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A. Proofs of Theorems 1 and 2

A.0.Error decomposition

The proofs of Theorems 1 and 2 involve a integration of
techniques for error analysis with integral operator approxi-
mation (Smale & Zhou, 2007; Sun & Wu, 2011; Shi, 2013;
Nie & Wang, 2015) and the empirical process theory for
analyzing kernel methods (Pinelis, 1994; Wu et al., 2007;
Christmann & Zhou, 2016). The proof of Theorem 3 fol-
lows the analysis technique for sparse characterization (Shi
etal., 2011).

The key to bound E(7(f,)) — £(f,) is a novel error decom-
position, where some intermediate functions are constructed
as the stepping stone functions. Then, we bound the decom-
posed terms respectively in terms of operator approximation
and concentration equalities for empirical processes.

From Proposition 1 in (Sh1 2013), we know that LT
ULIZ(( yand Ly = LK< U™ for each j € {1,2,...,d},
where U is a partial isometry on L2 Pt with UTU being

the orthogonal prediction onto the RKHS Hii)-

K6 —

For any j € {1,2,...,d}, define the intermediate function

(J) by
O = argmin {|Lxo /9~ SO
e ) P x()
FANUTFOIE M)
P (3)
Denote fy = Z f(J) and g\ = Z;l 1g§\J) with gf\j) _
LK(j)f/(\J)-
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Define the empirical version of g, as
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Now we give the following error decomposition.

Proposition 1. For f,, G», there holds

E(n(fa)) —E(fp) < Er+ By + Es,
where
By = &(n(f2) — Em(fa)) + Ea(gn) — E(9n),
Ey = &(Gx) —E(gn) + Allgalles
and

E3 =E&(gx) — E(fp).
Proof. According the definition of f,, we have

E(m(f2) = E(fp)
)

< E(m(f) — Ealm(fa)) + E(32) — E(f) + Mgl
&) + Al falles = (E(2) + Mlgalle))}
S (W(fz)) z(ﬂ—(fz))""_ z(.@/\)_g(fp>+)‘”g)\|w§)
Note that
£33 —E(f,) = (E(an) —E(gr) +Elgr) — (1)

)
+E2(gx) — E(9x)- 4

Combining both (3) and (4), we get the desired decomposi-
tion.

The error term F; measures the divergence between the
empirical risk and the corresponding expected risk, which
usually is called sample error in learning theory. In terms
of recent theoretical progress for learning with data depen-
dent hypothesis spaces (Shi et al., 2011; Shi, 2013; Feng
et al., 2016), we can bound sample error F; via concentra-
tion inequality associated with empirical covering numbers
(Wu et al., 2007; Christmann & Zhou, 2016). The error
term F), reflects the drift risk for learning with hypothesis
spaces H,, and H, and hence is called as the hypothesis error.
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By relating £(gx) — &(ga) with -5, 19 — 0322
we can estimate this hypothesis error through the 1nequal—
ity in Hilbert space (Pinelis, 1994; Smale & Zhou, 2007).
The error term E is called the approximation error, which
describes the approximation ability of regularized scheme.
Following the approximation analysis with integral operator
in (Smale & Zhou, 2007; Shi, 2013; Nie & Wang, 2015),
we derive the upper bound of Es based on the properties of
Lf((j)vl Sj <d.

A.1. Estimate of Approximation Error E3

In this paper, we use the analysis techniques in (Smale &
Zhou, 2007; Shi, 2013) to bound the approximation error
Es.

The following lemma is used in our analysis, which is
proved in Proposition 2 in (Shi, 2013).
(4)

Lemma 1. From the definition of fﬁ\j) and gy’ =

LK<j)f§j), j€{1,2,...,d}, there are

(4)
(J)f 2

waw

FO = U + L))
and

(412 _ 77T £))12
U Ul

Lemma 2. Under Assumption 1, there holds

1L £ = £012;

< Amin(2r) g2,

AR
J) x )

K<J>II2+IILT ).

e o

Proof. Recall that {)\Z(-j ), ng ) }i>1 are the normalized eigen-
pairs of the integral operator L ;;, and {t'};>; form an

(4) - 3 _
T Let g5/ = LK(7) =

Zt:l afﬂ/)t . Then ||9(J)||Lg o —Zt 1( (])) < o0.
X

orthogonal basis of L?

