A. Details of Couterexamples

In this section we provide details of computing the variance in Figure [T For each MDP, there are totally four possible
trajectories (product of two actions and two steps), and the probabilities of them under behavior policy are all 1/4. We list
the return of different estimators for those four trajectories, then compute the variance of the estimators.

Probabilities Example Example Example

of path IS PDIS MIS | IS PDIS ~ MIS | IS PDIS ~ MIS
a,aq 0.25 144 1.2 12 |0 0 0 0 0 0
ai,as 0.25 1.92 2.16 20 | 144 1.44 1.2 | 0.96 0.96 0.8
ag, a1 0.25 096 0.8 0.8 | 0.64 0.8 0.8 | 0.96 0.8 0.8
az, as 0.25 1.28 1.44 1.6 | 1.92 1.76 20 | 1.28 1.44 1.6
Expectation 1.4 1.4 1.4 1 1 1 0.8 0.8 0.8
Variance 0.12 0.2448 0.2 | 0.5424 0.4528 0.52 | 0.2304 0.2688 0.32

Table 1: Importance sampling returns and the variance. See ﬁgure for the problem structure.

B. Proof of Lemma

Proof. In this proof, we use 7 to denote the trajectory without reward: 1.+ = {sg,ar}i_;. Since E(pi.4|st,ar) =

E(p1.t—1]8¢, at) pt, we only need to prove that E(pq.4—1|s¢, a¢) = %.
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C. Proofs for Finite Horizon Case
C.1. Proof of Lemma[2

Proof. Since E (3°, E(Y;| X)) =E (>, Yz), we just need to compute the difference between the second moment of ), V3
and ), E(Y;|Xy):

2
E (Z E(Ytht)> =E (Z (E(Y,] X)) + 2ZE<K|Xt>E(Yk|Xk>> ®)

t t<k
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t t<k
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t t<k
Thus we finished the proof by taking the difference between E (3, Y;)? and E O, E(Y: 1X,))°. O
C.2. Proof of Theorem[]
Proof. Let 71.; be the first tsteps in a trajectory: (s1,a1,71,...,58t, at,7¢), then p14ry = E(p1.77¢|m1.¢). To prove the

inequality between the variance of importance sampling and per decision importance sampling, we apply Lemma [2]to the
variance, letting Y; = r;p1.7 and X; = 7y.;. Then it is sufficient to show that forany 1 <t < k < T,

E(rireprrpir) = E(Y:Yr) > E(E(Y: | X )E(Y|Xk)) = E(rerepi:e01:) (14)
To prove that, it is sufficient to show E(rrxp1.7p1.7|71:4) = E(rerkpr.ep1:6|71:¢). Since
E (Ttrkpl:tpl:k‘ﬁ:t) = rtp%:tE (Tkpt+1:lc|7'1:t) (15)
= 1rp1 B (ripesrr| o) (16)
= 11 E (ripirrr| i) B (prsrr|Tiot) (17)
(18)

Given 7y, 7, and p;41.7 can be viewed as r,_;41 and p1.7_;y1 on a new trajectory. Then according to the statement of
theorem, 7 _¢11p1.7—¢+1 and p1.7—;41 are are positively correlated. Now we can upper bound E (77 p1.401.x|71.¢) by:

71014 E (repesr:r|m14) E (perr|m14) < 1epTi B (Tipesrr et | Tt) (19)

= E (rereprrprr|mie) (20

This implies E(rirgp1.7p1.7) > E(rirgp1.ep1.1) by taking expectation over 714, and finish the proof. O
C.3. Proof of Theorem 2]

Proof. Using 1emmaby Y: = p1.47¢ and Xy = s¢, a¢, ¢ , we have that the variance of 0gis is smaller than the variance
of Uppys if for any ¢ < k:

E [p1poriri] >E [E(p1.¢|se, ar)E(po:k|Sk, ar)reri)] (21

o [df(s,a) di(s,a)
=E di(s,a) dZ(s a) s 22)




The second line follows from Lemmato simplify E(po.¢|s¢, ai). To show that, we will transform the above equation into
a an expression about two covariances. To proceed we subtracting E(p1.;7;)E(p1.57) from both sides, and note that the
resulting left hand side is simply the covariance:

