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Abstract 

To date, most state-of-the-art sequence model­
ing architectures use attention to build genera­
tive models for language based tasks. Some of 
these models use all the available sequence to­
kens to generate an attention distribution which 
results in time complexity of O(n2). Alterna­
tively, they utilize depthwise convolutions with 
softmax normalized kernels of size k acting as a 
limited-window self-attention, resulting in time 
complexity of O(k·n). In this paper, we introduce 
Time-aware Large Kernel (TaLK) Convolutions, 
a novel adaptive convolution operation that learns 
to predict the size of a summation kernel instead 
of using a fixed-sized kernel matrix. This method 
yields a time complexity of O(n), effectively mak­
ing the sequence encoding process linear to the 
number of tokens. We evaluate the proposed 
method on large-scale standard machine trans­
lation, abstractive summarization and language 
modeling datasets and show that TaLK Convo­
lutions constitute an efficient improvement over 
other attention/convolution based approaches. 

1. Introduction 

Sequence modeling has seen some great breakthroughs 
through recent years with the introduction of the use of neu­
ral networks. Recurrent neural network methods (Sutskever 
et al., 2014; Bahdanau et al., 2015; Wu et al., 2016), convo­
lution methods (Kim, 2014; Kalchbrenner et al., 2014; 2016; 
Gehring et al., 2017; Wu et al., 2019), and self-attention 
approaches (Paulus et al., 2018; Vaswani et al., 2017; Dai 
et al., 2019; Kitaev et al., 2020) have all yielded state-of­
the-art results in various NLP tasks such as neural machine 
translation (NMT) (Sutskever et al., 2014; Wu et al., 2016; 
Britz et al., 2017; Aharoni et al., 2019), language model­
ing (Sundermeyer et al., 2012; Tran et al., 2016; Devlin 
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et al., 2019; Radford et al., 2019), automatic summarization 
(Paulus et al., 2018; Fan et al., 2018; Celikyilmaz et al., 
2018), named entity recognition (Lample et al., 2016; De­
vlin et al., 2019) and sentiment analysis (Xu et al., 2016; 
Sachan et al., 2019). 

Seemingly all modern approaches of sequence encoding rely 
on the use of attention to “filter” the excessive information 
given at a current time-step. Attention can be expressed 
as the weighted sum over context representations using at­
tention weights that are usually generated from the context 
representations (self-attention) (Cheng et al., 2016). The 
transformer network (Vaswani et al., 2017) assigns attention 
weights for a given time-step to all available context token 
representations, while the newly proposed dynamic convo­
lution (Wu et al., 2019) only computes an attention over a 
fixed context window. 

Self-attention over all context tokens is computationally 
very expensive. Specifically, the transformer network has 
a time complexity of O(n2) where n is the length of the 
input sequence. Thus, modeling long-range dependencies 
becomes very challenging and the practicality of the self-
attention method has been questioned. The more recent 
approach of dynamic convolutions (Wu et al., 2019) suc­
cessfully reduced the time complexity to O(k·n) where k is 
the kernel size specified for each layer. 

In this paper, we introduce a novel type of adaptive con­
volution, Time-aware Large Kernel (TaLK) convolutions, 
that learns the kernel size of a summation kernel for each 
time-step instead of learning the kernel weights as in a typi­
cal convolution operation. For each time-step, a function is 
responsible for predicting the appropriate size of neighbor 
representations to use in the form of left and right offsets 
relative to the time-step. The result is an efficient encod­
ing method that reduces the time complexity to O(n) and 
uses fewer parameters than all other methods. The method 
employs the fast Parallel Prefix Sum (Ladner & Fischer, 
1980; Vishkin, 2003) operation which has a time complexity 
of O(log(n)) to compute the integral image (Lewis, 1994), 
also known as summed-area table in the Computer Vision 
literature. This needs to be computed only once and can 
be used to calculate any summation between two boundary 
tokens in O(1). Applying it on a sequence with length n 
only needs O(n) time. To summarize, the contributions of 
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this work are three-fold: 

•	 We introduce a novel adaptive convolution based on 
summation kernel for sequence encoding. 

•	 We show both analytically and empirically that the 
proposed kernel method has a smaller time complexity; 
it is faster than previous state-of-the-art approaches and 
is able to encode longer sentences quicker and with a 
smaller running memory footprint. 

