
Time-aware Large Kernel Convolutions

Vasileios Lioutas 1 Yuhong Guo 1

Abstract

To date, most state-of-the-art sequence model­
ing architectures use attention to build genera­
tive models for language based tasks. Some of
these models use all the available sequence to­
kens to generate an attention distribution which
results in time complexity of O(n2). Alterna­
tively, they utilize depthwise convolutions with
softmax normalized kernels of size k acting as a
limited-window self-attention, resulting in time
complexity of O(k·n). In this paper, we introduce
Time-aware Large Kernel (TaLK) Convolutions,
a novel adaptive convolution operation that learns
to predict the size of a summation kernel instead
of using a fixed-sized kernel matrix. This method
yields a time complexity of O(n), effectively mak­
ing the sequence encoding process linear to the
number of tokens. We evaluate the proposed
method on large-scale standard machine trans­
lation, abstractive summarization and language
modeling datasets and show that TaLK Convo­
lutions constitute an efficient improvement over
other attention/convolution based approaches.

1. Introduction

Sequence modeling has seen some great breakthroughs
through recent years with the introduction of the use of neu­
ral networks. Recurrent neural network methods (Sutskever
et al., 2014; Bahdanau et al., 2015; Wu et al., 2016), convo­
lution methods (Kim, 2014; Kalchbrenner et al., 2014; 2016;
Gehring et al., 2017; Wu et al., 2019), and self-attention
approaches (Paulus et al., 2018; Vaswani et al., 2017; Dai
et al., 2019; Kitaev et al., 2020) have all yielded state-of­
the-art results in various NLP tasks such as neural machine
translation (NMT) (Sutskever et al., 2014; Wu et al., 2016;
Britz et al., 2017; Aharoni et al., 2019), language model­
ing (Sundermeyer et al., 2012; Tran et al., 2016; Devlin

1School of Computer Science, Carleton University, Canada.
Correspondence to: Vasileios Lioutas <contact@vlioutas.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au­
thor(s).

et al., 2019; Radford et al., 2019), automatic summarization
(Paulus et al., 2018; Fan et al., 2018; Celikyilmaz et al.,
2018), named entity recognition (Lample et al., 2016; De­
vlin et al., 2019) and sentiment analysis (Xu et al., 2016;
Sachan et al., 2019).

Seemingly all modern approaches of sequence encoding rely
on the use of attention to “filter” the excessive information
given at a current time-step. Attention can be expressed
as the weighted sum over context representations using at­
tention weights that are usually generated from the context
representations (self-attention) (Cheng et al., 2016). The
transformer network (Vaswani et al., 2017) assigns attention
weights for a given time-step to all available context token
representations, while the newly proposed dynamic convo­
lution (Wu et al., 2019) only computes an attention over a
fixed context window.

Self-attention over all context tokens is computationally
very expensive. Specifically, the transformer network has
a time complexity of O(n2) where n is the length of the
input sequence. Thus, modeling long-range dependencies
becomes very challenging and the practicality of the self-
attention method has been questioned. The more recent
approach of dynamic convolutions (Wu et al., 2019) suc­
cessfully reduced the time complexity to O(k·n) where k is
the kernel size specified for each layer.

In this paper, we introduce a novel type of adaptive con­
volution, Time-aware Large Kernel (TaLK) convolutions,
that learns the kernel size of a summation kernel for each
time-step instead of learning the kernel weights as in a typi­
cal convolution operation. For each time-step, a function is
responsible for predicting the appropriate size of neighbor
representations to use in the form of left and right offsets
relative to the time-step. The result is an efficient encod­
ing method that reduces the time complexity to O(n) and
uses fewer parameters than all other methods. The method
employs the fast Parallel Prefix Sum (Ladner & Fischer,
1980; Vishkin, 2003) operation which has a time complexity
of O(log(n)) to compute the integral image (Lewis, 1994),
also known as summed-area table in the Computer Vision
literature. This needs to be computed only once and can
be used to calculate any summation between two boundary
tokens in O(1). Applying it on a sequence with length n
only needs O(n) time. To summarize, the contributions of

Time-aware Large Kernel Convolutions

this work are three-fold:

•	 We introduce a novel adaptive convolution based on
summation kernel for sequence encoding.

•	 We show both analytically and empirically that the
proposed kernel method has a smaller time complexity;
it is faster than previous state-of-the-art approaches and
is able to encode longer sentences quicker and with a
smaller running memory footprint.

•	 We evaluate our method on three NLP tasks, machine
translation, abstractive summarization and language
modeling. We show that the proposed method can get
comparative performance with previous methods on
WMT En-De and WMT En-Fr benchmarks in machine
translation, and set a new state-of-the-art result on the
IWSLT De-En and CNN-DailyMail datasets, while in
language modeling our method is able to perform com­
paratively with self-attention and outperform dynamic
convolutions on the WikiText-103 benchmark dataset.

Our code and pre-trained models are available at
github.com/lioutasb/TaLKConvolutions.

2. Related Work

In this section, we provide a brief review over various re­
lated sequence modeling methods, and related methods that
enlarge the receptive filed of a convolution operation.

2.1. Sequence Modeling

Sequence modeling is an important task in machine learning.
An effective system should be able to comprehend and gen­
erate sequences similar to real data. Traditional approaches
typically rely on the use of various kinds of recurrent neu­
ral networks such as long-short term memory networks
(Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014;
Li et al., 2016; 2018) and gated recurrent unit networks (Cho
et al., 2014; Nabil et al., 2016). These recurrent approaches
are auto-regressive, which slows the process down for long
sequences since they linearly depend on their own previous
output tokens. Recent work is focused on exploring convolu­
tional neural networks (CNN) methods (Kalchbrenner et al.,
2016; Gehring et al., 2017; Wu et al., 2019) or self-attention
methods (Vaswani et al., 2017; Zhang et al., 2018; Dai et al.,
2019; Kitaev et al., 2020) which both facilitate the paral­
lelization of the encoding process. In addition, since they
are not auto-regressive, they allow the encoding process to
capture stronger global and local dependencies.