If Assumption 1 holds for some r € (0, 5), then from
Lemma | we have

[P 1oa s O TP
P x () x)

= IUTUG + L) 'L £ 12, "
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||()‘I+Lf{(j))71L2~(j)f(j)H%;2, @)
+r - _

= [[(M+Lgw)™ Lt mfj ||L2

KG) 20

Moreover,

/\Ilf(J)IILz

+r r
= )‘ll()‘I+LR(J)) 1L12<(J)LK(J)f(J)HL’% ()

>1 PYURIDY LS e
_ Z )‘1(£J) )\%r ( Ej))Z
= )\Eﬁ) A A+
< 2 Z {\t ( gj))z
S 4+
< Mg 5)
P x(3)

where the first inequality follows from Lemma 1 in (Nie &

Wang, 2015) and the second inequality is obtained based on

the definition of g(] )

If Assumption 1 is true for some r > %,

M3
px(])
= )‘||()‘I+LR(J)) ILK(J)LK“) (])f ||L2
P

2 —
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. From Lemma 1,
x ()

Now turn to bound g\ — f,gj)||2L2

we can deduce that

& = Lo S = Lo O\ + L) 9
— (M +Lgw) Lo [
and
19— D32 = NN+ L) 93
X(J) pX(J)

For r € (0, 1), we have

Mg = £912
x ()
= M|+ Lgo)~ IL?((J)LKT(J) ||L2 "
. ()\(]))r 2
< Y5
t>1 AT FA
< Ngy) (7. )

x ()
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For r > 1, we get
Mgt = FPllgs

>\2||(/\I+Lf<m) 1LK(])L;(<11)LK(J)ij)”%§ o
x0

< ML P HL"J)J"(J)HLZ
< NILE P IE; - ®)
£ x ()
Combining (5)-(8), we get the desired result. O
Lemma3. Forj € {1,2,...,d} andg(]) LK(]>f(J) with

fij ) defined in Section 4, there hold

17 < \/2+||L;<<J>||2+” wol?
.>\m1n - 1}||g(J)||L2
x ()
and
s, < (IR I
Amin{0r =51 G|
P x(3)
Proof. Note that
U = U+ Lgg)” 1Lf<<a>f(l)
— LT\ +Lg) 9
and
Hg(ﬂ) f,gj)||L2 =AM+ Lgy)~ 1f(])HL2
P i) (J)
Therefore,
10 < IO+ L) Pz,
= ALk £ — 1
. \/z+||L;;J>||2+|| s

Amll’l{ ,r—1} ]
||9p ||L,% )

The second statement follows directly form the result of
Lemma 2. O

Proposition 2. For g, = Zd 1 gg\j ) = Z

there holds
By < Am‘“{12r}(2+|\L’""H2+H Mz)

K(J)f,\ ’

K@)

(Zugmnm )

Proof. Based on Cauchy-Schwarz inequality, we can ob-

serve that
VB = ([0 - 1) dota.)

= ([ () - 196 )
j=1
< ZHLK(J)JC(]) f(])HLg o) )

Lemma 2 tells us that Vj € {1,2,...,d}

1Lz 57 = £l Le
x ()

< IEE IR N A gy

Combining this estimate with (9), we get the desired upper
bound on Fj;. O

A.2. Estimate of Hypothesis Error E>

The hypothesis error reflects the divergence between g, and
g on the expected risk and regularization. The following
inequality from (Pinelis, 1994; Smale & Zhou, 2007) is used
to bound the divergence.

Lemma 4. Let H be a Hilbert space. For an independent
random variable & on Z with values in H, assume that
1€l < M < oo almost surely. For any given independent
identical distributed samples {z;}7", C Z and any § €
(0, 1), there holds

| S,

20 los(2/8) . [2PIET g2/

m m

with confidence at least 1 — § /2.

Proposition 3. For any 0 < ¢ < 1, with confidence 1 — 4,
we have

E(9r) — €(9n)
< 16\/5)\min{0 r—3} (10g(2/($)

(anmuLg . gng%g 7

os(2/6)

m

and

E2 < ¢y ()\min{Oﬂ‘—%} M + )\min{%,r})’
m

where ¢ = 2 + ||LK(;> %+ ||L"
constant independent of m, J.

5 |I? and ¢ is a positive
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Proof. From Cauchy-Schwarz inequality, we can see that

E(Gx) — €(gn) 1
< ([ er-n@-n@ie)’
([ @) - on@)dote. )
< (s+2 [ @) - @) dote)’
([ @@~ @)

< (¢é+ﬁing§” 9l )

|L2 (10

)
Z ax o'

Denote (V) = f/gj)(x(j))K(x(j),u) for any j €

{1,2,...,d}. Then, from Lemma 3, we can deduce that
@) () min{0,r— 33}/ . (4)
€0y <17l < VAN B gD
and
BN <IN < exm o g,
P x(4) P x(5)
Moreover, for any j € {1,...,d} and u € X1,
”g(J) (J)”
_ Hi me _Egm
m ¢ L2
i=1 P x ()
2/EAmn O g0l 2 log(2/6)
< x ()
B m
min{0,r—1 7 2¢ 10g(2/5)
FATHOTT S g | a IS (1)

where the last inequality is derived from Lemma 4. Then,
we obtain the first statement by combining the estimates
(10) and (11).