•	 We evaluate our method on three NLP tasks, machine 
translation, abstractive summarization and language 
modeling. We show that the proposed method can get 
comparative performance with previous methods on 
WMT En-De and WMT En-Fr benchmarks in machine 
translation, and set a new state-of-the-art result on the 
IWSLT De-En and CNN-DailyMail datasets, while in 
language modeling our method is able to perform com­
paratively with self-attention and outperform dynamic 
convolutions on the WikiText-103 benchmark dataset. 

Our code and pre-trained models are available at 
github.com/lioutasb/TaLKConvolutions. 

2. Related Work 

In this section, we provide a brief review over various re­
lated sequence modeling methods, and related methods that 
enlarge the receptive filed of a convolution operation. 

2.1. Sequence Modeling 

Sequence modeling is an important task in machine learning. 
An effective system should be able to comprehend and gen­
erate sequences similar to real data. Traditional approaches 
typically rely on the use of various kinds of recurrent neu­
ral networks such as long-short term memory networks 
(Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014; 
Li et al., 2016; 2018) and gated recurrent unit networks (Cho 
et al., 2014; Nabil et al., 2016). These recurrent approaches 
are auto-regressive, which slows the process down for long 
sequences since they linearly depend on their own previous 
output tokens. Recent work is focused on exploring convolu­
tional neural networks (CNN) methods (Kalchbrenner et al., 
2016; Gehring et al., 2017; Wu et al., 2019) or self-attention 
methods (Vaswani et al., 2017; Zhang et al., 2018; Dai et al., 
2019; Kitaev et al., 2020) which both facilitate the paral­
lelization of the encoding process. In addition, since they 
are not auto-regressive, they allow the encoding process to 
capture stronger global and local dependencies. 

Recently, Wu et al. (2019) proposed an alternative method 
to the original self-attention approach. Their window-based 
attention method with window size k can perform compar­
atively with self-attention modules that have access to all 

available tokens at each time-step. They utilize a depthwise 
convolution with a generated softmax normalized kernel 
of size k for every time-step. This brings down the time 
complexity to O(k·n) from the quadratic complexion of 
the original self-attention model. However, this method 
has the drawback of being memory intensive for long se­
quences depending on the implementation used. Moreover, 
supporting larger kernel sizes can have a negative impact 
to running time. In another work, Shen et al. (2018) pro­
posed computing intra-block self-attention weights within 
blocks of the input sequence and inter-block attention be­
tween all blocks to reduce the running memory of the full 
self-attention approach. 

Our method differs from all these previous approaches in 
two main aspects. Specifically, instead of having all (or 
some) tokens available and then deciding which ones are 
needed to encode a time-step, we start from the current time-
step representation and try to expand to the neighbor tokens 
in an adaptive manner. Additionally, instead of using atten­
tion for filtering the tokens used for encoding a time-step, 
we use all the information available in an adaptively decided 
window by utilizing a summation convolution kernel with 
summed-area tables, which improves upon previously pro­
posed methodology by allowing us to reduce the complexity 
to O(n), to produce a smaller running memory footprint, 
and to use less parameters than all other methods. 

2.2. Dynamically Sized Receptive Field 

Increasing the receptive field of a convolution layer without 
adding a computation overhead is a challenging task. By 
making deeper CNN models, we may be able to accumulate 
many fixed-sized receptive fields, however this comes at 
the cost of high computational demands. Nevertheless, this 
approach is shown to be successful in multiple state-of-the­
art vision models (He et al., 2016; Szegedy et al., 2016). 
The overhead issue is often mitigated using a form of down-
sampling, either via pooling layers (Lecun et al., 1998) 
or strided convolutions (Springenberg et al., 2015). Yu & 
Koltun (2016) proposed dilated convolutions, a method for 
enlarging the convolution kernel size by skipping intermedi­
ate pixels and thus, requiring less multadds operations. 

The first work that suggested the use of learnable sized con­
volution kernels was box convolutions (Burkov & Lempit­
sky, 2018). The idea of using box filters with summed-area 
tables (Crow, 1984), commonly known as integral images 
dates back many years and it is well-known to the Computer 
Vision community, as it became particularly popular with 
the work of Viola & Jones (2001) in object detection. The 
summed-area table can be efficiently parallelized using the 
Parallel Prefix Sum method (Ladner & Fischer, 1980). This 
operation can be further accelerated as a hardware functional 
unit dedicated to compute the multi-parameter prefix-sum 
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Figure 1. The Time-aware Large Kernel convolution operation. 