Recently, Wu et al. (2019) proposed an alternative method
to the original self-attention approach. Their window-based
attention method with window size k can perform compar­
atively with self-attention modules that have access to all

available tokens at each time-step. They utilize a depthwise
convolution with a generated softmax normalized kernel
of size k for every time-step. This brings down the time
complexity to O(k·n) from the quadratic complexion of
the original self-attention model. However, this method
has the drawback of being memory intensive for long se­
quences depending on the implementation used. Moreover,
supporting larger kernel sizes can have a negative impact
to running time. In another work, Shen et al. (2018) pro­
posed computing intra-block self-attention weights within
blocks of the input sequence and inter-block attention be­
tween all blocks to reduce the running memory of the full
self-attention approach.

Our method differs from all these previous approaches in
two main aspects. Specifically, instead of having all (or
some) tokens available and then deciding which ones are
needed to encode a time-step, we start from the current time-
step representation and try to expand to the neighbor tokens
in an adaptive manner. Additionally, instead of using atten­
tion for filtering the tokens used for encoding a time-step,
we use all the information available in an adaptively decided
window by utilizing a summation convolution kernel with
summed-area tables, which improves upon previously pro­
posed methodology by allowing us to reduce the complexity
to O(n), to produce a smaller running memory footprint,
and to use less parameters than all other methods.

2.2. Dynamically Sized Receptive Field

Increasing the receptive field of a convolution layer without
adding a computation overhead is a challenging task. By
making deeper CNN models, we may be able to accumulate
many fixed-sized receptive fields, however this comes at
the cost of high computational demands. Nevertheless, this
approach is shown to be successful in multiple state-of-the­
art vision models (He et al., 2016; Szegedy et al., 2016).
The overhead issue is often mitigated using a form of down-
sampling, either via pooling layers (Lecun et al., 1998)
or strided convolutions (Springenberg et al., 2015). Yu &
Koltun (2016) proposed dilated convolutions, a method for
enlarging the convolution kernel size by skipping intermedi­
ate pixels and thus, requiring less multadds operations.

The first work that suggested the use of learnable sized con­
volution kernels was box convolutions (Burkov & Lempit­
sky, 2018). The idea of using box filters with summed-area
tables (Crow, 1984), commonly known as integral images
dates back many years and it is well-known to the Computer
Vision community, as it became particularly popular with
the work of Viola & Jones (2001) in object detection. The
summed-area table can be efficiently parallelized using the
Parallel Prefix Sum method (Ladner & Fischer, 1980). This
operation can be further accelerated as a hardware functional
unit dedicated to compute the multi-parameter prefix-sum

https://github.com/lioutasb/TaLKConvolutions

Time-aware Large Kernel Convolutions

1.2

3.0

5.5

4.2

Current Timestep

Head 1

Head 2

Figure 1. The Time-aware Large Kernel convolution operation.

3.1. One-dimensional Large Kernel Convolution

Let X = {x1, x2, . . . , xn} denote an input sequence, where
n is the length of the sequence, xi ∈ Rd is the current input
representation for the i-th word (i.e., the i-th time-step) and
d denotes the dimensionality of the vector representation
(i.e., the number of channels).

The goal of this paper is to reduce the encoding time com­
plexity for sequence modeling to O(n). In other words, we
set out to make the encoding at each time-step independent
of the size of the receptive field. In addition, we want to
explore alternative methods to the successful self-attention
mechanism by equally using the number of neighbor tokens
to represent a time-step instead of generating an attention
distribution over the tokens. Specifically, we assume that
simply summing the appropriate number of token represen­
tations is enough to represent the current time-step. That is,
we encode the representation at the i-th time-step by

For the current time-step, we compute the left and right offsets α°r
i

for each head, and then sum all the representation vectors inside oi = xj , (1)
these boundaries. This operation can be efficiently computed using

j=α
summed-area tables with time complexity O(log(n)) and compute
the output representation for each time-step in O(n) time. where 1 ≤ αl

i ≤ i ≤ αr

l
i

i ≤n are the lower (left offset) and

operation (Vishkin, 2003).

Burkov & Lempitsky (2018) method is optimizing the kernel
size parameters using approximate gradients by normalizing
the sum by the area of the box. Zhang et al. (2019) extended
this idea by using interpolation to exploit non-integer co­
ordinates. Inspired by this idea, we develop the proposed
method for one-dimensional case of sequences. In contrast
to the two previous methods, instead of using a fixed num­
ber of learnable sized kernels, we adaptively condition the
size of the kernel on each input representation, effectively
generating a different kernel size for each time-step token.

upper (right offset) bounds of the kernel size.

Applying Equation 1 for each time-step i separately is in­
efficient since we do repetitive summations over the same
representations. Zhang et al. (2019) showed that using the
summed-area table (Crow, 1984), we can accelerate a sum­
mation convolution operation to any kernel size. Specif­
ically, let S = {S0, S1, S2, . . . , Sn} be the summed-area
table computed using

S0 = 0,
(2)

Si = Si−1 + xi, 1 ≤ i ≤ n.

Given the left offset αl and the right offset αr
i , we can com-i

pute the summation denoted as oi of the features between
these offsets using the summed-area table

3. Methodology
 oi = Sar
i
− Sal

i−1 (3)
In this section, we present the proposed adaptive Time-
aware Large Kernel (TaLK) Convolution method. First, we
introduce the approach that computes a convolution opera­
tion using large kernels in O(n) time, which assumes that
left and right offsets are given. Next, we present our pro­
posed method for generating offsets dynamically for each
time-step. We then expand upon our method to use multiple
heads and normalize the summed output vector. Next, we
explain how to use TaLK Convolutions for decoding. Fi­
nally, we present the computational complexity analysis and
comparison for the proposed method. Figure 1 illustrates
the Time-aware Large Kernel Convolution operation for a
specific time-step during encoding.