Cov [p1:47t, po:kTk] =E [pr:ep1:67¢7k) — E(p1:67¢)E(p1:67%)

dT(s,a) df(s,a)
>E |tk — E(p1.m)E(p1. 23
> [df(s, a) d*(s, ) TtTk (pr:47¢)E(p1:87k) (23)

We now expand the second term in the right hand side
E(prare) E(preri) =E(rE(pr:tlse, ar) ) E(rE(p1k sk, ax)) 24)
dr (s, a) dr (s, a)

=E |t E |-&= 25
{dé‘(s,a) ] {dZ(s, a)'" 2
This shows that both sides of [23|are covariances. The result then follows under the assumption of the proof. O

D. Proofs for infinite horizon case
D.1. Proof of Theorem[3|

Proof. We can write the log of likelihood ratio as sum of random variables on a Markov chain,

T
ag|s
logm;T:Zlngt ZlO( ai:é)) -

t=1

By the strong law of large number on Markov chain (Breiman, |1960):

1 m(a;|s;) m(a;|s;)
—log pr.r = lo ( > —a.s. Eqn log < =-c 27
T Z (ailsi) plailsi)
If ™ = p, the strict concavity of log function implies that:
¢ = Egu log (ﬂa‘s)) < log Egn (”(“)) —0 (28)
n(als) p(als)
Thus = log p1.7 —a.s. ¢ and p}/T —as €7¢ Since ry < 1, |p1r Z;T:l e VT < pi:/ng/T. Since TV/T — 1,
1iInT~>oo|p1:T 231:1 'yt_lrt‘l/T <e " O

D.2. Proof of Corollary 1]

Proof. p1.7 —a.s. 0 directly follows from p}/g —a.s. € ¢1n Theorem For p1.7 23;1 yt’lrt, if there exist € > 0 such
that p1.p 31, ¥'~'r; > e for any T, then:

- 1T
mT%oo p1.T Z’Ytilﬁ > MTHOOEI/T =1
t=1
This contradicts e™¢ > limp|p1.r Zthl Y1 YT So limppyr Zthl v*=lr, < 0, which implies that
P1:T 23:1 ’Ytilrt —a.s. 0 0
D.3. Proof of Lemma 3
Proof. Let f(s,a) = log :E:Z; According to Assumption |f(s,a)] < oo. Since B(s,a) > 1, % < oo. Since

f2 and B are both finite, E . f2 < oo and EguB < oo. Now we satisfy the condition of Lemma 3 in (Glynn and
Olvera-Craviotol 2019): in the proof of Lemma 3 in in (Glynn and Olvera-Cravioto} 2019) they used their Assumption



i) Harris Chain, which is our Assumption |1} their Assumption vii) || f||s¢rtV bounded (whic is satisfied by our bound
on B in Assumption , which is explained by f is bounded and v/B >= 1, and finally their assumption iv), which is
our assumption 2] The only difference is we assume a “petite” K which is a slight generalization of the “small” set K
(See discussion in (Meyn and Tweedie, [2012}, Section 5)). The proof in Meyn and Glynn 1996 also used petite (which is
the part where Glynn and Olvera-Cravioto need assumption iv)). This assumption (drift condition) is often necessary for
quantitative analysis of general state Markov Chains. The geometric ergodicity for general state MC is also defined with a
petite/small set. By Thm 15.0.1 in Meyn and Tweedie the drift property is equivalent to geometric ergodicity. According
to Lemma 3 in (Glynn and Olvera-Cravioto} |2019), whose proof is similar with Theorem 2.3 in (Glynn et al., [1996), we
have that there exist a solution f to the following Poisson’s equation:

f(57a) - E-|s,af(5/7 a’/) = f(57a) - Ed“f(sﬁ a) (29)

satisfying | f (s,a)| < c14/B(s,a) for some constant ¢;. Following from the Poisson’s equation we have:

T
log prr +Te =Y (f(st;a:) = Eau f(s,a)) (30)

t=1
T A~ A~

= Z (f(stvat) - Es’,a’\st,atf(sla a/)) (31)
t=1
A~ A~ T+1 ~ A

:f(slv al) - f(ST-‘rla aT+1) + Z (f(stvat) - Es’,a’|5t71,at71f(5/7a/)) (32)

t=2

( fse,az) — Eo arsi1,at1 f(s'a )) are martingale differences. The absolute value of difference is upper bounded by

2/| flloo < 2¢14/TBlloc- =

D.4. Proof of Theorem 4]
Lemma 1. IfE,[p?|s] < M? for any s, E [p2.4] < Mp%

Proof.

