
Boosting Deep Neural Network Efficiency with Dual-Module Inference

Liu Liu 1 2 Lei Deng 2 Zhaodong Chen 2 Yuke Wang 1 Shuangchen Li 3 Jingwei Zhang 3 Yihua Yang 3

Zhenyu Gu 3 Yufei Ding 1 Yuan Xie 2

Abstract
Using deep neural networks (DNNs) in machine
learning tasks is promising in delivering high-
quality results but challenging to meet stringent
latency requirements and energy constraints be-
cause of the memory-bound and the compute-
bound execution pattern of DNNs. We propose
a big-little dual-module inference to dynamically
skip unnecessary memory accesses and compu-
tations to accelerate DNN inference. Leveraging
the noise-resilient feature of nonlinear activation
functions, we propose to use a lightweight lit-
tle module that approximates the original DNN
layer, termed as the big module, to compute ac-
tivations of the insensitive region that are more
noise-resilient. Hence, the expensive memory ac-
cesses and computations of the big module can
be reduced as the results are only calculated in
the sensitive region. For memory-bound models
such as recurrent neural networks (RNNs), our
method can reduce the overall memory accesses
by 40% on average and achieve 1.54x to 1.75x
speedup on a commodity CPU-based server plat-
form with a negligible impact on model quality. In
addition, our method can reduce the operations of
the compute-bound models such as convolutional
neural networks (CNNs) by 3.02x, with only a
0.5% accuracy drop.

1. Introduction
Deep neural networks (DNNs) play a critical role in many
areas like image classification (He et al., 2015; Giacinto &
Roli, 2001; Zheng et al., 2019), natural language processing
(NLP) (Bahdanau et al., 2014; Wu et al., 2016; Graves et al.,

1Department of Computer Science, University of California,
Santa Barbara 2Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara 3Alibaba Group. Cor-
respondence to: Liu Liu <liu liu@ucsb.edu>, Lei Deng <lei-
deng@ucsb.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

2013; He et al., 2019; Wang et al., 2017), and graph process-
ing (Kipf & Welling, 2016; Duvenaud et al., 2015; Klicpera
et al., 2018; Yan et al., 2020). While the DNN models
are usually trained in data-centers, the pre-trained models
can be deployed in both data-centers for cloud-based ser-
vice and edge devices. During inference, there are primary
concerns including latency and energy consumption: low
latency is critical for real-time interaction, and low energy
can help companies reduce cost in data-centers and increase
the endurance of edge devices.

In recent years, extensive studies have shown that quantiza-
tion and pruning are two effective ways to reduce latency
and energy consumption of DNNs (Han et al., 2015b;a;
Narang et al., 2017; Zhu & Gupta, 2017; Dai et al., 2018;
McKinstry et al., 2018). However, most existing studies
apply pruned and quantized models to compute all the out-
put activations; the overall pruning or quantization ratio is
limited by the accuracy loss.

In this paper, we observe that most popular activation func-
tions like ReLU in convolutional neural networks (CNNs)
and sigmoid, tanh in recurrent neural networks (RNNs)
demonstrate noise resilience in particular regions, i.e., the
negative region of ReLU and the saturation regions of
sigmoid, tanh. We theoretically and experimentally pro-
vide evidence that the noise caused by pruning and quanti-
zation in these regions is less influential. This observation
motivates us that more aggressive pruning and quantization
can be applied to these insensitive regions.

Leveraging the noise resilience of DNNs, we propose a big-
little dual-module inference (DMI) algorithm that regards
the original pre-trained module as a big module, and use a
little module that has fewer parameters and lower bit-width
to approximate the results of the big module in the insen-
sitive regions. Executing one DNN layer at inference time
takes the following steps: (1) quantize the input activations
and forward them through the little module; (2) predict
which output neurons belong to the sensitive region based
on results from the little module; (3) compute the output
activations of the big module in the predicted sensitive re-
gion; (4) combine the outputs of the little module in the
insensitive region and the outputs of the big module with in
the sensitive region.

Boosting Deep Neural Network Efficiency with Dual-Module Inference

Table 1. Comparison of adding Gaussian noises to the sensitive or insensitive region of LSTM gates.

Case Cosine similarity before gates Cosine similarity after gates PPLinput forget cell output input forget cell output
Sensitive 0.953 0.859 0.952 0.932 0.934 0.946 0.882 0.940 85.70

Insensitive 0.944 0.929 0.943 0.947 0.968 0.987 0.969 0.977 81.79

The weight matrix of the little module is constructed as
follows. Assuming the weight matrix of big model WHH

is an n × d dense matrix, we first randomly initialize a
smaller n × k quantized dense matrix WLL where k �
d. Then, we multiply it with a k × d random projection
matrix P so that WLLP and WHH have the same size.
Because P is very sparse and its entries are either ±1 or
0, the projection doesn’t influence the bit-width of WLL.
Therefore, WLLP is a sparse and quantized matrix that
has the shape of WHH . The weights of the little module
are trained in a knowledge-distilling way by mimicking
the behaviors of the big module. Specifically, following
Yim et al. (2017), we minimize the Frobenius norm of the
difference between the flows of the solution procedure (FSP)
matrix of the big and little modules. To accurately predict
which output neurons belong to the insensitive region, we
minimize the Kullback-Leibler (KL) divergence between
the output distributions of the big and little modules. Our
theoretical analysis reveals that both targets can be achieved
by minimizing the reconstruction error, i.e., mean-squared
error, between the output feature maps of the big and little
modules.