3.2. Time-aware Large Kernel Generation

Given the one-dimensional large kernel convolution above,
it is important to determine the left and right offsets for
computing representations at each time-step. The key of
the proposed method is an adaptive time-aware large kernel
convolution operation which has kernel sizes that vary over
time as a learned function of the individual time steps; that
is, we propose to learn the offsets of the summation kernel
above for each time-step.

Specifically, we propose to use a function f{l,r} : Rd →
l rR to generate for each xi the left ã and right ã relative i i

Time-aware Large Kernel Convolutions

{l,r}
σ(f{l,r}(xi)) ∈ [0, 1].offsets, where ã = For each i

{l,r}
ã relative offset, we convert it to the absolute offset i
counterpart in the following way

l l a = i − ãi i · lmax (4)
r r a = i + ãi i · rmax,

where lmax ∈ Z≥0 is the maximum allowed tokens to the
left and rmax ∈ Z≥0 is the maximum allowed tokens to the
right.

The absolute offsets up to this point represent real positive
numbers. In the next step, we need to convert these numbers
to integer indexes so we can select from the summed-area
table using the Equation (3). Inspired by Zhang et al. (2019),
we use one-dimensional interpolation to sample from the
summed-area table by using the positive real-valued offsets
l rai, ai as follows

S = γl · Sl J−1 + (1 − γl) · Sral
i−1 al

i al
il−1,

(5) of multi-head attention (Vaswani et al., 2017; Wu et al.,

Such a simple window size based normalization can ef­
fectively get rid of the output magnitude differentiation
problem resulted from summation kernels.

{l,r}In addition, we regularize the predicted offsets ã us­i
ing Dropout (Hinton et al., 2012; Srivastava et al., 2014).
Specifically, during training we drop out every predicted
offset with probability p. This helps to prevent the model
from quickly optimizing towards a specific window size and
be able to generate more diverse offsets.

3.4. Multi-headed Kernels

Although the offset computation above provides a mech­
anism that offers adaptive receptive fields for summation
kernels at different time steps, a single pair of left and right
offsets for all d dimensions cannot yield good results, as
different features might be related to their counterpart in
the neighbor tokens in different way. Inspired by the idea

= (1 − γr) · Sl J + γr · SrSa ar
i l, 2019), we further propose to extend our proposed convolu­r

i
r
ia

tion kernel into a multi-head version by allowing different where l.J and l.l are the floor and ceiling operators, γl =
l l r r representation features, i.e., channels, to have different left la l − a and γr = a − la J. The above equation is con-i i i i

and right offsets for each time-step. Moreover, instead of tinuous and differentiable in the interpolation neighborhood.
{l,r} having entirely different convolution offsets across multiple The partial derivatives of S {l,r} with respect to ã areiai channels, we adopt a depthwise version by separating the

given by feature channels into multiple groups, each of which share
∂S −1 the same pair of left and right offsets. l

ia = lmax(Sl J−1 − Sr l−1),l
i

l
il a a∂ã = d

HSpecifically, we tie every subsequent number of Ri (6)
∂Sa channels together and group the channels into H groups for r

i = rmax(Sr l − Sla J).ar
i

r
i each xi, where H is the number of heads. This results to r∂ãi

X̂ = {x̂1, x̂2, . . . , x̂n}, where x̂i ∈ RH×R . Then we use
a function f{l,r} : RH×R → RH to generate for each x̂i a
vector of H left relative offsets α̃l or right relative offsets i

The partial derivatives of S with respect to Sli
{l,r}

and S {l,r} tokens are given by ra li

i
{l,r}

a Ja

{l,r}
= σ(f{l,r}(ˆα̃r via α̃ xi)) ∈ [0, 1]H .i i

∂S ∂S−1l
i

l
i−1a a

= γl = (1 − γl),,
∂Sl ∂Sr 3.5. Decoding Using TaLK Convolutions l

i
l
iJ−1 l−1a a

(7)
In an encoder/decoder sequence generation scheme∂Sa ∂Sar

i
r
i= (1 − γr), = γr . (Sutskever et al., 2014), the encoder part of the model has ∂Sla ∂Srar

i
r
iJ l

access to both past and future tokens. The decoding part,
however, must have access only to past tokens that are gen­
erated so far. Enforcing this with TaLK Convolutions is
straightforward by setting the rmax value to zero.

3.6. Module Architecture and Implementation

For sequence modeling, we follow a similar module archi­
tecture as described in Wu et al. (2019). Specifically, we

3.3. Output Normalization and Offsets Dropout

The idea of summing all the features in a window of size
l r[ai, a] works well for shallow models. However, as the i

representation vectors at different time-steps are computed
from summations over different numbers of neighbors, their
magnitudes of values can be different. As we introduce
more layers, the disproportional magnitude of the inputs
makes learning harder for the nodes in the layers that follow.

apply a linear layer to project the input embedding tokens
from d to 2d and then we apply a gated linear unit (GLU)

To address this problem, we propose to normalize the output (Dauphin et al., 2017). Next, we apply the TaLK Convolu­
representations of TaLK Convolutions as follows tion operation as described in Section 3.2. Finally, we apply a projection layer to the output representations from TaLK

Convolution with size W ∈ Rd×d. Figure 2 illustrates the
1

õi = oi · . (8)
lmax + rmax + 1

Time-aware Large Kernel Convolutions

Table 1. Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the
sequence length, d is the representation dimension, k is the kernel size of convolutions and nbuckets is the number of hash buckets.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Recurrent (Sutskever et al., 2014) O(n · d2) O(n) O(n)
Convolutional
(Kalchbrenner et al., 2016; Gehring et al., 2017) O(k · n · d2) O(1) O(logk(n)) or O(n/k)

Self-Attention (Vaswani et al., 2017) O(n2 · d) O(1) O(1)
Dynamic Convolutions (Wu et al., 2019) O(k · n · d) O(1) O(n/k)
Reformer (Kitaev et al., 2020) O(n · log(n) · d) O(log(n)) O(n/nbuckets)

TaLK Convolutions (Ours) O(n · d) O(log(n)) O(n/(lmax + rmax + 1))

Linear

GLU

TaLK Conv

Linear

Linear

Sigmoid

Input

left and right
offsets generation

Figure 2. The proposed TaLK Convolution unit.