[k
E[p5:] =E Hp%] (33)

k=1
=E (H P?) Es, ax [P%|317a1752»~~~75k717ak71] (34)

M21 (35)

k—1

i=1

o (37)

2k
=M, (38)
O

Proof. DefineY = p1.1 Zthl ¥~ 1lryand Z = 1(Y > v™/2), then v™ = E(Y). By the law of total variance,

Var(Y) = Var(E(Y'|2)) + E(Var(Y | Z)) (39)
> Var(E(Y'|Z)) (40)
=E(E(Y|2))” - (v")° (41)

> Pr(Y > 0™ /2)(E(Y]Y >0v™/2))? — (v™)? (42)



Now we are going to lower bound E(Y|Y > v™/2). We can rewrite E(Y') = v™ as:

v™ =E(Y) = E(E(Y]2)) 43)
=Pr(Y > v"/2E(Y|Y > v™/2) + Pr(Y < v /2E(Y]Y < v™/2) (44)
<Pr(Y > 0" /2)E(Y|Y >v™/2)+ 1 x 0™ /2 (45)

SoE(YY > v™/2) Substitute this into the RHS of Equation

o™
2 2Pr(Y>v™/2)"

v™ 2
Var(Y) > 4Pr(§(/>)v”/2) (v™)? (46)

Now we are going to upper bound Pr(Y > v™/2). Recall that we define ¢ = Egu Dy (u||m) = —Eqgu log (ﬂ(a‘s) ) Now

n(als)
we define ¢(T) = —Eg4e log (”EZB) +E, [log p1.7).

Pr(Y > 0™ /2) “47)
T
=Pr(p1.r Z'yt_lrt > 0" /2) < Pr(pr.rT > v"/2) (48)
—p il (49)
T\ 7 or
=Pr (log p1.7 > logv™ — log(27)) (50)
_Pr (logplzT - log v™ log (27) ) 51)
T
log p1: log v™ — log(2T) + f —f
—Pr ( ngliLT Lot (3T+17GT+1) (817a1) S e+ ogv og( )+f(8TT+1,GT+1) f(817a1)> (52)

Since logv™ is a constant, f(sTH,aTH) — f(sl,al) could be upper bounded by constant 2c¢;1+/||Blleo, and

log ”W_log(QT)Jrf(sTT“’aT“)_f(Sl"‘“) = 0. So there exists a constant Ty > 0

lim7_ % = 0, we know that limp_,
such that for all T' > Ty,

logv™ — log(2T) + f(sT+1,aT+1) - f(sl, ay) c
> —
T 2
Therefore for all T > Tj:

PI‘(Y > ’UTF/Z) S Pr <longl:T + C+ f(ST+1,aT+}) - f(817a1) > C/2>

According to Lemma@ and Azuma’s inequality(Azumal |1967), we have:

—Tc? )
Pr(Y >v™/2) <exp| —5——
(> /2 <o g

Thus we can lower bound the variance of importance sampling estimator Y':

(’Uﬂ)z TC2 T\2
Var(Y) > 1P SEBI=) (v™) (53)

If the one step likelihood ratio is upper bounded by U, then the variance of importance sampling estimator can be upper
bounded by:

. 2
Var(tys) = E[Y?] — (v™)? =E | p2.0 <Z ’yt_lrt> —(v™)? (54)
t=1

<T?E [pd,r] — (o)’ (55)
<TUN — (v7)? (56)



Following from lemmal[l] the variance term can also be upper bounded by:

T 2
Var(tis) = E[Y?] — (v™)* = E | pg.r <Z vt‘lm> - (v7)?
t=1
< T°E [pg.r] — (v7)*