3.1. One-dimensional Large Kernel Convolution 

Let X = {x1, x2, . . . , xn} denote an input sequence, where 
n is the length of the sequence, xi ∈ Rd is the current input 
representation for the i-th word (i.e., the i-th time-step) and 
d denotes the dimensionality of the vector representation 
(i.e., the number of channels). 

The goal of this paper is to reduce the encoding time com­
plexity for sequence modeling to O(n). In other words, we 
set out to make the encoding at each time-step independent 
of the size of the receptive field. In addition, we want to 
explore alternative methods to the successful self-attention 
mechanism by equally using the number of neighbor tokens 
to represent a time-step instead of generating an attention 
distribution over the tokens. Specifically, we assume that 
simply summing the appropriate number of token represen­
tations is enough to represent the current time-step. That is, 
we encode the representation at the i-th time-step by 

For the current time-step, we compute the left and right offsets α°r
i

for each head, and then sum all the representation vectors inside oi = xj , (1)
these boundaries. This operation can be efficiently computed using 

j=α
summed-area tables with time complexity O(log(n)) and compute 
the output representation for each time-step in O(n) time. where 1 ≤ αl

i ≤ i ≤ αr 

l
i 

i ≤n are the lower (left offset) and 

operation (Vishkin, 2003). 

Burkov & Lempitsky (2018) method is optimizing the kernel 
size parameters using approximate gradients by normalizing 
the sum by the area of the box. Zhang et al. (2019) extended 
this idea by using interpolation to exploit non-integer co­
ordinates. Inspired by this idea, we develop the proposed 
method for one-dimensional case of sequences. In contrast 
to the two previous methods, instead of using a fixed num­
ber of learnable sized kernels, we adaptively condition the 
size of the kernel on each input representation, effectively 
generating a different kernel size for each time-step token. 

upper (right offset) bounds of the kernel size. 

Applying Equation 1 for each time-step i separately is in­
efficient since we do repetitive summations over the same 
representations. Zhang et al. (2019) showed that using the 
summed-area table (Crow, 1984), we can accelerate a sum­
mation convolution operation to any kernel size. Specif­
ically, let S = {S0, S1, S2, . . . , Sn} be the summed-area 
table computed using 

S0 = 0, 
(2)

Si = Si−1 + xi, 1 ≤ i ≤ n. 

Given the left offset αl and the right offset αr
i , we can com-i 

pute the summation denoted as oi of the features between 
these offsets using the summed-area table 

3. Methodology
 oi = Sar
i 
− Sal

i−1 (3) 
In this section, we present the proposed adaptive Time-
aware Large Kernel (TaLK) Convolution method. First, we 
introduce the approach that computes a convolution opera­
tion using large kernels in O(n) time, which assumes that 
left and right offsets are given. Next, we present our pro­
posed method for generating offsets dynamically for each 
time-step. We then expand upon our method to use multiple 
heads and normalize the summed output vector. Next, we 
explain how to use TaLK Convolutions for decoding. Fi­
nally, we present the computational complexity analysis and 
comparison for the proposed method. Figure 1 illustrates 
the Time-aware Large Kernel Convolution operation for a 
specific time-step during encoding. 

3.2. Time-aware Large Kernel Generation 

Given the one-dimensional large kernel convolution above, 
it is important to determine the left and right offsets for 
computing representations at each time-step. The key of 
the proposed method is an adaptive time-aware large kernel 
convolution operation which has kernel sizes that vary over 
time as a learned function of the individual time steps; that 
is, we propose to learn the offsets of the summation kernel 
above for each time-step. 

Specifically, we propose to use a function f{l,r} : Rd → 
l rR to generate for each xi the left ã and right ã relative i i 
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{l,r} 
σ(f{l,r}(xi)) ∈ [0, 1].offsets, where ã = For each i 

{l,r}
ã relative offset, we convert it to the absolute offset i 
counterpart in the following way 

l l a = i − ãi i · lmax (4)
r r a = i + ãi i · rmax, 

where lmax ∈ Z≥0 is the maximum allowed tokens to the 
left and rmax ∈ Z≥0 is the maximum allowed tokens to the 
right. 