TaLK Convolution unit. In addition, we substitute all ReLU
activation functions with the Swish function (Ramachan­
dran et al., 2017). Similar to (Vaswani et al., 2017; Wu
et al., 2019), the overall architecture is composed by the
TaLK Convolution unit which replaces the self-attention or
the dynamic convolution unit followed by the position-wise
feed-forward network (FFN) unit.

The summed-area table (Equation 2) can be efficiently com­
puted on a GPU by performing a fast Parallel Prefix Sum
(Ladner & Fischer, 1980) over the token dimension. This op­
eration is usually efficiently implemented on modern deep
learning frameworks under the name of cumulative sum.
Applying the relative offsets to the summed-area table using
core functions from deep learning frameworks is not a triv­
ial task. Such an implementation is usually very inefficient
leading to slower computation and memory overhead. For
this reason, we implemented the operation using CUDA
kernels that enabled us to parallelize the computation for
each token.

3.7. Computational Complexity

In this section we compare the complexity of the TaLK Con­
volution operation against different modules for encoding
an input sequence of representations. This comparison is
shown on Table 1. We follow a similar comparison as an­
alyzed by Vaswani et al. (2017). Our comparison is based
on three criteria: the time complexity of the operation, the
amount of computations that can be executed in parallel and
the path length between long-range dependencies.

As shown in Table 1, our proposed method requires the
least number of operations. Specifically, it has a linear time
complexity to encode a sequence and does not depend on
hyper-parameter decisions such as the kernel size. In terms
of the number of computations that can be parallelized, our
method needs logarithmic time to compute the summed-area
table (Equation 2). It is true that our method does not have a
constant number of sequentially executed operations like all
the other non-autoregressive counterpart methods, but the
logarithmic time our method is requiring is inexpensive to
compute even for very long sequences.

It is shown by Kolen & Kremer (2001) that a short path
between any combination of token positions in the input
and output sequences makes it easier to learn long-range
dependencies. In practice, doubts have been cast over the
ability of self-attention to model long-range dependencies
(Tang et al., 2018; Wu et al., 2019). Wu et al. (2019) showed
that using a limited context window can outperform self-
attention. Our method has the advantage that the number
of required computations is independent of the maximum
window size and thus, it can be tuned or learned without
extra cost.

4. Experiments

4.1. Datasets and Evaluation

We evaluated our proposed encoding technique on machine
translation, abstractive summarization and language mod­

Time-aware Large Kernel Convolutions

Table 2. Machine translation accuracy in terms of BLEU for WMT En-De and WMT En-Fr on newstest2014.

Model Param (En-De) WMT En-De WMT En-Fr

Gehring et al. (2017)
Vaswani et al. (2017)
Ahmed et al. (2017)
Chen et al. (2018)
Shaw et al. (2018)
Ott et al. (2018)
Wu et al. (2019)
Kitaev et al. (2020)

216M
213M
213M
379M

-
210M
213M
213M

25.2
28.4
28.9
28.5
29.2
29.3
29.7
29.1

40.5
41.0
41.4
41.0
41.5
43.2
43.2

–

TaLK Convolution (Ours) 209M 29.6 43.2

Table 3. Machine translation accuracy in terms of BLEU on
IWSLT De-En.

Model Param IWSLT De-En

Deng et al. (2018) - 33.1
Vaswani et al. (2017) 47M 34.4
Wu et al. (2019) 43M 35.2

TaLK Convolution (Ours) 42M 35.5

eling. These three tasks are considered touchstone and
challenging in the NLP field.

Machine Translation On the machine translation task,
we report results on three mainstream benchmark datasets:
WMT English to German (En-De), WMT English to French
(En-Fr) and IWSLT German to English (De-En).

For all datasets, we replicated the pre-processing steps men­
tioned in Wu et al. (2019). Specifically, for the WMT En-De
we used the WMT’16 training data that consists of 4.5M
sentence pairs. We validated on newstest2013 and tested
on newstest2014. We employed byte-pair encoding (BPE)
(Sennrich et al., 2016) to the sentences, with a 32K joint
source and target vocabulary. For the WMT En-Fr, we used
36M training sentence pairs from WMT’14. We validated
on newstest2012+2013 and tested on newstest2014 evalua­
tion datasets. Using BPE, we generated a joint vocabulary
between the source and the target languages of size 40K to­
kens. The IWSLT De-En consists of 160K training sentence
pairs. We lower cased all sentences and used a 10K joint
BPE vocabulary.

For all datasets, we measured case-sensitive tokenized
BLEU scores using multi-bleu1. Similarly to Vaswani

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/generic/
multi%2Dbleu.perl

et al. (2017), we applied compound splitting for WMT En-
De. We trained five random initializations of each model
configuration and report test accuracy of the seed which re­
sulted in the highest validation BLEU score. For all datasets,
we used beam search with beam width 5. Similar to Wu et al.
(2019), we tuned a length penalty as well as the number of
checkpoints to average on the validation set.

Abstractive Summarization For the abstractive summa­
rization task, we decided to experiment with the CNN-
DailyMail (Hermann et al., 2015; Nallapati et al., 2016)
dataset. The dataset is composed by approximately 280K
news articles with associated multi-sentence summaries. We
followed the same pre-processing steps as described by Wu
et al. (2019). The BPE vocabulary consists of 30K subword
tokens. We report results using the F1-Rouge (Rouge-1,
Rouge-2 and Rouge-L) metric (Lin, 2004). For generating
the summaries, similar to Wu et al. (2019) we tuned the
maximum output length, disallowing repeating the same
trigram, and we apply a stepwise length penalty.

