An Imitation Learning Approach for Cache Replacement

A. Architecture Details

Our model is implemented in PyTorch (Paszke et al., 2019)
and is optimized with the Adam optimizer (Kingma & Ba,
2014).

Embeddings. In the full-sized model, to embed memory
addresses and cache lines, we train a unique embedding
for each unique memory address observed during training,
sharing the same embedder across memory addresses and
cache lines. We similarly embed PCs.

Concretely, we initialize an embedding matrix W™ &
R(m+1)xdm yia Glorot uniform initialization (Glorot &
Bengio, 2010), where n,,, is set to the number of unique
memory addresses in the training set and d,,, is the dimen-
sion of the embedding. Then, each unique memory address
m is dynamically assigned a unique id 1 to n,,, and its em-
bedding e(m) is set to the i-th row of the embedding ma-
trix W™ . At test time, all memory addresses unseen during
training are mapped to a special UNK embedding, equal to
the last row of W™. We embed PCs with a similar embed-
ding matrix T7W? € R(»+1)xdp,

Attention. After computing embeddings (with either the
full-sized model or the byte embedder) e(ly),...,e(lw)
for each line in the cache state and hidden states
[he—m+1,. .., h] representing the past H accesses, we com-
pute a context g,, for each cache line by attending over the
hidden states with the line embeddings as queries as follows:

1. Following Vaswani et al. (2017), we compute po-
sitional embeddings e(—H + 1),...,e(0), where
e(pos) € R%es and:

pos)
100002/ dpos

e(pos)a;r1 = cos (pioS)
POS)2i+1 = 1000021/ does)

We concatenate these positional embeddings with the
hidden states to encode how far in the past each access
is: [(he—my1;e(—H + 1)), ..., (ht; e(0))]. Although
in theory, the LSTM hidden states can encode posi-
tions, we found that explicitly concatenating a posi-
tional embedding helped optimization.

2. We apply General Attention (Luong et al., 2015) with
each cache line embedding as the query and the con-
catenated hidden states and positional embeddings as
keys:

e(pos)e; = sin (

o = softmax(e(lw)TWeht_HH)

H
Guw = E aihi—p ;.
i=1

The matrix W, € Rm*(distm+dpos) g learned and
g1, - - -, gw can be computed in parallel (Vaswani et al.,
2017).

B. Experimental Details
B.1. Detailed Results

To provide further insight into our learned policy, we also
report results on two additional metrics:

e Top-K Accuracy: The percentage of the time that the
optimal line to evict according to Belady’s is in the
top-K lines with highest probability of eviction under
our learned policy. This indicates how frequently our
learned policy is outputting decisions like those of
Belady’s. We report top-1 and top-5 accuracy. Note
that since each cache set in the last-level cache can
only hold 16 lines, the top-16 accuracy is 100%.

o Reuse Distance Gap: The average difference between
the reuse distance of the optimal line to evict {* and
the reuse distance of the line evicted by PARROT, i.e.,
d:(I*) — di(ly,), where w = argmax; 7(7 | s¢). This
metric roughly captures how sub-optimal the decision
made by PARROT is at each timestep, as evicting a line
with a smaller reuse distance is more likely to lead to a
cache miss. A policy with a reuse distance gap of 0 is
optimal, while a high reuse distance gap leads to more
cache misses.

We report results with of our full model with this metric
in Table 2. In mcf, libquantum, and 1bm, our replacement
policy frequently chooses to evict the same cache line as
Belady’s with a top-1 accuracy of over 75% and a top-5 ac-
curacy close to 100%. In other programs (e.g., omnetpp,
Web Search), our replacement policy’s top-1 and top-5 ac-
curacies are significantly lower, even though its normalized
cache hit rate in these programs is similar to its normalized
cache hit rate in mcf. Intuitively, this can occur when sev-
eral cache lines have similar reuse distances to the reuse dis-
tance of the optimal cache line, so evicting any of them is
roughly equivalent. Thus top-K accuracy is an interesting,
but imperfect metric. Note that this is the same intuition be-
hind our ranking loss, which roughly measures the relative
suboptimality of a line as a function of the suboptimality of
its reuse distance.

The differences in the reuse distance gaps between the pro-
grams emphasize the differences in the program behaviors
and roughly indicate how frequently cache lines are reused
in each program. For example, PARROT achieves wildly dif-
ferent average reuse distance gaps, while maintaining simi-
lar normalized and raw cache hit rates (Table 1) in omnetpp
and mcf, due to differences in their access patterns. In om-
netpp, evicting a line with a reuse distance 100’s of accesses
smaller than the reuse distance of the optimal line some-

An Imitation Learning Approach for Cache Replacement

Table 2. Mean top-1/5 accuracy and reuse distance gap of PARROT,
averaged over 3 seeds with single standard deviation intervals.