< T2M3T _ (,071')2

D.5. Proof of Theorem 3

Proof. LetY; = p1.4yt~ 7. For the upper bound:

T 2
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Or it can also be bounded as:
T

Var(dppis) <T > E(pg.y*r7) — ()
t=1

T
=T3P 2E(p},) — (")
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T
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The last step follows from lemmam For the lower bound, we notice that Y; > 0 for any ¢, then:

T 2 T T
() )22 (29) -0
t=1 t=0 t=1
For each ¢, we will follow a similar proof as how to lower bound part in Theorem Et
E(YY) =E (E(Y2[L(Y; > 7' 'Ex(r1)/2)))
>E (B(Y[1(Y; > 7' En(r0)/2)))’
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VT ER (i) = E(Y2)
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So we can lower bound the E(Y;?):

E(Y1Y; > 7' 1Ey (r)/2) > ol n(11) a5)
T 2Pr(Y; > At 1R (1) /2)
2t—2 2
7 (Ex ()
E(Y?) > 76
(¥) = 4Pr(Y; > 1 1E(ry)/2) (76)
Now we are going to upper bound the tail probability Pr(Y; > v~ 1E,(r;)/2):
t—1
Pr <Yt|yt > VIEW(”)) (77)
t—lE
_pr <p1wt—1n N 7;“‘”) (78)
Er
<Pr <P1:t > é”)) (79)
=Pr(logp1.t > logE,(r:) — log 2) (80)
1 Ex —log?2
—Pr (tlogplzt > M) (81)
1 f —f E,(r) —log2 + f —f
_pr (t log pr + ¢ + f(8t+1,at+11)1 f(s1,a1) St =(r¢) — log +f(3;+17a't+1) f(517a1)> (82)

Since |E,(r:) — log2 + f(3t+17 A1) — f(sl, a1 )| is bounded, there exist some T > 0 such that if ¢ > T}, we can lower
bound the right hand side in the probability by ¢/2. Then for t > Tp, by Azuma’s inequality (Azumal [1967),

t—1 ¢ _f
Pr <Yt|Y} > vy I?r(ﬁ)) <Pr (10gtp1:t +e+ f(8t+1,at+1t) f(slaal) > ;) (83)

—tc?
< _— 84
= (Sc%nmoo) R

So we have that for ¢ > Tj:

For 0 < t < Tp, E(Y;?) > 0 completes the proof. O

D.6. Proof of Corollary 2]

Proof. First, v > exp (ﬁ) indicate (ﬁ + 2log 7) > 0. This is necessary for the second condition to
1 oo 1 o
2
hold since 7 < 1. The second condition E(r;) = Q (exp (ﬁ — 2tlog~y + et/ 2)) implies that there exist a
1 oo

Ty > 0 and a constant C' > 0 such that (E,(r;))? > C (exp (&5%2” — 2tlogy + et)), for any ¢ > T. Then let
T > max{Ty, Ty}, where Ty is the constant in Theorem [5}

T 2t-2(p 2 te2
Va3 't 2 3 T e (i) — 0 9
t=To t=1
VT2 (Ex(rr))? Te? 2
> 1 exp 2Bl (v™) (86)
-2
> exp(eT) — (v™)% = Q(exp eT) (87)




D.7. Proof of Corollary [3]

Proof. 1 U,y < 1, Uly' "B (ry) < 1/ for any ¢ since 7, € [0,1]. If Upylim (B, (rr))"" < 1, letd = 1 —
1/T