Our DMI algorithm can be applied to various types of neural
networks. To demonstrate this point, we evaluate its perfor-
mance on CNNs, LSTM, and GRU. For the memory-bound
RNNs, with overall memory accesses reduced by 40% on
a commodity CPU-based server platform, our method can
achieve 1.54x to 1.75x wall-clock time speedup with neg-
ligible impact on model quality. In addition, our method
can reduce the operations of the compute-bound CNNs by
3.02x, with only a 0.5% accuracy drop.

2. Motivation
In this section, we discuss the noise resilience of popular
activation functions in DNNs including tanh, sigmoid, and
ReLU . For clarity, we denote the pre-activation and the
noise by x and δ, respectively. Generally, an activation
function f is resilient to a noise δ when we have |f(x +
δ)− f(x)| < θ, where θ is a threshold.

For tanh, when |x| � 0, we have

|tanh(x+ δ)− tanh(x)| ≈ 2e−2|x||δ|. (1)

Similarly, for sigmoid, when |x| � 0 we have

|sigmoid(x+ δ)− sigmoid(x)| ≈ e−|x||δ|. (2)

While for ReLU , we have

|ReLU(x+δ)−ReLU(x)|
{

= 0 x ≤ −|δ|
≤ |δ| otherwise

. (3)

We define the sub-domain of f that is resilient to the noise δ
as the insensitive region of f . For a given θ, the insensitive
regions of the above three activations are listed as follows


tanh : |x| > 1

2 ln
2|δ|
θ

sigmoid : |x| > ln |δ|θ
ReLU : x < θ − |δ|

. (4)

While the insensitivity ofReLU is quite straightforward, we
demonstrate our conclusions on sigmoid and tanh with a
single LSTM layer for language modeling over PTB dataset.
The baseline perplexity (PPL) is 80.64. For each gate,
we consider two cases: adding Gaussian noise to the pre-
activations before passing through the gate in the sensitive
region; in contrast, adding Gassian noise to the insensitive
region. We separate the (in)sensitive regions by 50% based
on the magnitude of activations.

As listed in Table 1, we report the PPL on the testing set
and the average cosine similarity between the activations of
the baseline model and the noise-introduced model. Before
applying the nonlinear activation functions, the cosine simi-
larity of two cases – adding noise in the sensitive region or
the insensitive region – are in the same level. However, we
observe that after the nonlinear gates, the cosine similarity
in the insensitive case is much closer to one (i.e., fewer
output errors) than that in the sensitive case. We further
compare the PPL of these two cases, and we observe that in-
troducing noise in the insensitive region causes little quality
degradation.

The selection of which output neurons should be in the
(in)sensitive region is dynamic and input-dependent. Unlike
the static weight sparsity that we can prune the ineffectual
connections offline in advance, the dynamic region spec-
ulation requires a very lightweight criterion for real-time
processing. Taking all these into account, we propose a dual-
model inference (DMI) algorithm that efficiently determines
(in)sensitive region and significantly saves the memory ac-
cesses and computations.

Boosting Deep Neural Network Efficiency with Dual-Module Inference

3. Approach
First, we explain the DMI algorithm by taking a fully-
connected (FC) layer as an example and then extend it to
LSTM, GRU, and CNN. For an FC layer with batch size of
one, the operation is typically formulated as z = ϕ(y),y =
Wx+ b, where W is a weight matrix (W ∈ Rn×d), x is
an input vector (x ∈ Rd), b is a bias vector (b ∈ Rn), y
is a pre-activated output vector (y ∈ Rn), z is an activated
output vector (z ∈ Rn), and ϕ is an activation function.

3.1. Overview of Dual-module Philosophy

We have shown in Section 2 that not all values in z need
accurate computation, and those belonging to the insensitive
region can afford some extent of approximation. In other
words, we only need accurate computations and expensive
memory accesses in the sensitive region of y and can skip
the ones in the insensitive region. With that, we still need
approximated results in the insensitive region. Therefore,
we propose to learn a lightweight little module from the
original trained layer, here we refer the original layer as the
big module. Essentially, our little module has low-volume
parameters and low bit-width, thus termed as LL module;
by contrast, the original big module has high-volume pa-
rameters and high precision is called HH module. Let the
outputs from these two modules be yLL and yHH , respec-
tively. If the LL module approximates the HH module
well, the final output vector – a mixture of results from the
HH and the LL modules – can be assembled by

y = yHH �m+ yLL � (1−m) (5)

where m ∈ {0, 1}n is a binary mask vector for the output
switching. mi equals 1 in the sensitive region while it
switches to 0 in the insensitive region. The overall saving
comes from skipping memory accesses and computations of
the big module while paying smaller overhead in accessing
and computing the little module.

Applying dual-module inference introduces two challenges:
first, how to efficiently construct the LL module; sec-
ond, how to predict which output neurons belong to the
(in)sensitive regions.

3.2. Construct the LL Module

As the HH module is the original pre-trained layer, we
only need to construct an extra LL module. Delivering
a lightweight little module at inference time is crucial to
achieving real wall-clock time speedup. We emphasize two
objectives when designing the LLmodule: firstly, achieving
much lower overhead in terms of computation and memory
access than the HH module; secondly, approximating the
outputs of HH module accurately.

Lightweight Linear Transformation. We exploit two

ways to construct a lightweight approximation of WHHx:
making WHH sparse and using low bit-width data.