The absolute offsets up to this point represent real positive 
numbers. In the next step, we need to convert these numbers 
to integer indexes so we can select from the summed-area 
table using the Equation (3). Inspired by Zhang et al. (2019), 
we use one-dimensional interpolation to sample from the 
summed-area table by using the positive real-valued offsets 
l rai, ai as follows 

S = γl · Sl J−1 + (1 − γl) · Sral
i−1 al

i al
il−1, 

(5) of multi-head attention (Vaswani et al., 2017; Wu et al., 

Such a simple window size based normalization can ef­
fectively get rid of the output magnitude differentiation 
problem resulted from summation kernels. 

{l,r}In addition, we regularize the predicted offsets ã us­i 
ing Dropout (Hinton et al., 2012; Srivastava et al., 2014). 
Specifically, during training we drop out every predicted 
offset with probability p. This helps to prevent the model 
from quickly optimizing towards a specific window size and 
be able to generate more diverse offsets. 

3.4. Multi-headed Kernels 

Although the offset computation above provides a mech­
anism that offers adaptive receptive fields for summation 
kernels at different time steps, a single pair of left and right 
offsets for all d dimensions cannot yield good results, as 
different features might be related to their counterpart in 
the neighbor tokens in different way. Inspired by the idea 

= (1 − γr) · Sl J + γr · SrSa ar
i l, 2019), we further propose to extend our proposed convolu­r

i
r
ia

tion kernel into a multi-head version by allowing different where l.J and l.l are the floor and ceiling operators, γl = 
l l r r representation features, i.e., channels, to have different left la l − a and γr = a − la J. The above equation is con-i i i i 

and right offsets for each time-step. Moreover, instead of tinuous and differentiable in the interpolation neighborhood. 
{l,r} having entirely different convolution offsets across multiple The partial derivatives of S {l,r} with respect to ã areiai channels, we adopt a depthwise version by separating the 

given by feature channels into multiple groups, each of which share 
∂S −1 the same pair of left and right offsets. l

ia = lmax(Sl J−1 − Sr l−1),l
i

l
il a a∂ã = d 

HSpecifically, we tie every subsequent number of Ri (6)
∂Sa channels together and group the channels into H groups for r

i = rmax(Sr l − Sla J).ar
i

r
i each xi, where H is the number of heads. This results to r∂ãi 

X̂ = {x̂1, x̂2, . . . , x̂n}, where x̂i ∈ RH×R . Then we use 
a function f{l,r} : RH×R → RH to generate for each x̂i a 
vector of H left relative offsets α̃l or right relative offsets i 

The partial derivatives of S with respect to Sli
{l,r} 

and S {l,r} tokens are given by ra li

i
{l,r}

a Ja

{l,r} 
= σ(f{l,r}(ˆα̃r via α̃ xi)) ∈ [0, 1]H .i i

∂S ∂S−1l
i

l
i−1a a

= γl = (1 − γl),,
∂Sl ∂Sr 3.5. Decoding Using TaLK Convolutions l

i
l
iJ−1 l−1a a

(7) 
In an encoder/decoder sequence generation scheme∂Sa ∂Sar

i 
r
i= (1 − γr), = γr . (Sutskever et al., 2014), the encoder part of the model has ∂Sla ∂Srar

i
r
iJ l 

access to both past and future tokens. The decoding part, 
however, must have access only to past tokens that are gen­
erated so far. Enforcing this with TaLK Convolutions is 
straightforward by setting the rmax value to zero. 

3.6. Module Architecture and Implementation 

For sequence modeling, we follow a similar module archi­
tecture as described in Wu et al. (2019). Specifically, we 

3.3. Output Normalization and Offsets Dropout 

The idea of summing all the features in a window of size 
l r[ai, a ] works well for shallow models. However, as the i 

representation vectors at different time-steps are computed 
from summations over different numbers of neighbors, their 
magnitudes of values can be different. As we introduce 
more layers, the disproportional magnitude of the inputs 
makes learning harder for the nodes in the layers that follow. 

apply a linear layer to project the input embedding tokens 
from d to 2d and then we apply a gated linear unit (GLU) 

To address this problem, we propose to normalize the output (Dauphin et al., 2017). Next, we apply the TaLK Convolu­
representations of TaLK Convolutions as follows tion operation as described in Section 3.2. Finally, we apply   a projection layer to the output representations from TaLK 

Convolution with size W ∈ Rd×d. Figure 2 illustrates the 
1 

õi = oi · . (8)
lmax + rmax + 1
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Table 1. Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the 
sequence length, d is the representation dimension, k is the kernel size of convolutions and nbuckets is the number of hash buckets. 