Now consider the upper bound of A||§x||¢, - From the defini-
tion of g, we have

d d
Agalle, < Aani”noosZnLK(ﬂfﬁ’—f;”HLgX“
< /\m’“{w“}ZHQ llzz s

Combining this estimate with the first statement, we derive
the desired upper bound of Es. O

A.3. Estimate of Sample Error F;

In this paper, the sample error is estimated by the analysis
technique associated with the empirical covering numbers.
The empirical covering numbers with ¢5-metric is denoted
by N2(F,¢) and its detail definition can be founded in
(Van der Vaart & Wellner, 1996; Shi et al., 2011).

Definition 1. For a function set F and u = (u;)¥_; € X,
the metric ds y, is defined by
1t
d2,u(f7g): EZ ) Vfagef

For every € > 0, the empirical covering number is defined
as No(F,e) = supen SuPyc .k Nou(F, €), where

Now(F,e) = inf {l € N: 3{fi},_, such that

F C Uézl{f e F: d2,u(f’ fz) < 5}}

The following concentration inequality is established in (Wu
et al., 2007).

Lemma S. Let F be a measurable function set on Z. As-
< Band E(f?) < cEf

_ for some positive constants B, c. If for some a > 0 and

s €(0,2), logNa(F,e) < ac™P for any € > 0, then there
exists a constant c,, such that for any § € (0, 1),

‘Ef— nllif(zi)

< Ef—|—c max{c”p BHP}( )

+(2(3—|— 18?1) log(1/4)

with confidence at least 1 — 20.

For any R > 0, denote

BY) {fm — Zaﬁ.j)K(J’)(uﬁ”, ) eH
i=1
1F9 e, < R}
and
d .
Br={f =319 Ifle <R},
j=1

where

£l = mf{lef(’)llel /= me F9 e},

Jj=1
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Now we state the estimate on the empirical covering num-
bers of B;. Similar analysis can be found in (Christmann &
Zhou, 2016) for B; in reproducing kernel Hilbert spaces.

Lemma 6. Forany j € {1,2,...,d}, assume that K\) ¢

C? for some s > 0. Then,

log N (By, ) <

1+p,. —p
dPeye™?,

where p is defined in Section 3 and c,, is a constant indepen-
dent of €.

Proof. For every j € {1,2,...,d} and x() e (X(j))s,
there exists a set {fi(j) gvzjl with N; = Ng(ng),s) such
that

v eBY, 3 i e{1,2, ..,

dy ) (f(j) _

Nj},s.t.,

I <e

For f = 2?21 Y9 e By, we know fU) e B(j). For
s

every x = ()7, € X%, we have x) = (z (3)) €
(X5 j e {1,2,...d}. Let f = Y0, f). Then

dQX(f )
g N
= {S;;ﬂ )= F(z)?}
1S & 1
={§Z§ym<ﬂ -3 O )7}
£=1 j=1
L le D) (@) — FD (a1 z
< =3 (@) - F @)
Zﬁsg : }
d
< Y doin (F9 = )
j=1
< de.
Therefore,
d
log N2(By, de) < Z log V> ng),ds)

According to Theorem 2 in (Shi et al., 2011) (also see Lem-
mas 2 and 3 in (Shi, 2013)) and considering || f)|,, <

m|| fO)]|7,, we further get

log No(By,de) < depe™P.

Setting € = de, we get the desired result. O

Proposition 4. Under Assumptions 1 and 2, for any § €
(0, 1), there holds

SE() — E(4,) + 5(E@) — £(02)

+ B3 + Cy log(2/6) (A~ #em ™ 2

Jr/\min{f1,27«72}m—ﬁ + mfl)

B <

with confidence 1 — §, where (' is a positive constant
independent m, A, d, and p is defined in Section 3.

Proof. The sample error £'; can be decomposed as

Ey = 5(7T(fz)) - 5(fp) - (€Z(W(fZ)) - €Z(fp))

and

Erg = &(9x) — E(f,) — (E(9x) — E(fp))-

In the sequel, we will bound E7; and E, respectively.

Denote

Gr={9(2) = (y = 7(/)@))* = (y = fp())* : f € Br}.

For any g € G, we can deduce that |g(z)| < 8 and Fg? <
16FEg. Let g1, g2 € Gg associated with fi, fo respectively.
It can be seen that

l91(2) = g2(2)| < Alw(f1)(@) — 7(f2)(2)]
< Affi(z) = f2(2)].
This means
log./\/g(gR,a) S log./\fg(BR, )<log/\f2(31, )

4R
< dep( R)pe P
where the last inequality follows form Lemma 6.