Inspired by random projection, a common technique for
dimension reduction while preserving the distances in Eu-
clidean space (Achlioptas, 2003; Bingham & Mannila, 2001;
Li et al., 2006; Liu et al., 2019), we first initialize a smaller
dense matrix WLL ∈ Rn×k where k < d, and then trans-
form it by multiplying it with a k × d sparse random projec-
tion matrix P in which

Pij =

√
3

k
×

 +1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

. (6)

In other words, we replace WHHx with WLLPx.
The original layer takes O(n × d) MACs (multiply-and-
accumulate operations), while our sparse kernel only needs
O(13 × k× d+ n× k) MACs. Therefore, using a smaller k
can greatly reduce the memory and compute costs.

However, there still should be a lower bound of k (i.e.
inf(k)) to maintain the approximation accuracy. We make
a hypothesis that the minimum number of parameters in
WLL is approximate to the minimum number of param-
eters in WHHP T that preserves the Euclidean distance
between WHH ’s row vectors. The intuition behind is that
while each row vector in WHH defines the linear transfor-
mation of each output channel, once the Euclidean distance
is not preserved, there might be fewer effectual channels,
which hurts the accuracy.

According to the Theorem 1.1 in Achlioptas (2003), given
constant β and ε, as long as k satisfies

k > k0 =
4 + 2β

ε2/2− ε3/3
log(n) (7)

with probability at least 1− n−β , for all row vectors u,v ∈
Row(WHH), we have

(1−ε)||uT−vT ||22≤||uP T−vP T ||22≤(1+ε)||uT−vT ||22.
(8)

The optimal ε and β can be obtained experimentally on
validation set. As increasing β is somehow equivalent with
decreasing ε, we simplify Equation (7) as follows

k =
4

ε2/2− ε3/3
log(n). (9)

To further reduce the complexity, we also apply the quan-
tization technique to reduce the bit-wdith of parameters.
Specifically, we apply a one-time uniform quantization on
WLL and bLL to avoid complicated calculations. Although
some other accurate quantization methods are available as
well, we find that one-time quantization works well in our

Boosting Deep Neural Network Efficiency with Dual-Module Inference

DMI. Besides, the input x is also quantized to xQ during
run-time to reduce the compute cost.

Knowledge Distillation. In order to train the LL module
such that it is a good approximation of the HH module,
we utilize the Knowledge Distillation method by taking the
HH module as the teacher network and the LL module as
a student network. According to Yim et al. (2017), trans-
ferring the distilled knowledge as the flow of the solution
procedure (FSP) matrix between two layers can increase the
convergence rate and get better performance.

Let the outputs of two layers be x and z. In Yim et al.
(2017), the FSP matrix represented by G = xyT . In order
to transfer the knowledge, we want the FSP matrix of the
student network Gs to approximate to the FSP matrix of
teach network Gt. The loss function is defined as

L = ||Gt −Gs||2F . (10)

In our dual module, we have

Gt = x
(
yHH

)T
, Gs = x

(
yLL

)T
,

||Gt −Gs||2F = Tr
(
xxT

)
||yHH − yLL||22.

(11)

As a result, during fine-tuning, the parameters of the HH
module (i.e., WHH and bHH) are kept frozen while the
parameters of the LL module (i.e., WLL and bLL) are
updated by stochastic gradient descent (SGD) to minimize
the following loss function:

L =
1

S

∑
s

||yHH − yLL||22 =

1

S

∑
s

||(WHHx+ bHH)− (WLLPx+ bLL)||22,
(12)

where S is the mini-batch size.

Insensitive Region Prediction. Whether a pre-activation
belongs to the insensitive region is predicted based on
whether yLLi is in the insensitive region. Without loss of
generality, we assume that ∀i, yHHi follows some distribu-
tion pHH with a probability density function pHH(x). As
the yLL is the output of an FC layer, according to the central
limit theorem, we can assume that each of its entries follow
Gaussian distribution as follows

pLL = N(yLLµ , σ2
LL) (13)

where σLL is a constant value and yLLµ gives the prediction
of the mean. Similarly, the probability density function is
pLL(x).

The difference between these two distributions can be mea-

sured by their Kullback-Leibler (KL) divergence, i.e.

DKL(pHH ||pLL) =
∫ ∞
−∞

pHH(x)ln

(
pHH(x)

pLL(x)

)
dx

= Ex∼pHH [ln (pHH(x))− ln (pLL(x))]
(14)

where E represents the expectation. To make an accurate es-
timation, we can minimize the above KL divergence, which
is equivalent to maximizing Ex∼pHH [ln(pLL(x))], and we
have

Ex∼pHH [ln(pLL(x))]=E

[
ln

(
1

σLL
√
2π
e
−

(yHH−yLLµ)2

2σ2
LL

)]

≈ −ln(σLL)−
1

2
ln(2π)− 1

2σ2
LL

E
[(
yHH−yLLµ

)2]
.

(15)

Because of

E
[(
yHH−yLLµ

)2]≈ 1

S

S∑
i=1

(
yHHi −yLLi

)2
= ||yHH−yLL||22,

(16)
DKL(pHH ||pLL) can be equivalently minimized by mini-
mizing ||yHH − yLL||22 that is just the loss function used
in training the LL model (see Equation (12)).

3.3. Determine the Insensitive Region

Given yLL, the binary mask m in Equation (5) is generated
by predicting which output neurons belong to the insensitive
region. Specifically, based on Section 2, we have{
sigmoid/tanh : if |yLLi | > θth, mi = 0; else mi = 1

ReLU : if yLLi < θth, mi = 0; else mi = 1

(17)
where θth is the threshold can be obtained in the ways as
follows.