Language Modeling We experimented on the WikiText­
103 (Merity et al., 2017) benchmark dataset. The training
data contains approximately 100M tokens. A vocabulary of
about 260K tokens was used, by discarding all tokens with a
frequency below 3 as described in Merity et al. (2017). We
followed Baevski & Auli (2019) and applied adaptive input
representations. We replicated their setup and partition the
training data into blocks of 512 contiguous tokens while
ignoring document boundaries.

4.2. Experiment Details

Hyper-Parameters For the machine translation models,
we followed the same hyper-parameter setup as described in
Wu et al. (2019). Specifically, we follow for WMT En-De
and WMT En-Fr datasets the model hidden size d was set
to 1024, the feed-forward hidden size dff was set to 4096
and the number of layers for the encoder and the decoder

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi%2Dbleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi%2Dbleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi%2Dbleu.perl

Time-aware Large Kernel Convolutions

Table 4. Results on CNN-DailyMail abstractive summarization.

Model Param Rouge-1 Rouge-2 Rouge-L

LSTM (Paulus et al., 2018) - 38.30 14.81 35.49
CNN (Fan et al., 2018) - 39.06 15.38 35.77
Self-Attention Baseline (Wu et al., 2019) 90M 39.26 15.98 36.35
Lightweight Convolution (Wu et al., 2019) 86M 39.52 15.97 36.51
Dynamic Convolution (Wu et al., 2019) 87M 39.84 16.25 36.73

TaLK Convolution (Standard) 59M 40.03 18.45 36.13

TaLK Convolution (Deep) 83M 40.59 18.97 36.81

Table 5. Test perplexity on WikiText-103. We used adaptive inputs
similar to Baevski & Auli (2019) and show that our method yields
better perplexity than dynamic convolutions and comparative per­
formance with self-attention.

Param Test

Grave et al. (2017) - 40.8
Dauphin et al. (2017) 229M 37.2
Merity et al. (2018) 151M 33.0
Rae et al. (2018) - 29.2
Baevski & Auli (2019) 247M 20.5

Dynamic Convolutions 255M 25.0
TaLK Convolution (Ours) 240M 23.3

was set to 7 and 6 respectively. The number of heads was
set to 16 and the lmax, rmax values to 3, 7, 15, 31×4 for each
layer. For IWSLT De-En, the model hidden size d was set
to 512, the feed-forward hidden size dff was set to 1024 and
the number of layers for the encoder and the decoder was
set to 7 and 6 respectively. The number of heads was set to
4 and the lmax, rmax values to 1, 3, 7, 15×4 for each layer.

For the abstractive summarization models, we tested our
method on two types of model configurations, the Standard
and the Deep configurations. Both settings have a hidden
size d of 512, a feed-forward hidden size dff of 2048 and
number of heads to be 8. The Standard model has 7 en­
coder and 6 decoder layers with the lmax, rmax values be
3, 7, 15, 31×4 for each layer. The Deep model has 10 layers
for both the encoder and decoder with the lmax values be
3, 7, 15, 31×7 and the rmax be 3, 7, 31×8.

For the language model, we followed the same configuration
as Baevski & Auli (2019). We used 17 decoding layers, each
layer with a 1024 hidden size, a 4096 feed-forward hidden
size and 8 heads. The adaptive input factor was set to 4. The
lmax values were set to 3, 7, 15, 31, 63×12 and rmax to zero
for each layer.

Optimization We used the Adam optimizer (Kingma &
Ba, 2015) with default values. In addition, our models
were optimized using the cosine learning rate schedule
(Loshchilov & Hutter, 2017). We linearly warmed up for
10K steps from 10−7 to 10−3. For IWSLT De-En, we used
the inverse square root learning rate schedule (Vaswani et al.,
2017). We set the dropout to 0.3 for WMT En-De and
IWSLT De-En and 0.1 for WMT En-Fr.

For the WMT En-De and WMT En-Fr benchmarks, the
batch size was set to 3,584 tokens per batch, per GPU. We
accumulated the gradients for 16 batches before applying
an update which results in an effective batch size of 450K
tokens. We trained the WMT En-De model for 30K steps
and the WMT En-Fr for 80K steps. For IWSLT De-En,
we trained on a single GPU with 4,000 maximum tokens
per batch for 50K steps. For the abstractive summarization
models we followed the same setup as in Wu et al. (2019)
and for the language model the same setup as in Baevski &
Auli (2019).

Hardware Details We trained the WMT En-De, WMT
En-Fr, CNN-DailyMail and WikiText-103 models on 8
NVIDIA RTX 2080 Ti GPUs using mixed-precision train­
ing (Micikevicius et al., 2018) and the IWSLT De-En model
using a single GPU. We employed our own CUDA imple­
mentation, wrapped as a standalone PyTorch layer for the
TaLK Convolution operation. All experiments were run
using the Fairseq (Ott et al., 2019) toolkit.

4.3. Results on Machine Translation

We demonstrate the effectiveness of our model in the WMT
En-De and WMT En-Fr translation benchmarks. Table 2
shows that our method is able to achieve comparable results
to current state-of-the-art methods. Specifically, our method
was able to match the state-of-the-art score on WMT En-
Fr, a benchmark dataset that is considered indicative for the
effectiveness of a method due to the large number of training
examples (36M) it contains. Additionally for WMT En-De,
our method is only 0.1 BLEU points behind the current state­

Time-aware Large Kernel Convolutions

Table 6. Throughput and memory consumption decrease measured for different sequence lengths (n) on a batch of size 10 with each token
being represented with d = 1024 and H = 16. Throughput is calculated across 100K iterations of a single input encoding execution for
each method. Memory decrease is computed as how many times less memory we need to encoding the input embedding compared to
Self-Attention. Larger numbers indicate better performance.