Layer Type Complexity per Layer Sequential Maximum Path Length 
Operations 

Recurrent (Sutskever et al., 2014) O(n · d2) O(n) O(n) 
Convolutional 
(Kalchbrenner et al., 2016; Gehring et al., 2017) O(k · n · d2) O(1) O(logk(n)) or O(n/k) 

Self-Attention (Vaswani et al., 2017) O(n2 · d) O(1) O(1) 
Dynamic Convolutions (Wu et al., 2019) O(k · n · d) O(1) O(n/k) 
Reformer (Kitaev et al., 2020) O(n · log(n) · d) O(log(n)) O(n/nbuckets) 

TaLK Convolutions (Ours) O(n · d) O(log(n)) O(n/(lmax + rmax + 1)) 

Linear

GLU

TaLK Conv

Linear

Linear

Sigmoid

Input

left and right
offsets generation

Figure 2. The proposed TaLK Convolution unit. 

TaLK Convolution unit. In addition, we substitute all ReLU 
activation functions with the Swish function (Ramachan­
dran et al., 2017). Similar to (Vaswani et al., 2017; Wu 
et al., 2019), the overall architecture is composed by the 
TaLK Convolution unit which replaces the self-attention or 
the dynamic convolution unit followed by the position-wise 
feed-forward network (FFN) unit. 

The summed-area table (Equation 2) can be efficiently com­
puted on a GPU by performing a fast Parallel Prefix Sum 
(Ladner & Fischer, 1980) over the token dimension. This op­
eration is usually efficiently implemented on modern deep 
learning frameworks under the name of cumulative sum. 
Applying the relative offsets to the summed-area table using 
core functions from deep learning frameworks is not a triv­
ial task. Such an implementation is usually very inefficient 
leading to slower computation and memory overhead. For 
this reason, we implemented the operation using CUDA 
kernels that enabled us to parallelize the computation for 
each token. 

3.7. Computational Complexity 

In this section we compare the complexity of the TaLK Con­
volution operation against different modules for encoding 
an input sequence of representations. This comparison is 
shown on Table 1. We follow a similar comparison as an­
alyzed by Vaswani et al. (2017). Our comparison is based 
on three criteria: the time complexity of the operation, the 
amount of computations that can be executed in parallel and 
the path length between long-range dependencies. 

As shown in Table 1, our proposed method requires the 
least number of operations. Specifically, it has a linear time 
complexity to encode a sequence and does not depend on 
hyper-parameter decisions such as the kernel size. In terms 
of the number of computations that can be parallelized, our 
method needs logarithmic time to compute the summed-area 
table (Equation 2). It is true that our method does not have a 
constant number of sequentially executed operations like all 
the other non-autoregressive counterpart methods, but the 
logarithmic time our method is requiring is inexpensive to 
compute even for very long sequences. 

It is shown by Kolen & Kremer (2001) that a short path 
between any combination of token positions in the input 
and output sequences makes it easier to learn long-range 
dependencies. In practice, doubts have been cast over the 
ability of self-attention to model long-range dependencies 
(Tang et al., 2018; Wu et al., 2019). Wu et al. (2019) showed 
that using a limited context window can outperform self-
attention. Our method has the advantage that the number 
of required computations is independent of the maximum 
window size and thus, it can be tuned or learned without 
extra cost. 

4. Experiments 

4.1. Datasets and Evaluation 

We evaluated our proposed encoding technique on machine 
translation, abstractive summarization and language mod­
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Table 2. Machine translation accuracy in terms of BLEU for WMT En-De and WMT En-Fr on newstest2014. 

