 | 2001.2| 1322.2 | 754.0
Quantile .75 | 369.7 543.2 | 589.7 806.5 751.9 | 534.0| 1497.7| 648.6 | 724.3 | 3000.2| 1442.1 | 897.2
Quantile .90 | 680.2 695.5 | 1067.4 | 886.3 833.6 | 726.2| 1541.1| 760.8 | 813.5 | 3999.8| 1563.4 | 963.8
Quantile .95 | 720.2 891.4 | 1739.8 | 999.6 867.1 | 774.1] 1554.6| 830.9 | 867.4 | 4498.3| 1590.7 | 1039.2
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Table 5: Statistics of the final cumulative regret in Figure 1(b). The best in each row is highlighted.

Algorithm RBMLE| VIDS | KLUCB&UCB | GPUCB | GPUCBT| TS BUCB | KG KG*
Mean Regret 730.6 775.0 | 1412.2 2640.3 848.5 932.7 | 1222.3 | 1684.3 | 1046.0
Std. Dev. 827.4 678.7 | 219.2 227.0 314.2 282.1 | 231.4 2056.8 | 238.9
Quantile .10 | 1353 233.9 | 1147.2 2382.8 | 529.3 657.8 | 960.8 204 788.0
Quantile .25 | 160.2 336.0 | 1272.1 2500.0 | 608.0 706.6 | 1036.5 | 59.9 891.6
Quantile .50 | 263.1 544.1 | 13959 2600.4 | 814.7 876.0 | 1205.9 | 1035.8 | 1000.6
Quantile .75 | 1140.8 1137.7 | 1545.9 2787.1 1001.1 1125.3| 1390.6 | 2028.0 | 1171.1
Quantile .90 | 2107.9 | 1516.5 | 1674.6 2916.1 1228.6 1304.8| 1512.9 | 4028.8 | 1314.1
Quantile .95 | 2157.6 | 1862.0 | 1724.6 3024.4 | 1578.7 1472.7| 1565.5 | 7818.3 | 1413.7

Table 6: Statistics of the final cumulative regret in Figure 3(b). The best in each row is highlighted.

Algorithm RBMLE| VIDS | KLUCB&UCB | GPUCB| GPUCBT| TS BUCB | KG KG*
Mean Regret 531.1 638.5 | 1102.7 2464.2 | 607.7 684.3 | 923.6 1995.0 | 760.2
Std. Dev. 469.5 1117.0 | 196.9 210.8 234.1 250.1 | 178.7 3541.8 | 163.8
Quantile .10 | 1455 143.7 | 859.7 2200.1 361.4 411.1 | 7245 21.1 568.4
Quantile .25 | 167.4 206.6 | 937.4 2320.7 | 4443 501.7 | 792.9 30.2 664.5
Quantile .50 | 207.7 314.1 | 1093.2 2466.4 | 544.8 623.1 | 927.2 1014.4 | 7525
Quantile .75 | 1131.8 889.0 | 1232.0 2605.0 | 714.6 792.2 | 1042.0 | 1044.3 | 851.4
Quantile .90 | 1188.1 1183.3 | 1346.8 2726.0 | 926.2 1058.9| 1174.1 | 8121.5 | 930.0
Quantile .95 | 1204.2 1248.6 | 1439.0 2804.9 | 1041.8 1209.2| 1193.5 | 9023.5 | 959.5

Table 7: Statistics of the final cumulative regret in Figure 4(b). The best in each row is highlighted.

Algorithm RBMLE| VIDS | KLUCB&UCB | GPUCB| GPUCBT| TS BUCB | KG KG*
Mean Regret 652.0 694.7 | 1302.0 2281.0 | 856.5 903.4 | 1149.5 | 1233.6 | 1001.7
Std. Dev. 581.8 776.1 | 164.5 169.5 255.8 268.2 | 201.0 1659.2 | 234.8
Quantile .10 | 127.3 193.6 | 1100.0 2062.5 | 561.1 574.8 | 897.0 24.5 747.2
Quantile .25 | 155.7 3229 | 11734 2156.6 | 665.7 715.8 | 1000.4 | 72.0 827.9
Quantile .50 | 2654 4719 | 1295.7 22627 | 814.3 849.3 | 1130.5 | 1021.1 | 944.4
Quantile .75 | 1116.2 861.0 | 14283 2397.7 | 1007.8 1085.6| 1294.0 | 1987.0 | 1128.1
Quantile .90 | 1202.8 1236.1 | 1492.8 2506.3 1164.6 1283.0| 1404.6 | 2028.1 | 1346.7
Quantile .95 | 2021.8 | 1467.5 | 1549.4 2545.1 1334.9 1394.5| 1511.5 | 2055.5 | 1467.2