Fixed Threshold. We can simply assign a constant value
to θth and tune it on validation set.

Adaptive Filter. With a global fixed threshold θ like the
fixed threshold, we can adaptively assign a threshold to each
layer based on Equation (4), i.e:

θth =


1
2 ln

2|δ|
θ for tanh

ln |δ|θ for sigmoid
θ − |δ| for ReLU

. (18)

|δ| is approximated by 1
n ||y

HH − yLL||2, where n is the
length of yLL. Compared with fixed threshold, the adaptive
filter can allow more aggressive thresholds.

Top-K Mask. We can also specifically control the accel-
eration ratio by taking exactly K elements out of output

Boosting Deep Neural Network Efficiency with Dual-Module Inference

QxLL
QWLL

Qb

 

HHb
0
1
0
1

1

1

‐1

‐1

1

‐1

P



LLy

HHy





MSE
HHW

QxLL
QWLL

Qb

  1

1

‐1

‐1

1

‐1

P



LLy

()HHy m





thHHb x



((1))LLy m

HHWx



+

y



()a ()b

Figure 1. Overview of the Dual-Module Algorithm. (a) Fine-tuning: the LL module is trained with the loss function in Equation (12). (b)
Inference: first, the quantized input activation xQ is injected into the LL module to generate yLL; second, mask m is obtained based on
yLL and the threshold θth; third, based on m, the elements in yHH are selectively computed to produce yHH �m; at last, y is obtained
using Equation (5).

Algorithm 1 Dual-Module Fine-tuning Algorithm
Data: HH module parameters WHH , bHH ; random pro-

jection matrix P ; input batch X = [x1, ...,xS].
Result: quantized LL module parameters: WLL

Q and bLLQ .
1 for it ∈ all iterations do
2 XQ = Q(X);
3

[
yLL1 , ...,yLLS

]
= WLL

Q PXQ + bLLQ ;
4

[
yHH1 , ...,yHHS

]
= WHHX + bHH ;

5 LMSE = 1
S

∑
s ||yHHs − yLLs ||22;

6 update WLL
Q , bLLQ with SGD(minLMSE);

7 end

neurons, where K can be a hyper-parameter tuned on val-
idation set. Intuitively, these K output neurons should be
taken from the sensitive region, so we have

θth =

{
topK(|yLL|) for tanh/sigmoid
topK(yLL) for ReLU

. (19)

We introduce an insensitive ratio as the number of outputs
using the results of the little module over the entire out-
puts. The ratio can be interpreted as the zero ratio in the
binary mask m. The higher insensitive ratio will have fewer
computations and memory accesses in the big module. The
choice of an accurate ratio determines the model inference
quality, and it is a knob to trade-off the inference quality vs.
latency at run-time.

3.4. Overview of the Dual-Module Algorithm

Here we summarize the overall implementation of our dual-
module algorithm during fine-tuning and inference.

Fine-tuning. As illustrated in Figure 1(a), the LL modules
in different layers are fine-tuned individually with the loss
function in Equation (12). The detailed implementation is
in given Algorithm 1.

Algorithm 2 Dual-Module Inference Algorithm
Data: HH module parameters WHH , bHH ; quantized LL

module parameters WLL
Q , bLLQ ; threshold θth to de-

termine m; random projection matrix P ; current
input x.

Result: Final output y
8 (1) xQ = Q(x);
9 (2) yLL = WLL

Q PxQ + bLLQ ;
10 (3) Generating m according to Section 3.3;
11 (4-5) foreach mi ∈m do
12 ifmi == 1 then yi = yHHi = ϕ(WHH [i, :]x+bHHi);
13 else yi = yLLi ;
14 end

Inference. The dual-module inference (DMI) is illustrated
in Figure 1(b) based on Algorithm 2. After obtaining fine-
tuned WLL

Q and bLLQ , dual-module inference takes the fol-
lowing steps: (1) quantize input x with xQ = Q(x), where
Q(·) is a quantization function; (2) obtain the approximated
output yLL by performing yLL = WLL

Q PxQ + bLLQ ;
(3) generate the binary mask m according to Section
3.3; (4) calculate the elements yHHi s.t. mi = 1 with
yHHi = WHH [i, :]x+ bHHi ; (5) produce the final output y
according to the assembling in Equation (5).

3.5. Apply to Various Types of Neural Networks

The above example on FC layer can easily generalize to
various types of neural networks. Here we use LSTM and
CNNs as examples.

Recurrent Neural Networks. There are two major differ-
ences between an LSTM layer and an FC layer: (1) the
computation of each gate involves two GEMV operations;
(2) there is an additional temporal dimension in LSTM. For
the former, we apply the lightweight linear transformation
in Section 3.2 to both GEMVs. For the latter, we modify the

Boosting Deep Neural Network Efficiency with Dual-Module Inference

loss function to guarantee the approximation performance
of the LL module at all timesteps. Taking the forget gate
as an example, the loss function LMSE in Algorithm 1 is
modified to

LMSE =
1

ST

∑
s

∑
t

||yHHf (t)− yLLf (t)||22,

yLLf (t)=bLLfQ+WLL
fxQPxxQ(t)+WLL

fhQPhhQ(t− 1),

yHHf (t)=bf +Wfxx(t) +Wfhh(t− 1).