Method

Self-Attention
DynamicConv (k = 3)
DynamicConv (k = 31)

TaLK Convolution

4576
3739
4535

9686

1x
1x

0.97x

1.1x

3437
3308
3860

6126

1x
0.99x

1x

1.1x

102
443
325

898

1x
2.8x
2.7x

3.1x

OOM
45
29

92

1x
25.4x
20.2x

26.4x

n = 10 n = 100 n = 1, 000 n = 10, 000
iter/sec Mem. ↓ iter/sec Mem. ↓ iter/sec Mem. ↓ iter/sec Mem. ↓

of-the-art score. It is important to underline, however, that
our method uses the least number of parameters compared
to the other counterpart methods.

Table 3 shows results for IWSLT De-En benchmark dataset.
Following Wu et al. (2019), we employed a smaller model
with less parameters to reflect the size of the dataset. Specif­
ically, we set d to 512, dff to 1024 and H to 4. Furthermore,
we disabled the GLU unit that is described in Section 3.6
and made the input projection layer to size W ∈ Rd×d. Our
method was able to outperform all other methods setting a
new state-of-the-art result.

4.4. Results on Abstractive Summarization

We evaluated the proposed method on the task of abstractive
summarization. We test the method’s ability to process long
documents on the CNN-DailyMail dataset. We encode an
article of up to 400 sub-words and we generate a summariza­
tion composed from multiple sentences. Table 4 shows the
results of our experiments. Our Standard model is able to
achieve better results on the Rouge-1 and Rouge-2 metrics
than previous methods. In addition, the Standard model is
using significantly less parameters, approximately 30M pa­
rameters less. The Deep model uses more layers to closely
match the number of parameters and is able to outperform
all previous models. This shows that our method is able
to encode long sequences successfully without having the
need to have access to all context.

4.5. Results on Language Modeling

We evaluated our method on the task of language model­
ing. We considered the WikiText-103 benchmark dataset
and we compared against recent methods in the literature.
Particularly, we followed the setup that was implemented in
the adaptive inputs baseline (Baevski & Auli, 2019). This
work suggest the use of self-attention with adaptive input
representations. We substituted the self-attention module
with our method. In order to assimilate the number of pa­
rameters used in their experiments, we increased the number

of layers by one. As seen on Table 5, our method yields
better perplexity than dynamic convolutions when trained
using the same settings, including the same maximum ker­
nel size. In addition, we get comparative performance with
self-attention. Moreover, we use less number of parameters
than the best comparison methods.

4.6. Encoding Inference Speed Comparison

We also compared our method against other non-
autoregressive methods in terms of encoding inference speed
and memory consumption. We measured the speed using
a single NVIDIA RTX 2080 Ti GPU with full precision
floating-point arithmetic (FP32). Specifically, we mea­
sured the throughput of encoding a batch of size B = 10,
d = 1024 and H = 16. For each method, we only took
into consideration the time it takes to process using the core
approach of each encoding method.

For self-attention (Vaswani et al., 2017), we only timed the
attention operation softmax(QKT

)V . For dynamic con­√
dk

volutions (Wu et al., 2019), we only timed the operation
DepthwiseConv(X, softmax(Wdyn), i, c) where Wdyn ∈
Rn·B·H×K is the generated kernel for each time-step. The
authors of dynamic convolutions proposed two ways of im­
plementing their method. The first method uses the standard
convolution unfolding function which is faster for longer
sequences. The second approach is the band matrix trick
method which copies and expands the normalized weights
matrix into a band matrix. This second approach yields
faster execution time for shorter sequences but is more mem­
ory intensive. In order to be fair, in our experiments we used
unfolding to sequences longer than 500 tokens and band ma­
trices for shorter sequences. We also set K to 3 and 31, the
first being the smallest kernel size dynamic convolutions use
and the second being the largest. Finally, for our method we
measured the time to compute the large kernel convolution
operation given the relative offsets. We evaluated for 100K
iterations across four different sequence lengths n.

Table 6 shows that our method yields much better through­

Time-aware Large Kernel Convolutions

Table 7. Ablation on IWSLT De-En validation set. (+) indicates that a result includes all preceding features.

Model Param BLEU

TaLK Convolution (al i, a
r
i =1x7, H=1) 42M diverges

+ Output Normalization 42M 35.70 ± 0.1
+ Increasing Max Offsets (al i, a

r
i =1,3,7,15x4) 42M 36.23 ± 0.1

+ Offsets Dropout (p=0.1) 42M 36.37 ± 0.05
+ Fully-headed Kernels (H=512) 47M 36.51 ± 0.07
+ Multi-headed Kernels (H=4) 42M 36.65 ± 0.05

Replacing Swish with ReLU 42M 36.21 ± 0.05

put than all other methods. Specifically, the number of
iterations of self-attention per second is comparable to dy­
namic convolutions for short sentences (n < 500). Our
method allows for more sentences to be processed each
second, leading to a much higher throughput. For longer
sentences, self-attention is notably slower than our method
and for the case of n = 10, 000, self-attention was running
out-of-memory and was not able to execute an iteration.
Although our method has a logarithmic time complexity for
computing the summed-area table (Section 3.7), the fact
that we are computing a much more inexpensive in terms of
complexity operation, specifically we only utilize additions,
other methods with O(1) complexity are less efficient due
to the employment of both multiplication as well as addition
operations. Therefore, our method has a considerably higher
throughput compared to dynamic convolutions.

Furthermore, we examined the running memory require­
ments for all three different non-autoregressive methods. We
compared dynamic convolutions and our proposed method
against self-attention and report the number of times we re­
duced the running memory compared to self-attention. For
all sequence length cases, our method requires less memory
than dynamic convolutions when compared to the “expen­
sive” self-attention operation. The times we were able to
decrease the memory consumption can be seen on Table 6.