Uy lim (IE#(TT))UT > 0. There exist a Ty > 0 such that for all t > Ty, U,y(Ex ()"t < Uyy(lim (B, (r7))" +
6/2(U,7)) =1 —6/2 < 1. Therefore in both case, for all T' > To, Ul~''E,,(rp) < 1/7:
T To
Var(}  pray''r <T2Ut B (rr) ST Y U T'Bu(rr) + T Z Uty B, (rr) (88)
t=1 t=1 t=To+1
UT0 -1 1
<TT,-% 277~ 89
sHogr—y + 5 (89)
Since Ty is a constant, the variance is O(T?). O
D.8. Proof of Theorem [6]
Proof.
dTr(St at) _
V. t \St, t—1 90
ar ;dﬂsm)v ry (90)
T
dT (sg,at) 4 > dT (s¢,a) 4 4 dE(Sk,ag)
=Y Var | A ) 42 Cov | eyt Ty, SROTE Rk, o1
2 (dé*(st,at)” f Z (o) A (sa)
T
d7f (se,ar) 4 dT (st, at) d7 (sg,ak)
< V. t ’ t—1 2.V t ’ t—1 \V/ k ’ k—1 92
<2 aI(clé‘(st,at) ) 2 2V G ) Ve G T o
T
dT (s¢,at) 4 > dT (s¢,at) 4 dT (sk,ag) j_
<Y Var | 2 At ) 4 Var | -2yt =1, ) 4 Var [ B2 kL, (93)
—; (df(st,atﬂ f 2 A (sna) & (spoar) "
T
— df (¢, a)
=T 2t 2V t ) 94
2 ar(dif(st,at)” O
d dT (s¢,at)
<TY 4% 2Var [ X 95
tzzlﬂy ar<df(5taat) ©

a a7 (se,a0)\”
= 2t-2 S0 )
e (2 () ) os

D.9. Proof of Corollary[d]

) dugsg < Us,, and E } 5) < U, then,

) dr(se,a0)\° d™(s,a) 2
lim E o (G0®)Y g J
s (dﬂst,at) o\ dn(s,a)

Lemma 4. If d}'(s;) and df (s;) are asymptotically equi-continuous

Proof. According to the law of large number on Markov chain (Breiman, |1960), the distribution of d} converge to the

stationary distribution d* in distribution. By the Lemma 1 in (Boos et al.l|1985), d!' (s, a) converge to d"(s, a) pointwisely,

dT (s, a) converge to d™ (s, a) pointwisely. So E g converge to du(s) ) pointwisely.




T 2 T 2
Est,atwdr (W) - Es,a/vd“ d (S’ a)> (97)

# o) (o,

B / . %ds‘i“ - / Wd“a (98)
(o2 o2

-/ (625(8)) (7;((622))2 N (Cilu(:z)) (Z((Cji?))zdsda ©9)

= /a (Cgfz))z B (CZT“((S )))2 doda (100)

<o [ [FOGRT L r a|

<U, /M d™(s) (dgisz)s)— d”(S))‘—i-df( ) Z?Eg - 328 dsda (102)

di(s) d"(s)
d(s)  dn(s)

<U,Ugdry(df,d™) + U, dsda (103)

s,a

By the law of large number on Markov chain (Breiman, 1960), drv(dT,d™) — 0. Since U, and U, are constant, and
di (s) d”(s)
dy (s) dr(s)?

— the right hand side of equation above converge to zero, which completes the proof. O

Proof of Corollary [4;

. 2
Proof. Since gugs a; is bounded by U,U and then E; 4.qn (3“82;) is bounded by Up2 U2. Following from Lemma

2 . 2
there exist T > 0 such that for all t > Tp, E;, ,, g (ZLEZ:ZS) < 2E; gan (3#2?23) < 2U2UZ. Then by Theorem
Bl for T > T, '

Sty At
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Stvat)
)\
)

Q.

T d7 (51, az) T dr
t \PtryWt) 1 t—1 t

ar —_- ry | <T E E
(tl di‘(st,atﬂ t) — 17 ( a

_ dr
STth 'E (dL
_ t

_o(1?)

St, Ay

(
(
E +2T(T - Ty)UZU?

St, At

D.10. Proof of Corollary 5|

Now we consider an type of approximate MIS estimators, which plug an approximate density ratio into the MIS estimator.

More specifially, we consider it use a function wy (s, a;) to approximate density ratio d Est’atg and construct the estimator

as:

Dasis = Y wy(s,a)y' "'y (104)

This approximate MIS estimator is often biased based on the choice of w;(s, a), so we consider the upper bound of their
mean square error with respect to 7" and the error of the ratio estimator.