Model Param (En-De) WMT En-De WMT En-Fr 

Gehring et al. (2017) 
Vaswani et al. (2017) 
Ahmed et al. (2017) 
Chen et al. (2018) 
Shaw et al. (2018) 
Ott et al. (2018) 
Wu et al. (2019) 
Kitaev et al. (2020) 

216M 
213M 
213M 
379M 

-
210M 
213M 
213M 

25.2 
28.4 
28.9 
28.5 
29.2 
29.3 
29.7 
29.1 

40.5 
41.0 
41.4 
41.0 
41.5 
43.2 
43.2 

– 

TaLK Convolution (Ours) 209M 29.6 43.2 

Table 3. Machine translation accuracy in terms of BLEU on 
IWSLT De-En. 

Model Param IWSLT De-En 

Deng et al. (2018) - 33.1 
Vaswani et al. (2017) 47M 34.4 
Wu et al. (2019) 43M 35.2 

TaLK Convolution (Ours) 42M 35.5 

eling. These three tasks are considered touchstone and 
challenging in the NLP field. 

Machine Translation On the machine translation task, 
we report results on three mainstream benchmark datasets: 
WMT English to German (En-De), WMT English to French 
(En-Fr) and IWSLT German to English (De-En). 

For all datasets, we replicated the pre-processing steps men­
tioned in Wu et al. (2019). Specifically, for the WMT En-De 
we used the WMT’16 training data that consists of 4.5M 
sentence pairs. We validated on newstest2013 and tested 
on newstest2014. We employed byte-pair encoding (BPE) 
(Sennrich et al., 2016) to the sentences, with a 32K joint 
source and target vocabulary. For the WMT En-Fr, we used 
36M training sentence pairs from WMT’14. We validated 
on newstest2012+2013 and tested on newstest2014 evalua­
tion datasets. Using BPE, we generated a joint vocabulary 
between the source and the target languages of size 40K to­
kens. The IWSLT De-En consists of 160K training sentence 
pairs. We lower cased all sentences and used a 10K joint 
BPE vocabulary. 

For all datasets, we measured case-sensitive tokenized 
BLEU scores using multi-bleu1. Similarly to Vaswani 

1https://github.com/moses-smt/ 
mosesdecoder/blob/master/scripts/generic/ 
multi%2Dbleu.perl 

et al. (2017), we applied compound splitting for WMT En-
De. We trained five random initializations of each model 
configuration and report test accuracy of the seed which re­
sulted in the highest validation BLEU score. For all datasets, 
we used beam search with beam width 5. Similar to Wu et al. 
(2019), we tuned a length penalty as well as the number of 
checkpoints to average on the validation set. 

Abstractive Summarization For the abstractive summa­
rization task, we decided to experiment with the CNN-
DailyMail (Hermann et al., 2015; Nallapati et al., 2016) 
dataset. The dataset is composed by approximately 280K 
news articles with associated multi-sentence summaries. We 
followed the same pre-processing steps as described by Wu 
et al. (2019). The BPE vocabulary consists of 30K subword 
tokens. We report results using the F1-Rouge (Rouge-1, 
Rouge-2 and Rouge-L) metric (Lin, 2004). For generating 
the summaries, similar to Wu et al. (2019) we tuned the 
maximum output length, disallowing repeating the same 
trigram, and we apply a stepwise length penalty. 

Language Modeling We experimented on the WikiText­
103 (Merity et al., 2017) benchmark dataset. The training 
data contains approximately 100M tokens. A vocabulary of 
about 260K tokens was used, by discarding all tokens with a 
frequency below 3 as described in Merity et al. (2017). We 
followed Baevski & Auli (2019) and applied adaptive input 
representations. We replicated their setup and partition the 
training data into blocks of 512 contiguous tokens while 
ignoring document boundaries. 

4.2. Experiment Details 

Hyper-Parameters For the machine translation models, 
we followed the same hyper-parameter setup as described in 
Wu et al. (2019). Specifically, we follow for WMT En-De 
and WMT En-Fr datasets the model hidden size d was set 
to 1024, the feed-forward hidden size dff was set to 4096 
and the number of layers for the encoder and the decoder 

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi%2Dbleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi%2Dbleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi%2Dbleu.perl
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Table 4. Results on CNN-DailyMail abstractive summarization. 