(20)

Convolutional Neural Networks. For a CONV layer, We
can apply dual-module algorithm to CNN by first doing the
im2col transformation on input tensor (Chetlur et al., 2014).
Then, the input and output become matrices rather than
vectors, but the overall algorithm is the same as in Section
3.4.

Batch Normalization. Batch normalization (BN) (Ioffe &
Szegedy, 2015) is widely applied in DNNs. During infer-
ence, BN normalizes the input activations with

x̂ = γ(
x− µ
σ

) + β, (21)

where γ, β are trainable parameters, and µ, σ are the moving
average of the mean and standard deviation of activations
collected during training.

Our dual-module algorithm is compatible with BN. When
BN is applied before the activation function (Chen et al.,
2020), i.e., ϕ(BN(Wx+ b)), BN can be merged into the
linear transformation as follows

ϕ (BN (Wx+ b))=ϕ
(γ
σ
Wx+

(
b+β− γ

σ
µ
))

. (22)

We can have Ŵ = γ
σW and b̂ = b + β − γ

σµ, then our
algorithm can be directly applied. When BN is applied after
the activation function, our ϕ (Wx+ b) structure is not
influenced by BN.

4. Evaluation
Our dual-module method is generally applicable to both
RNNs and CNNs to improve the inference efficiency. Here
we choose a representative set of RNN and CNN models
to demonstrate the effectiveness of our method. In our
supplementary material, we have more extensive results as
well as evaluation methodology and experimental settings.
We use PyTorch to train the little module and evaluate the
inference quality. We train the little module while freezing
the parameters of the big module, and we use the same
training set and validation set to run the SGD optimization.

4.1. Experimental Results on RNNs

As memory access is the bottleneck in RNN-based inference,
we apply DMI with the focus of reducing overall memory

Figure 2. Comparison of the amount of accesses and operations
between baseline layers and the little module of dual-module en-
hanced RNN-based models.

access while keeping the overhead of executing the little
module small. As shown in Figure 2, we compare accessed
data and operations between the single-module – the base-
line case – and the little module using a set of LSTM and
GRU layers. On average, the little module accounts only 8%
memory overhead and 35% operation overhead compared
with the base. Note that we count the number of operations
in Figure 2 regardless of precision; and the computation
overhead of the little module can be further reduced using a
low-precision implementation.

Our method is evaluated on CPU-based server platform (In-
tel(R) Xeon(R) CPU E5-2698 v4) as most inference work-
loads run on CPUs (Park et al., 2018). The baseline im-
plementation is the PyTorch CPU version with Intel MKL
(version 2019.4) as the back-end BLAS kernel library. Our
custom implementation uses a multi-threaded MKL dot-
product kernel at BLAS level-1 to perform the big module
instead of BLAS level-2 or level-3 kernels. In our kernel
implementation, we do not explicitly generate masks, but
directly compare little module results with predetermined
thresholds in OpenMP parallel-for loops. The kernel-wise
performance is measured as wall-clock time and averaged
with 1000 runs, assuming cold cache at the execution of
each RNN cell. Accessing weights from off-chip memory at
each time-step represents the real-world cases, for example,
the decoder execution of sequence-to-sequence modeling.

Language Modeling. Our implementations of
LSTMs/GRUs are adapted from the word-level lan-
guage modeling example from PyTorch using the same
hyper-parameters to train baseline models. We report the
word-level perplexity (PPL) as the measure of model quality.
As listed in Table 2, we vary the insensitive ratio to show
the quality-performance trade-off; the larger insensitive
ratio indicates more results are from the little module and
less memory overhead to perform the big module. As we
increase the insensitive ratio, we observe the degradation
of quality as the PPL increases during a gradual reduction
in execution time. When the insensitive ratio is 50%, the
PPL is slightly increased to 81.36, which is negligible in
language modeling tasks, while we can gain 1.67x inference
speedup.

Boosting Deep Neural Network Efficiency with Dual-Module Inference

Table 2. RNN quality and execution time (ms). Ln means a LSTM layer with h hidden units; G is short for GRU.
Insensitive LM, L1500 LM, G1500 GNMT, L1024
Ratio PPL Diff. Time Speedup PPL Diff. Time Speedup BLEU Diff. Time Speedup
Baseline 80.64 n/a 1.477 1.00x 85.48 n/a 1.182 1.00x 24.32 n/a 0.838 1.00x
10% 80.72 -0.08 1.315 1.12x 85.62 -0.14 1.024 1.15x 24.33 0.01 0.679 1.23x
30% 80.56 0.08 1.095 1.35x 86.01 -0.53 0.869 1.36x 24.18 -0.14 0.541 1.55x
50% 81.36 -0.72 0.885 1.67x 88.73 -3.25 0.726 1.63x 23.73 -0.59 0.480 1.75x
70% 87.48 -6.83 0.641 2.30x 98.09 -12.61 0.545 2.17x 21.92 -2.40 0.360 2.33x
90% 109.37 -28.73 0.380 3.89x 122.75 -37.27 0.350 3.38x 11.77 -12.55 0.243 3.45x

We further report the results using single-layer GRUs on
word-level language modeling tasks as in Table 2. Using
dual-module method on GRUs expresses the similar quality-
performance trade-off as on LSTMs.