4.7. Model Ablation

In order to evaluate the importance of the different choices
for the TaLK Convolutions, we varied our baseline model,
described in Section 3.2, using the different proposed ex­
tensions mentioned in Sections 3.3 and 3.4. We measured
the performance on the validation set of the IWSLT De-En
translation benchmark dataset. We used beam search as
described in Section 4.1. We report the results in Table 7.

Initially, we modified the baseline model with the addition
of the output normalization (Section 3.3). As seen in Table
7, the original method is not able to converge. This vali­
dates our intuition that since we are summing the available
information inside the kernel, not normalized outputs make

learning difficult for the layers that follow. Next, we in­
creased the values lmax, rmax to allow larger adaptive kernel
sizes which yielded a higher performance without additional
computation cost. Further, we introduced a dropout unit
with probability p = 0.1 on the generated relative offsets.
This allowed for the performance to increase further as we
stopped the model from overfitting over the same window
size. Next, we increased the number of heads H from 1 to
512 (all available dimensions) and we called this fully-head
TaLK Convolution. We can see that by treating each of
the 512 dimensions separately and generating 512 relative
offsets, we were able to increase the performance. However,
we believe that by having each dimension generate its own
offsets actually brings some noise. Thus, we reduced the
number of heads to H = 4 which increased the performance
even more. Finally, we show that by substituting the Swish
activation function with the ReLU function the performance
drops which justifies our decision to use the former.

5. Conclusion

In this work, we presented Time-aware Large Kernel (TaLK)
Convolutions, a novel adaptive convolution method based
on summation kernel for sequence representation and en­
coding. It learns to predict the kernel boundaries for each
time-step of the sequence. In contrast to all other non-
autoregressive methods, this approach needs true linear time
O(n) with respect to the sequence length, while being able
to successfully encode a sequence without using the no­
tion of attention. We validated the proposed method on
three NLP tasks, machine translation, abstractive summa­
rization and language modeling, and achieved a comparative
performance. Moreover, we showed both analytically and
empirically that the proposed method is faster than previous
approaches and that it is able to encode longer sentences
quicker and with a smaller running memory footprint. For
future work, we plan to apply our method to other sequential
tasks such as question answering and the PG-19 benchmark
dataset (Rae et al., 2020). We will also explore this novel
convolution mechanism in the area of computer vision.

Time-aware Large Kernel Convolutions

Acknowledgements

This research was supported by the Canada Research Chairs
program and the NSERC Discovery grant. We would like to
express our gratitude to our anonymous reviewers for their
valuable comments and feedback. A special thank you to
Vasileia Karasavva for editing and proofreading the final
manuscript.

References

Aharoni, R., Johnson, M., and Firat, O. Massively multilin­
gual neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan­
guage Technologies, Volume 1 (Long and Short Papers),
2019.

Ahmed, K., Keskar, N. S., and Socher, R. Weighted trans­
former network for machine translation, 2017. URL
https://arxiv.org/abs/1711.02132.

Baevski, A. and Auli, M. Adaptive input representations for
neural language modeling. In International Conference
on Learning Representations, 2019.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
International Conference on Learning Representations,
2015.

Britz, D., Goldie, A., Luong, M.-T., and Le, Q. Massive
exploration of neural machine translation architectures.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017.

Burkov, E. and Lempitsky, V. Deep neural networks with
box convolutions. In Advances in Neural Information
Processing Systems. 2018.

Celikyilmaz, A., Bosselut, A., He, X., and Choi, Y. Deep
communicating agents for abstractive summarization.
Proceedings of the 2018 Conference of the North Amer­
ican Chapter of the Association for Computational Lin­
guistics: Human Language Technologies, Volume 1 (Long
Papers), 2018.

Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey,
W., Foster, G., Jones, L., Schuster, M., Shazeer, N., Par-
mar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Chen,
Z., Wu, Y., and Hughes, M. The best of both worlds:
Combining recent advances in neural machine translation.
In Proceedings of the 56th Annual Meeting of the Asso­
ciation for Computational Linguistics (Volume 1: Long
Papers), 2018.

Cheng, J., Dong, L., and Lapata, M. Long short-term
memory-networks for machine reading. Proceedings

of the 2016 Conference on Empirical Methods in Natural
Language Processing, 2016.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

Crow, F. C. Summed-area tables for texture mapping. In
Proceedings of the 11th Annual Conference on Computer
Graphics and Interactive Techniques, 1984.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. Proceedings of
the 57th Annual Meeting of the Association for Computa­
tional Linguistics, 2019.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan­
guage modeling with gated convolutional networks. In
Proceedings of the 34th International Conference on Ma­
chine Learning - Volume 70, 2017.

Deng, Y., Kim, Y., Chiu, J., Guo, D., and Rush, A. M. Latent
alignment and variational attention. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan­
guage understanding. In NAACL-HLT, 2019.

Fan, A., Grangier, D., and Auli, M. Controllable abstractive
summarization. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation. Association
for Computational Linguistics, 2018.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,
Y. Convolutional sequence to sequence learning. In ICML,
2017.

Grave, E., Joulin, A., and Usunier, N. Improving neural lan­
guage models with a continuous cache. In International
Conference on Learning Representations, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2016.

Hermann, K. M., Koˇ y, T., Grefenstette, E., Espeholt, cisk´
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. In Proceedings of
the 28th International Conference on Neural Information
Processing Systems, 2015.

https://arxiv.org/abs/1711.02132

Time-aware Large Kernel Convolutions

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. R. Improving neural networks by
preventing co-adaptation of feature detectors, 2012. URL
https://arxiv.org/abs/1207.0580.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 1997.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. A con­
volutional neural network for modelling sentences. In
Proceedings of the 52nd Annual Meeting of the Associa­
tion for Computational Linguistics (Volume 1: Long Pa­
pers). Association for Computational Linguistics, 2014.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord,
A., Graves, A., and Kavukcuoglu, K. Neural machine
translation in linear time, 2016. URL https://arxiv.
org/abs/1610.10099.