Model Param Rouge-1 Rouge-2 Rouge-L 

LSTM (Paulus et al., 2018) - 38.30 14.81 35.49 
CNN (Fan et al., 2018) - 39.06 15.38 35.77 
Self-Attention Baseline (Wu et al., 2019) 90M 39.26 15.98 36.35 
Lightweight Convolution (Wu et al., 2019) 86M 39.52 15.97 36.51 
Dynamic Convolution (Wu et al., 2019) 87M 39.84 16.25 36.73 

TaLK Convolution (Standard) 59M 40.03 18.45 36.13
 
TaLK Convolution (Deep) 83M 40.59 18.97 36.81
 

Table 5. Test perplexity on WikiText-103. We used adaptive inputs 
similar to Baevski & Auli (2019) and show that our method yields 
better perplexity than dynamic convolutions and comparative per­
formance with self-attention. 

Param Test 

Grave et al. (2017) - 40.8 
Dauphin et al. (2017) 229M 37.2 
Merity et al. (2018) 151M 33.0 
Rae et al. (2018) - 29.2 
Baevski & Auli (2019) 247M 20.5 

Dynamic Convolutions 255M 25.0 
TaLK Convolution (Ours) 240M 23.3 

was set to 7 and 6 respectively. The number of heads was 
set to 16 and the lmax, rmax values to 3, 7, 15, 31×4 for each 
layer. For IWSLT De-En, the model hidden size d was set 
to 512, the feed-forward hidden size dff was set to 1024 and 
the number of layers for the encoder and the decoder was 
set to 7 and 6 respectively. The number of heads was set to 
4 and the lmax, rmax values to 1, 3, 7, 15×4 for each layer. 

For the abstractive summarization models, we tested our 
method on two types of model configurations, the Standard 
and the Deep configurations. Both settings have a hidden 
size d of 512, a feed-forward hidden size dff of 2048 and 
number of heads to be 8. The Standard model has 7 en­
coder and 6 decoder layers with the lmax, rmax values be 
3, 7, 15, 31×4 for each layer. The Deep model has 10 layers 
for both the encoder and decoder with the lmax values be 
3, 7, 15, 31×7 and the rmax be 3, 7, 31×8. 

For the language model, we followed the same configuration 
as Baevski & Auli (2019). We used 17 decoding layers, each 
layer with a 1024 hidden size, a 4096 feed-forward hidden 
size and 8 heads. The adaptive input factor was set to 4. The 
lmax values were set to 3, 7, 15, 31, 63×12 and rmax to zero 
for each layer. 

Optimization We used the Adam optimizer (Kingma & 
Ba, 2015) with default values. In addition, our models 
were optimized using the cosine learning rate schedule 
(Loshchilov & Hutter, 2017). We linearly warmed up for 
10K steps from 10−7 to 10−3. For IWSLT De-En, we used 
the inverse square root learning rate schedule (Vaswani et al., 
2017). We set the dropout to 0.3 for WMT En-De and 
IWSLT De-En and 0.1 for WMT En-Fr. 

For the WMT En-De and WMT En-Fr benchmarks, the 
batch size was set to 3,584 tokens per batch, per GPU. We 
accumulated the gradients for 16 batches before applying 
an update which results in an effective batch size of 450K 
tokens. We trained the WMT En-De model for 30K steps 
and the WMT En-Fr for 80K steps. For IWSLT De-En, 
we trained on a single GPU with 4,000 maximum tokens 
per batch for 50K steps. For the abstractive summarization 
models we followed the same setup as in Wu et al. (2019) 
and for the language model the same setup as in Baevski & 
Auli (2019). 

Hardware Details We trained the WMT En-De, WMT 
En-Fr, CNN-DailyMail and WikiText-103 models on 8 
NVIDIA RTX 2080 Ti GPUs using mixed-precision train­
ing (Micikevicius et al., 2018) and the IWSLT De-En model 
using a single GPU. We employed our own CUDA imple­
mentation, wrapped as a standalone PyTorch layer for the 
TaLK Convolution operation. All experiments were run 
using the Fairseq (Ott et al., 2019) toolkit. 