Neural Machine Translation. Given the promising results
on language modeling, we further investigate Neural Ma-
chine Translation (NMT), which is a popular end-to-end
learning approach for automated translation (Wu et al.,
2016) and a standard benchmark model for inference as
in MLPerf1. Our experiments show the de-tokenized BLEU
score to measure the model quality on the public WMT16
English-German dataset. The base model2 consists of a
four-layer stacked LSTM in both the encoder and the de-
coder of the sequence-to-sequence modeling. We focus on
the speedup of the decoder since it is the most memory
intensive and the most time-consuming part (about 95%).

We replace the LSTM layers in the decoder with our pro-
posed dual-module LSTM layers. Similar to the single-layer
LSTM results, using the little module computed results in
the insensitive region can reduce the overall memory access
while maintaining the model quality. As listed in Table 2,
our method can achieve imperceptible BLEU score degrada-
tion while accelerating inference by 1.75x. When compro-
mising more translation quality, e.g. decreasing the BLEU
score by 2.4, our method can achieve more than 2x speedup.

4.2. Experimental Results on CNNs

Using DMI on CNNs can be regarded as pursuing output
sparsity. In Table 3, we compare the classification accu-
racy and FLOPs reduction of our DMI method with other
state-of-the-art methods on predicting ReLU -induced out-
put sparsity when ResNet-18 is used for ImageNet classifica-
tion. The results show that DMI outperforms other methods
in delivering better trade-off between the accuracy drop and
the FLOPs reduction. With accuracy degrading only 0.5%,
our method can achieve 3.02x FLOPs reduction.

Pixel-wise dynamic output sparsity can be accelerated by ei-
ther customized GEMM kernel (Nisa et al., 2018) or special-
ized hardware (Akhlaghi et al., 2018). We could translate

1https://mlperf.org/inference-overview/
2From https://github.com/NVIDIA/DeepLearningExamples

Table 3. Comparison of the Top-1 accuracy and FLOPs reduction
of our method with prior work on dynamic sparsity. The baseline
model is ResNet-18 on ImageNet.

Method Acc. (%) Diff. (%) FLOPs reduction
Dense (torchvision) 69.7 n/a 1.00x

LCL (Dong et al., 2017) 66.3 -3.4 1.53x
FBS (Gao et al., 2018) 68.2 -1.5 1.98x

SeerNet (Cao et al., 2019) 69.3 -0.4 1.67x
CGNet (Hua et al., 2019) 68.8 -0.9 1.93x

DMI (Ours) 69.2 -0.5 3.02x

Figure 3. Energy efficiency of each residual block in ResNet-18.

the FLOPs reduction on CNNs by DMI to practical speedup
on either commodity processors or hardware accelerators.
Energy efficiency is another important criterion to evalu-
ate any CNN inference execution, especially for mobile
and edge devices. Here we show the energy consumption
of DMI, normalized to the energy of running the baseline
dense layers of each residual block in ResNet-18. The pur-
pose of Figure 3 is to estimate the energy consumption with
a focus on the portion of MAC operations which consume
the majority of total energy in compute-bound CNNs. The
methodology is multiplying the total number of MAC op-
erations of big/little modules with the energy (J) per MAC
operation accordingly. The energy/op numbers are from
synthesized hardware evaluation. As shown in Figure 3, the
energy efficiency improvement of using DMI is from 1.7x
to 4.9x; on average, our method can improve the energy
efficiency by 2.9x.

Boosting Deep Neural Network Efficiency with Dual-Module Inference

4.3. Discussion on Dimension Reduction

Dimension reduction is an integral part of our DMI method
to reduce the number of parameters of the little module.
Here, we study the impact of different levels of dimension
reduction on the model quality and performance. We con-
duct experiments on language modeling using a single-layer
LSTM of 1500 hidden units. We quantize the little mod-
ule to INT8 and reduce the hidden dimension from 1500
to three different levels, which are calculated by Equation
(9). We fix the insensitive ratio at 50% across this set of
experiments. As in Table 4, the higher dimension of the
little module, the better approximation the little module can
perform. More aggressive dimension reduction can further
gain more speedup at the cost of more quality degradation:
hidden dimension reduced to 417 and 266 can have 1.67x
and 1.71x speedup but increase the PPL by 0.72 and 2.87,
respectively.

Table 4. Sensitivity study of dimension reduction.
Dimension PPL Speedup little big

1500 (baseline) 80.64 1.00x 0% 100%
966 (ε = 0.3) 80.40 1.37x 22% 44%
417 (ε = 0.5) 81.36 1.67x 12% 47%
266 (ε = 0.7) 83.51 1.71x 8% 46%

We further show the overhead of performing the computa-
tion of the little module. As listed in the last two columns
in Table 4, we measure the execution time of computing
the little module and the operation-reduced big module.
The execution time is normalized to the baseline case, i.e.,
the execution time of the standard LSTM, to highlight the
percentage of overheads. When the hidden dimension is
reduced to 966, the overhead of the little module accounts
22% while the execution time of the big module is cut off by
half3. In our experiments, we choose ε = 0.5 as the default
parameter as it demonstrates good trade-off between quality
and speedup in our study. When further reducing the hidden
dimension to 266, there is only a slight improvement on
speedup compared with the hidden size of 417 in the little
module, where the overhead of the little module is already
small enough, but the quality drop is significant.