Applying Lemma 5 to G, we have with confidence 1 — g

1
Eg—*zg Z;) §§ m(f)) —E(fp))

+61(Rmm7m +m ™ 1og(2/6)),Yg € Gr,

where ¢; is a constant independent of m, 4.

From the definition of f, in Section 2, we know f, € Bg
with R = A~ L. Then

SE(£) ~ E)

FE (AT Em 7+ mlog(1/6)) (12)

E; <

with confidence 1 — g.
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Now we turn to bound F'5. Denote

{g_ZA(] :A Zf(] () (j)7.)}

and

H={h:h(z) = (v 3@)? = (y = fy(x)* 5 € G .

We can verify that
1Allee = fo(@)] - 19(z) —

d
< B+ 1A 1)’
j=1

sup [2y — §(z) — Fol@)l

and

Eh? < 3+Z 1/7]0)2E

For any given g1, g2 € 1, the corresponding hy, ho € H
satisfy

|1 (z) — <|<21+Z||f<”||oo (@) = ga(a)].

j=1

Then, from Lemma 6 and § € Bpr with R =
Zj 9| oo, we have

log N2 (H, €)
R €
< log N, (gv 21+ Z;l:l ||f>(\j)||00)>
9
< loga(B, 2y 1||f<”||m<1+zj 1||f(”||oo))
< cpd1+P2p(§d: (”Hoo+Z||fA )7
i=1 =t

Applying Lemma 5 to H, with confidence 1 — g we have

By = Zh<zi>—Eh<§<6( )= E0F,)
i=1
+all a2 ™+ log(2/9))
< 5(E@) — o) + o)

e A2 2) (o aE log(2/6)),

where the last inequality follows from Lemma 3 and ¢és, &
are some positive constants.

Combining this with the estimates of E1; in (12), we get
the upper bound on Fj. O

A.4. Proof of Theorem 1

Proof. Combining Propositions 1-4, we have with confi-
dence 1 — 46

E(m(fz)) = E(fp)
S Clog(2/6)(>\min{1,2r} _’_)\min{o,f—l}m %

. 2 2
amin{=12r=2},, =25 4 )\_ﬁm—m),

When 7 € (0, 3), by setting A = m™% with 0 < 6; <
min{, =+ We get with confidence 1 — 49

E(m(fz))

where fyl =
2r)

—&(fp) <4Clog(2/6)m™ 1,

min {2761, 1 + (r
2p0

o1, 2+p 21-)5-1; }

When r» >

%
min{%, ﬁ},
E(m(fa)) —

where

%)elaﬁ - (2 -

, taking A = m~% with some 0 < 6, <
we have with confidence 1 — 46

E(f,) < 4Clog(2/0)m ™,

2 P
2°2+4p 24p

2pls }

0
Y2 = mln{ 25 5 2+p

This completes the proof. O

A.5. Proof of Theorem 2

Theorem 2 is dependent on much stronger conditions on f,
than Theorem 1. The proof can be obtained directly by the
estimate of E'1; in Proposition 4.

Proof. Since fp(j) € HY)
know that f, € H. Then,

for each j € {1,2,...,d}, we

E(m(f2)) — E(fp)
< E(m(f2) — Ea(n(f2))

HE(f2) + M falley = (Ea(fp) + Ml follen)}
< E(n(fa) = E(fp) — (Ea(m(f2)) — Ea(fp)) + Al fplles
= Eu+Afolle-

From the estimate of F'; in (12), with confidence 1 — § we
have

g(ﬂ(fz)) -

where ¢ is a positive constant independent of m, \.

5(fp) Sélog(l/g)()\f%m,ﬁ+)\),

Taking A such that AT = A, we get the desired
result. [



Sparse Shrunk Additive Models

B. Proof of Theorem 3
Proof. Denote a = (aij))t?j € R™ where t €
{1,2,...,m}and j € {1,2,...,d}. Define

d m
Gla) = mz ZZQ(J)K(J (j)’xgj)))Q

i=1 j=1t=1

PE

m

Recall that f, = ZJ DD DE@D P ) and & =

(agj))m- is the maximizer of G(« )

Let I, = {(t,j) : &) > 0}, I_ a4l < 0},
and o = {(t,j) : & = 0}

For (t,5) € I, we get

={(t,J)

0G ()
3045” a=a
2 — ,
= > Wi~ fal@ ) KV (@ 2) + )
i=1
=0
This means
LS RO 20 = 2
mia o Lo 2
Similarly, for (¢, j) € I_, there exists
G A
- (; K(J) () (J) _2
i 0 Ll KO k) =

For (¢, §) € I, there holds

i( — falz ) KD (2 20y — A<aG(olé) )
s - %Z — fa(zi)) (

This means, for any (¢, j) € I,

| >

’% i(yi - fz(xi))K(j)(xEj)’xl(_j)) <
=1

This completes the proof. O
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