Table 8: Statistics of the final cumulative regret in Figure

1(c). The best in each row is highlighted.

Algorithm RBMLE| VIDS | KLUCB| TS UCB MOSS | BUCB | KG
Mean Regret 179.6 2433 | 3227 208.6 | 1504.6 379.9 | 288.2 961.6
Std. Dev. 119.4 463.1 | 63.9 61.3 66.1 44.5 71.9 1063.3
Quantile .10 | 128.7 37.6 239.4 132.8 | 1430.9 3294 | 196.7 26.5
Quantile .25 | 139.7 47.9 271.3 157.7 | 1452.0 345.8 | 2383 37.2
Quantile .50 | 155.2 70.5 331.7 202.3 | 1505.4 380.1 | 275.1 387.2
Quantile .75 | 173.4 103.7 | 367.2 243.4 | 1550.6 405.9 | 330.6 2450.7
Quantile .90 | 1954 1039.9 | 407.0 303.1 | 1586.5 4350 | 3773 2509.9
Quantile .95 | 291.7 1074.1 | 423.2 320.1 | 1617.6 457.8 | 405.3 25227
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Table 9: Statistics of the final cumulative regret in Figure 3(c). The best in each row is highlighted.

Algorithm RBMLE| VIDS | KLUCB| TS UCB MOSS | BUCB | KG
Mean Regret 294.6 3224 | 710.6 436.7 | 1805.6 453.5 | 600.8 1000.0
Std. Dev. 301.3 3525 | 118.0 168.7 | 126.6 147.8 | 126.3 1637.9
Quantile .10 | 139.8 93.3 565.4 288.1 | 1653.3 342.8 | 464.1 349
Quantile .25 | 148.7 116.4 | 609.8 3359 | 1713.9 374.8 | 7929 30.2
Quantile .50 | 176.9 166.1 | 695.1 411.0 | 1789.0 419.6 | 592.2 77.4
Quantile .75 | 2374 273.8 | 784.9 468.3 | 1898.1 4839 | 662.3 1050.0
Quantile .90 | 919.0 1064.9 | 875.6 610.0 | 1970.0 578.0 | 739.0 4920.6
Quantile .95 | 1183.3 1112.1 | 916.6 682.5 | 2035.3 644.9 | 789.5 5042.0

Table 10: Statistics of the final cumulative regret in Figure 4(c). The best in each row is highlighted.

Algorithm RBMLE| VIDS | KLUCB| TS UCB MOSS | BUCB | KG
Mean Regret 195.2 215.9 339.1 221.3 | 1815.8 462.0 298.8 1460.3
Std. Dev. 140.2 4252 | 53.6 60.3 69.2 53.3 45.9 2035.8
Quantile .10 | 140.9 43.5 264.9 159.6 | 1729.3 402.8 247.8 26.7
Quantile .25 | 153.1 55.9 301.4 176.9 | 1776.9 428.6 | 263.5 33.7
Quantile .50 | 166.2 70.5 335.7 211.3 | 1818.0 456.7 297.7 58.3
Quantile .75 | 188.0 94.1 373.1 248.6 | 1863.7 480.2 326.5 3249.7
Quantile .90 | 225.8 1037.1 | 408.4 296.9 | 1897.8 532.3 | 365.8 4955.2
Quantile .95 | 291.7 1064.6 | 433.2 319.3 | 1934.1 563.1 383.3 4966.9
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Figure 5: Averaged computation time per decision vs. averaged final cumulative regret: (a) Figure 3(a); (b) Figure 3(b); (a)

Figure 3(c).