4.4. Discussion on Quantization

Weight quantization of the little module is another integral
part of constructing the little module. We show the impact
of different quantization levels on the model quality and
the parameter size. After training the little module, using
the same settings as in Section 4.1, we can quantize the
weights to lower precision to reduce the memory access on
top of the dimension reduction. As listed in Table 5, more

3We measured the execution time with multi-threading.

aggressive quantization leads to smaller parameter size that
can reduce the overhead of computing the little module; on
the other hand, the approximation of the little module is
compromised by quantization. We can quantize the little
module up to INT4 without significant quality degradation.
Using lower precision would degrade the quality while de-
creasing the parameter size. Normally, we choose INT8 as
the quantization level since we leverage off-the-shelf INT8
GEMM kernel in MKL. We expect more speedup once the
little module overhead can be further reduced by leveraging
INT4 compute kernels or running on specialized hardware.

Table 5. Inference quality and parameter size comparison under
different levels of quantization on the little module

Precision Base FP32 INT16 INT8 INT4 INT2
PPL 80.64 81.28 81.18 81.36 81.47 82.43
MSE n/a 0.408 0.425 0.444 0.451 0.68

Params. 68.7 19.1 9.6 4.8 2.4 1.2

5. Related Work
Compressing DNN models via data quantization, weight
sparsity, and knowledge distillation is promising to deliver
efficient deployment for inference. Quatization methods
on weights and activations have been proposed to reduce
model size and operation precision (Zhu et al., 2016; Xu
et al., 2018; Wang et al., 2018; Choi et al., 2018). Weight
pruning has been proposed to reduce the parameters of a
pre-trained model (Han et al., 2015b;a). While fine-grained
pruning could reduce the number of parameters (Narang
et al., 2017; Zhu & Gupta, 2017; Dai et al., 2018), indexing
irregular non-zero weights causes extra memory cost and
would offset the benefits from reducing parameter size; it
is hard to gain practical acceleration on general-purpose
hardware or need hardware specialization (Mao et al., 2017).
Although structural pruning (Wen et al., 2017) and knowl-
edge distillation (Polino et al., 2018) could achieve speedup,
the applicability on more complicated tasks such as NMT
on large-scale datasets is unstudied; besides, those methods
require extensive and iterative retraining via regularization
that would increase the training cost and difficult to find a
solution.

Other than model compression techniques, many studies pro-
pose to skip computations dynamically based on certain cri-
terion such as layer-wise early exit (Bolukbasi et al., 2017)
and ReLU -induced sparsity prediction in CNNs (Dong
et al., 2017; Gao et al., 2018; Cao et al., 2019; Hua et al.,
2019). Sparsity prediction is only a special case of our dual-
module inference method. The results of the little module
are used in the insensitive region instead of only for predic-
tion and then discarded. The special cell structure and the
temporal input similarity have enabled computation and up-

Boosting Deep Neural Network Efficiency with Dual-Module Inference

date skipping in RNNs (Neil et al., 2017; Zhang et al., 2018;
Campos et al., 2018). However, those methods depend on
certain applications and lack of evaluation on NLP tasks
such as language modeling and machine translation.

We are the first that proposes a general and principled
method to reduce memory accesses and computations of
DNNs, with general applicability to LSTMs, GRUs, and
CNNs. Our method, by no means, is supposed to replace
model compression but provide an orthogonal approach to
accelerate DNN inference without compromising the model
expressive power. Using the analogy of knowledge distil-
lation, we do not simply deploy a student network learned
from the teacher network. Instead, we let the teacher net-
work help with the student – the little module learned from
the base module – and collaboratively perform inference
with reduced memory accesses and computations.

6. Conclusion
In this paper, we describe a big-little dual-module inference
method to boost the execution efficiency of DNNs. We lever-
age the noise resilience of nonlinear activation functions by
using the lightweight little module to compute for the insen-
sitive region and using the big module with skipped memory
access and computation to compute for the sensitive region.
Our method can reduce overall memory access by near half
for the memory-bound RNNs and achieve 1.54x to 1.75x
wall-clock time speedup without significant degradation on
model quality. For the compute-bound CNNs, our method
can achieve 3.02x operation reduction with only a 0.5%
accuracy drop.

Acknowledgment
We thank all the anonymous reviewers for their helpful
suggestions. This material is based upon work supported by
the National Science Foundations (NSF) under Grant No.
1719160, 1725447, 1730309, and 1925717.

References
Achlioptas, D. Database-friendly random projections:

Johnson-lindenstrauss with binary coins. Journal of
computer and System Sciences, 66(4):671–687, 2003.

Akhlaghi, V., Yazdanbakhsh, A., Samadi, K., Gupta, R. K.,
and Esmaeilzadeh, H. Snapea: Predictive early activation
for reducing computation in deep convolutional neural
networks. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 662–
673. IEEE, 2018.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Bingham, E. and Mannila, H. Random projection in dimen-
sionality reduction: applications to image and text data. In
Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.
245–250. ACM, 2001.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V.
Adaptive neural networks for efficient inference. In
Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pp. 527–
536. JMLR.org, 2017. URL http://dl.acm.org/
citation.cfm?id=3305381.3305436.

Campos, V., Jou, B., i Nieto, X. G., Torres, J., and Chang,
S.-F. Skip RNN: Learning to skip state updates in re-
current neural networks. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=HkwVAXyCW.

Cao, S., Ma, L., Xiao, W., Zhang, C., Liu, Y., Zhang,
L., Nie, L., and Yang, Z. Seernet: Predicting convo-
lutional neural network feature-map sparsity through low-
bit quantization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 11216–
11225, 2019.