- 2
Theorem 7. 0455 with wy such that where E,, (wt(st, a;) — Zﬁé:’ig) < €w
(st

MSE (dasis) < 2Var(tss) + 2T %€y, (105)



Proof.

t=1

Il
-

2
E <Z wy(se, ap)y "y — v”) (106)
t

o

T
MSE (Z wy (¢, at)vtlrt>

B

2
wy (st ar)y' "y — dsis + Dsis — Uﬁ) (107)

I
—

M=

IN
)
=

2
wy (e, at)’thth - ’[JSIS> + 2E (ds1s — Uw)Q (108)

IN
™)
=

[M]=

~ &
Il £

2
_ dT (s¢,a N
vy (wt(st, ag) — % > + 2Var(dsys) (109)

=

T 2
_ dy (s, ar)
2t—2 t \2ty, Ut ~
<27 ) +*7°E (wt(st,at) — M) + 2Var(dgys ) (110)
t=1 t
T
< 2Var(igs) + 2T Y ¥ %€, (111)
t=1
< 2Var(dgis) + 27%€,, (112)
O
Proof of Corollary [5}
Proof. By Theorem[7]we have that the MSE is bounded by
2Var(isis) + 272 €,, (113)
According to Corollary
2Var(tsis) + 2726, = O(T?) 4+ 2T%¢,, = O(T?(1 + €,)) (114)
O

E. Return-Conditional IS estimators

A natural extension of the conditional importance sampling estimators is to condition on the observed returns G;. Precisely
we examine the general conditional importance sampling estimator:

G:E [Pl:t|¢t] , (115)

and consider when ¢; = G;. An analytic expression for E [p;.;|G¢] is not available, but we can model this as a regression
problem to predict E [p1.;|G;] given an input G;. A natural approach is to use ordinary least squares (OLS) estimator to
estimate |E [p1.¢|#¢] viewing ¢; (or any other statistics G;) as an input and p1.; as an output. While tempting at first glance,
we show that this approach produces exactly the same estimates of the expected return as that of the crude importance
sampling estimator.

We start by considering the OLS problem associated with the conditional weights in which we want to find a 9 such that

o O~E [p1:t]p¢]. Let ® € R™*2 be the design matrix containing the observed returns Ggi) after ¢ steps and Y € R" be

the vector of importance ratios pgzi for each rollout 7:

ot G 1

V=111, 2= : :
N N

o I I=/



The OLS estimator for the return-conditional weights is then Y = ®0 and where § € R? is defined as:
h=(@"0) o7y |

We can now use the approximate return-conditional weights to form a Monte Carlo estimate of the expected return under
the target policy:

N
5 _ 1 E : ) _ L Ty
VRCIS = N : Gt Y = N[I,O]@ Y s (116)

where Y = [G!” 0]76 and the equality follows from the fact that 7Y = [S27, pIG{) S | 1T, Using this
observation, we can also express the crude importance sampling estimator with the linear combination ® 'Y, where Y
now consists of the frue weights:

X 1
bs = N[l,o]qﬁy . 117)

Note that equation differs from (TT7) only in the term ¥ = 36 = @ (97 @) “'®TY and upon closer inspection, we
find that:

=0Ty -3V =0" (Y-@(@T@)‘lqﬂy) 3T (I-H)Y =0,

.. . S -1 . . . .
where € is residual vector Y — Y and H = ® (<I>T<I>) @7 is the har matrix. Hence, it follows that the estimate of the
expected return made under the crude importance sampling estimator must be identical to the extended estimator which
uses approximate return-conditional weights:

1 1 5 1 N
B — tres = —[1,008TY — ~[1,0081Y = ~[1,0] (@TY - @TY) =1[1,00=0 .
n n n
This analysis can be generalized to any conditional importance sampling estimator for which G; can be expressed as a
linear combination of ¢,. For example, rather than conditioning on the final return, we could condition on the return so
far (the sum of returns to the present) and use ¢; = [rq,rs,...r;] with the coefficient vector [1,1,...1,0]. Similarly, this

negative result carries to reward-conditional weights if the immediate reward r; can be expressed as linear combination of
@1, including if ¢, is simply the immediate reward.
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