Table 11: Average computation time per decision for Bernoulli bandits, under different numbers of arms. All numbers are
averaged over 100 trials with 7' = 10* and in 10~* seconds. The best in each row is highlighted.

# Arms (Statistics) RBMLE| IDS | VIDS| KLUCB| UCBT| TS UCB | MOSS| BUCB| KG | KGMin| KGMN
10 (Mean) 1.36 175 | 123 12.8 1.53 0.225 | 0.712 | 0.895 | 0.855 | 28.7| 0.649 0.453
30 (Mean) 3.61 1260 | 788 | 49.7 4.96 0.628 | 2.19 2.83 2.58 97.6| 1.89 1.36

50 (Mean) 4.58 3630| 1930 | 80.3 7.85 0.628 | 342 | 440 | 4.11 159 | 2.95 2.14

70 (Mean) 7.56 6660 | 3590 | 113 10.3 0.628 | 4.49 5.87 5.43 209 | 3.97 2.86

10 (std. Err.) | 0.236 548 | 33.1 | 1.53 0.586 | 0.0380| 0.268 | 0.333 | 0.351 | 10.9| 0.284 0.172
30 (std. Err.) | 130 458 | 232 | 17.3 1.52 0.106 | 0.646 | 0.844 | 0.714 | 29.2| 0.557 0.408
50 (std. Err.) | 2.04 972 | 536 | 294 2.59 0.106 | 1.11 1.40 1.25 49.51 0.931 0.678
70 (std. Err.) | 2.70 1330 | 883 | 36.6 3.63 0.106 | 1.53 2.00 1.76 69.3| 1.34 0.962
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Figure 6: Averaged computation time per decision vs. averaged final cumulative regret: (a) Figure 4(a); (b) Figure 4(b); (a)
Figure 4(c).

Table 12: Average computation time per decision for Gaussian bandits, under different numbers of arms. All numbers are
averaged over 100 trials with 7' = 10* and in 10~* seconds. The best in each row is highlighted.

# Arms (Statistics) RBMLE| VIDS | KLUCB&UCB | GPUCB| GPUCBT | TS BUCB | KG KG*
10 (Mean) 0.617 135 0.341 0.346 0.318 0.451 | 17.9 25.1 10.9
30 (Mean) 1.07 1410 1.12 1.10 1.08 1.33 75.2 103 21.2
50 (Mean) 1.49 3580 1.22 1.79 1.76 2.44 121 168 339
70 (Mean) 1.95 6610 1.67 2.24 222 3.16 162 226 45.9
10 (std Err.) | 0.284 53.9 0.417 0.136 0.160 0.0425| 6.98 9.37 2.717
30 (std Err.) | 0.484 409 1.28 0.370 0.370 0.321 | 26.2 35 5.61
50 (std Err.) | 0.686 866 2.14 0.563 0.563 0.562 | 42.1 56.1 9.77
70 (Std Err.) | 0.871 1290 2.95 0.755 0.773 0.774 | 58.5 77.6 15.7

Table 13: Average computation time per decision for Exponential bandits, under different numbers of arms. All numbers are
averaged over 100 trials with 7' = 10* and in 10~* seconds. The best in each row is highlighted.

# Arms (Statistics) RBMLE| VIDS | KLUCB| TS UCB | MOSS | BUCB | KG
10 (Mean) 1.01 133 7.26 1.38 0.420 | 0.548 | 14.9 0.519
30 (Mean) 1.93 1160 22.8 3.97 1.20 1.61 42.6 1.36
50 (Mean) 2.97 3170 36.5 6.64 1.92 2.53 75.5 2.23
70 (Mean) 3.79 6430 53.7 9.30 2.67 3.59 102 3.06
10 (std. Err.) | 0435 13.6 0.884 0.316 | 0.0980 | 0.112 | 1.55 0.101
30 (Sstd. Err.) | 0.890 187 2.79 0.777 | 0.263 | 0.340 | 5.02 0.265
50 (Std. Err.) | 1.24 447 5.47 1.20 0.397 | 0.498 | 10.2 0.456
70 (Std. Err.) | 1.56 788 6.92 1.96 0.531 | 0.688 | 12.3 0.605