Kim, Y. Convolutional neural networks for sentence classifi­
cation. In Proceedings of the 2014 Conference on Empir­
ical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2014.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In International Conference on
Learning Representations, 2020.

Kolen, J. F. and Kremer, S. C. Gradient Flow in Recurrent
Nets: The Difficulty of Learning LongTerm Dependencies.
IEEE, 2001.

Ladner, R. E. and Fischer, M. J. Parallel prefix computation.
J. ACM, 1980.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. Neural architectures for named entity
recognition. Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computa­
tional Linguistics: Human Language Technologies, 2016.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed­
ings of the IEEE, 1998.

Lewis, J. Fast template matching. Vis. Interface, 1994.

Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., and
Dolan, B. A persona-based neural conversation model.
In Proceedings of the 54th Annual Meeting of the Asso­
ciation for Computational Linguistics (Volume 1: Long
Papers), 2016.

Li, Y., Pan, Q., Wang, S., Yang, T., and Cambria, E. A gen­
erative model for category text generation. Information
Sciences, 2018.

Lin, C.-Y. ROUGE: A package for automatic evaluation of
summaries. In Association for Computational Linguistics,
2004.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2017.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2017.

Merity, S., Keskar, N. S., and Socher, R. An analysis of
neural language modeling at multiple scales, 2018. URL
http://arxiv.org/abs/1803.08240.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training.
International Conference on Learning Representations,
2018.

Nabil, M., Atyia, A., and Aly, M. CUFE at SemEval-2016
task 4: A gated recurrent model for sentiment classifica­
tion. In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), 2016.

Nallapati, R., Zhou, B., dos Santos, C., GuÌ‡lçehre, Ç ., and
Xiang, B. Abstractive text summarization using sequence­
to-sequence RNNs and beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natural Lan­
guage Learning, 2016.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling
neural machine translation. Proceedings of the Third
Conference on Machine Translation: Research Papers,
2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of NAACL­
HLT 2019: Demonstrations, 2019.

Paulus, R., Xiong, C., and Socher, R. A deep reinforced
model for abstractive summarization. In International
Conference on Learning Representations, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are
unsupervised multitask learners, 2019. URL
https://d4mucfpksywv.cloudfront.
net/better-language-models/
language-models.pdf.

https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1610.10099
https://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1803.08240
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

Time-aware Large Kernel Convolutions

Rae, J. W., Dyer, C., Dayan, P., and Lillicrap, T. P. Fast
parametric learning with activation memorization. In
ICML, 2018.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. In International Conference
on Learning Representations, 2020.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching
for activation functions, 2017. URL https://arxiv.
org/abs/1710.05941.

Sachan, D. S., Zaheer, M., and Salakhutdinov, R. Revisiting
lstm networks for semi-supervised text classification via
mixed objective function. In AAAI, 2019.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Pro­
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
2016.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. Proceedings of
the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), 2018.

Shen, T., Zhou, T., Long, G., Jiang, J., and Zhang, C.
Bi-directional block self-attention for fast and memory-
efficient sequence modeling. In International Conference
on Learning Representations, 2018.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried­
miller, M. Striving for simplicity: The all convolutional
net. International Conference on Learning Representa­
tions, 2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 2014.

Sundermeyer, M., Schlüter, R., and Ney, H. Lstm neural
networks for language modeling. In INTERSPEECH,
2012.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se­
quence learning with neural networks. In Proceedings of
the 27th International Conference on Neural Information
Processing Systems, 2014.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, 2016.

Tang, G., Müller, M., Rios, A., and Sennrich, R. Why self-
attention? a targeted evaluation of neural machine trans­
lation architectures. Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing,
2018.

Tran, K., Bisazza, A., and Monz, C. Recurrent memory net­
works for language modeling. In Proceedings of the 2016
Conference of the North American Chapter of the Associ­
ation for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics,
2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten­
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Viola, P. and Jones, M. Robust real-time object detection.
In International Journal of Computer Vision, 2001.

Vishkin, U. Prefix sums and an application thereof.
: 09/224,104, 2003/04/01/ 2003. URL http://www.
google.com/patents?id=qCAPAAAAEBAJ.

Wu, F., Fan, A., Baevski, A., Dauphin, Y., and Auli, M. Pay
less attention with lightweight and dynamic convolutions.
In International Conference on Learning Representations,
2019.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Łukasz
Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H.,
Stevens, K., Kurian, G., Patil, N., Wang, W., Young,
C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Cor­
rado, G., Hughes, M., and Dean, J. Google’s neu­
ral machine translation system: Bridging the gap be­
tween human and machine translation, 2016. URL
https://arxiv.org/abs/1609.08144.

Xu, J., Chen, D., Qiu, X., and Huang, X. Cached long
short-term memory neural networks for document-level
sentiment classification. In Proceedings of the 2016 Con­
ference on Empirical Methods in Natural Language Pro­
cessing, 2016.

Yu, F. and Koltun, V. Multi-scale context aggregation by di­
lated convolutions. International Conference on Learning
Representations, 2016.

Zhang, B., Xiong, D., and Su, J. Accelerating neural trans­
former via an average attention network. In Proceedings
of the 56th Annual Meeting of the Association for Com­
putational Linguistics, 2018.

Zhang, L., Halber, M., and Rusinkiewicz, S. Accelerating
large-kernel convolution using summed-area tables, 2019.
URL https://arxiv.org/abs/1906.11367.

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1710.05941
http://www.google.com/patents?id=qCAPAAAAEBAJ
http://www.google.com/patents?id=qCAPAAAAEBAJ
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1906.11367