Program Top-1 Acc. (%) Top-5 Acc. (%) Reuse Dist. Gap
astar 17.24+1.1 50.8+ 1.8 20065.8 + 6433.1
bwaves 20.9+3.2 49.1£3.0 1356.9 £ 653.5
bzip 21.24+0.9 443+ 2.5 478.1 £ 39.5
cactusadm 91.3£1.7 98.3£0.2 2.0+0.1
gems 15.0+ 0.6 45.5+2.4 46.4 £ 3.8
Ibm 83.6 £ 2.4 98.0 £ 0.4 2.14+0.3
leslie3d 88.5+£0.2 98.14+0.2 1.9+0.0
libquantum 83.2+3.9 97.3+£0.2 2.2+0.6
mcf 75.2+0.5 87.6+0.3 6.4+0.4
milc 452422 65.6 2.3 39.8+5.1
omnetpp 35.0+0.4 65.1+0.4 533.4 £ 8.0
sphinx3 67.0+2.0 88.4+1.9 39.0+ 8.5
xalanc 40.4+2.2 93.44+0.7 34805.1 + 14760.2
Web Search 31.8+0.8 77.5+ 3.6 4012.5 £413.9

times does not lead to a cache miss, as both lines may even-
tually be evicted before being reused anyway. On the other
hand, in mcf, evicting a line that is used only slightly earlier
than the optimal line more frequently leads to cache misses.

B.2. Hyperparameters

The following shows the values of all the hyperparameters
we used in all our final experiments. We ran our final experi-
ments with the bolded values and tuned over the non-bolded
values. These values were used in all of our final experi-
ments, including the ablations, except the history length ex-
periments (Section 5.4), where we varied the history length

H.

e Learning rate: (0.001, 0.003)

e Address embedding dimension (d,;,): 64

e PC embedding dimension (d),): 64

e PC embedding vocab size (n,): 5000

e Position embedding dimension (dps): 128

e LSTM hidden size (dr,sTm): 128

e Frequency of recollecting B: (5000, 10000)

e History Length (H): (20, 40, 60, 80, 100, 120, 140)

We used the same hyperparameter values in all 5 programs
(omnetpp, mcf, libg, Ibm, and Web Search) we evaluated
on, where the address embedding vocab size n,, was set
to the number of unique addresses seen in the train set of
each program (see Table 3). For most hyperparameters, we
selected a reasonable value and never changed it. We tuned
the rest of the hyperparameters exclusively on the validation
set of omnetpp.

B.3. Program Details

Table 3 reports the number of unique addresses and PCs
contained in the train/test splits of each program, including
the number of unique addresses and PCs in the test split

that were not in the train split. Notably, in some programs,
new addresses and PCs appear at test time, that are not
seen during training, requiring the replacement policy to
generalize.

In Table 3, we also report the total number of last-level
cache accesses collected for each of the five programs in
our 50s collection interval. These accesses were split into
the 80% train, 10% validation, and 10% test sets. Since
different programs exhibited varying levels of cacheability
at the L1 and L2 cache levels, different numbers of last-level
cache accesses resulted for each program. These varying
numbers also indicate how different programs exhibit highly
different behavior.

B.4. Randomly Chosen Cache Sets

We randomly chose 64 sets and collected accesses to those
sets on the last-level cache. The 64 randomly chosen sets
were: 6, 35, 38, 53, 67, 70, 113, 143, 157, 196, 287, 324,
332, 348, 362, 398, 406, 456, 458, 488, 497, 499, 558, 611,
718, 725, 754, 775, 793, 822, 862, 895, 928, 1062, 1086,
1101, 1102, 1137, 1144, 1175, 1210, 1211, 1223, 1237,
1268, 1308, 1342, 1348, 1353, 1424, 1437, 1456, 1574,
1599, 1604, 1662, 1683, 1782, 1789, 1812, 1905, 1940,
1967, and 1973.

An Imitation Learning Approach for Cache Replacement

Table 3. Program details in terms of the number of last-level cache accesses and unique addresses/PCs. ‘Train’ and ‘Test” show the number
of unique addresses and PCs appearing in each domain at train and test time, whereas ‘Unseen Test’ indicates the number of addresses and
PCs appearing at test time, but not train time. The given percentages indicate what portion of all test accesses had unseen addresses or PCs.

Train Test Unseen Test

Program Cache Accesses Addresses PCs Addresses PCs Addresses PCs
astar 879,040 13,047 25 8,235 9 46 (0.6%) 0 (0%)
bwaves 2,785,280 443,662 436 209,231 155 12 (0.1%) 38 (5.8%)
bzip 3,899,840 6,086 415 3,571 28 0 (0%) 0 (0%)
cactusadm 1,759,040 298,213 243 83,046 191 0 (0%) 0 (0%)
gems 7,298,880 423,706 5,305 363,313 1,395 1 (0%) 0 (0%)
Ibm 10,224,960 206,271 44 206,265 34 0 (0%) 0 (0%)
leslie3d 6,956,160 38,507 1,705 38,487 1,663 0 (0%) 0 (0%)
libquantum 4,507,200 16,394 14 16,386 5 0 (0%) 0 (0%)
mcf 4,143,360 622,142 73 81,666 67 77,608 (21.6%) 0 (0%)
milc 3,048,000 203,504 254 90,933 82 0 (0%) 2 (0.5%)
omnetpp 3,414,720 16,912 402 14,079 315 275 (0.6%) 3 (1.0%)
sphinx3 2,372,800 20,629 528 4,586 199 0 (0%) 1 (0%)
xalanc 4,714,240 15,515 217 11,600 161 507 (1%) 5 (0%)
Web Search 3,636,800 241,164 32,468 66,645 15,893 10,334 (5.3%) 948 (6%)