Chen, Z., Deng, L., Wang, B., Li, G., and Xie, Y. A
comprehensive and modularized statistical framework
for gradient norm equality in deep neural networks.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1–1, 2020.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. cudnn:
Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. I.-J., Srini-
vasan, V., and Gopalakrishnan, K. Pact: Parameterized
clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

Dai, X., Yin, H., and Jha, N. K. Grow and prune
compact, fast, and accurate lstms. arXiv preprint
arXiv:1805.11797, 2018.

Dong, X., Huang, J., Yang, Y., and Yan, S. More is less: A
more complicated network with less inference complexity,
2017.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224–2232, 2015.

http://dl.acm.org/citation.cfm?id=3305381.3305436
http://dl.acm.org/citation.cfm?id=3305381.3305436
https://openreview.net/forum?id=HkwVAXyCW
https://openreview.net/forum?id=HkwVAXyCW

Boosting Deep Neural Network Efficiency with Dual-Module Inference

Gao, X., Zhao, Y., Łukasz Dudziak, Mullins, R., and zhong
Xu, C. Dynamic channel pruning: Feature boosting and
suppression, 2018.

Giacinto, G. and Roli, F. Design of effective neural network
ensembles for image classification purposes. Image and
Vision Computing, 19(9-10):699–707, 2001.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recog-
nition with deep recurrent neural networks. In 2013 IEEE
international conference on acoustics, speech and signal
processing, pp. 6645–6649. IEEE, 2013.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in neural information processing systems, pp.
1135–1143, 2015b.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pp. 1026–
1034, 2015.

He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, I.,
Alvarez, R., Zhao, D., Rybach, D., Kannan, A., Wu,
Y., Pang, R., et al. Streaming end-to-end speech
recognition for mobile devices. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6381–6385. IEEE,
2019.

Hua, W., Zhou, Y., De Sa, C. M., Zhang, Z., and Suh, G. E.
Channel gating neural networks. In Advances in Neural
Information Processing Systems, pp. 1884–1894, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. arXiv preprint arXiv:1810.05997, 2018.

Li, P., Hastie, T. J., and Church, K. W. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 287–296. ACM, 2006.

Liu, L., Deng, L., Hu, X., Zhu, M., Li, G., Ding, Y., and Xie,
Y. Dynamic sparse graph for efficient deep learning. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=H1goBoR9F7.

Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., and
Dally, W. J. Exploring the regularity of sparse struc-
ture in convolutional neural networks. arXiv preprint
arXiv:1705.08922, 2017.

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani,
D., Arthur, J. V., Yildiz, I. B., and Modha, D. S. Dis-
covering low-precision networks close to full-precision
networks for efficient embedded inference. arXiv preprint
arXiv:1809.04191, 2018.

Narang, S., Elsen, E., Diamos, G., and Sengupta, S. Explor-
ing sparsity in recurrent neural networks. arXiv preprint
arXiv:1704.05119, 2017.

Neil, D., Lee, J. H., Delbruck, T., and Liu, S.-C. Delta
networks for optimized recurrent network computation.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2584–2593. JMLR.
org, 2017.

Nisa, I., Sukumaran-Rajam, A., Kurt, S. E., Hong, C., and
Sadayappan, P. Sampled dense matrix multiplication
for high-performance machine learning. In 2018 IEEE
25th International Conference on High Performance
Computing (HiPC), pp. 32–41. IEEE, 2018.

Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khu-
dia, D., Law, J., Malani, P., Malevich, A., Nadathur, S.,
et al. Deep learning inference in facebook data cen-
ters: Characterization, performance optimizations and
hardware implications. arXiv preprint arXiv:1811.09886,
2018.

Polino, A., Pascanu, R., and Alistarh, D. Model
compression via distillation and quantization. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=S1XolQbRW.

Wang, P., Xie, X., Deng, L., Li, G., Wang, D., and Xie,
Y. Hitnet: hybrid ternary recurrent neural network. In
Advances in Neural Information Processing Systems, pp.
604–614, 2018.

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J.,
Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio, S., et al.
Tacotron: Towards end-to-end speech synthesis. arXiv
preprint arXiv:1703.10135, 2017.

Wen, W., He, Y., Rajbhandari, S., Zhang, M., Wang, W.,
Liu, F., Hu, B., Chen, Y., and Li, H. Learning intrinsic
sparse structures within long short-term memory, 2017.

https://openreview.net/forum?id=H1goBoR9F7
https://openreview.net/forum?id=H1goBoR9F7
https://openreview.net/forum?id=S1XolQbRW
https://openreview.net/forum?id=S1XolQbRW

Boosting Deep Neural Network Efficiency with Dual-Module Inference

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

Xu, C., Yao, J., Lin, Z., Ou, W., Cao, Y., Wang, Z., and Zha,
H. Alternating multi-bit quantization for recurrent neural
networks. arXiv preprint arXiv:1802.00150, 2018.

Yan, M., Chen, Z., Deng, L., Ye, X., Zhang, Z., Fan, D., and
Xie, Y. Characterizing and understanding gcns on gpu.
arXiv preprint arXiv:2001.10160, 2020.

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowledge
distillation: Fast optimization, network minimization and
transfer learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4133–
4141, 2017.

Zhang, X., Xie, C., Wang, J., Zhang, W., and Fu,
X. Towards memory friendly long-short term mem-
ory networks (lstms) on mobile gpus. In 2018
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 162–174, Oct 2018. doi:
10.1109/MICRO.2018.00022.

Zheng, W., Chen, Z., Lu, J., and Zhou, J. Hardness-
aware deep metric learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 72–81, 2019.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary
quantization. arXiv preprint arXiv:1612.01064, 2016.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