4.3. Results on Machine Translation 

We demonstrate the effectiveness of our model in the WMT 
En-De and WMT En-Fr translation benchmarks. Table 2 
shows that our method is able to achieve comparable results 
to current state-of-the-art methods. Specifically, our method 
was able to match the state-of-the-art score on WMT En-
Fr, a benchmark dataset that is considered indicative for the 
effectiveness of a method due to the large number of training 
examples (36M) it contains. Additionally for WMT En-De, 
our method is only 0.1 BLEU points behind the current state­
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Table 6. Throughput and memory consumption decrease measured for different sequence lengths (n) on a batch of size 10 with each token 
being represented with d = 1024 and H = 16. Throughput is calculated across 100K iterations of a single input encoding execution for 
each method. Memory decrease is computed as how many times less memory we need to encoding the input embedding compared to 
Self-Attention. Larger numbers indicate better performance. 

Method 

Self-Attention 
DynamicConv (k = 3) 
DynamicConv (k = 31) 

TaLK Convolution 

4576 
3739 
4535 

9686 

1x 
1x 

0.97x 

1.1x 

3437 
3308 
3860 

6126 

1x 
0.99x 

1x 

1.1x 

102 
443 
325 

898 

1x 
2.8x 
2.7x 

3.1x 

OOM 
45 
29 

92 

1x 
25.4x 
20.2x 

26.4x 

n = 10 n = 100 n = 1, 000 n = 10, 000 
iter/sec Mem. ↓ iter/sec Mem. ↓ iter/sec Mem. ↓ iter/sec Mem. ↓ 

of-the-art score. It is important to underline, however, that 
our method uses the least number of parameters compared 
to the other counterpart methods. 

Table 3 shows results for IWSLT De-En benchmark dataset. 
Following Wu et al. (2019), we employed a smaller model 
with less parameters to reflect the size of the dataset. Specif­
ically, we set d to 512, dff to 1024 and H to 4. Furthermore, 
we disabled the GLU unit that is described in Section 3.6 
and made the input projection layer to size W ∈ Rd×d. Our 
method was able to outperform all other methods setting a 
new state-of-the-art result. 

4.4. Results on Abstractive Summarization 

We evaluated the proposed method on the task of abstractive 
summarization. We test the method’s ability to process long 
documents on the CNN-DailyMail dataset. We encode an 
article of up to 400 sub-words and we generate a summariza­
tion composed from multiple sentences. Table 4 shows the 
results of our experiments. Our Standard model is able to 
achieve better results on the Rouge-1 and Rouge-2 metrics 
than previous methods. In addition, the Standard model is 
using significantly less parameters, approximately 30M pa­
rameters less. The Deep model uses more layers to closely 
match the number of parameters and is able to outperform 
all previous models. This shows that our method is able 
to encode long sequences successfully without having the 
need to have access to all context. 

4.5. Results on Language Modeling 

We evaluated our method on the task of language model­
ing. We considered the WikiText-103 benchmark dataset 
and we compared against recent methods in the literature. 
Particularly, we followed the setup that was implemented in 
the adaptive inputs baseline (Baevski & Auli, 2019). This 
work suggest the use of self-attention with adaptive input 
representations. We substituted the self-attention module 
with our method. In order to assimilate the number of pa­
rameters used in their experiments, we increased the number 

of layers by one. As seen on Table 5, our method yields 
better perplexity than dynamic convolutions when trained 
using the same settings, including the same maximum ker­
nel size. In addition, we get comparative performance with 
self-attention. Moreover, we use less number of parameters 
than the best comparison methods. 

4.6. Encoding Inference Speed Comparison 

We also compared our method against other non-
autoregressive methods in terms of encoding inference speed 
and memory consumption. We measured the speed using 
a single NVIDIA RTX 2080 Ti GPU with full precision 
floating-point arithmetic (FP32). Specifically, we mea­
sured the throughput of encoding a batch of size B = 10, 
d = 1024 and H = 16. For each method, we only took 
into consideration the time it takes to process using the core 
approach of each encoding method. 

For self-attention (Vaswani et al., 2017), we only timed the 
attention operation softmax(QKT 

)V . For dynamic con­√ 
dk 

volutions (Wu et al., 2019), we only timed the operation 
DepthwiseConv(X, softmax(Wdyn), i, c) where Wdyn ∈ 
Rn·B·H×K is the generated kernel for each time-step. The 
authors of dynamic convolutions proposed two ways of im­
plementing their method. The first method uses the standard 
convolution unfolding function which is faster for longer 
sequences. The second approach is the band matrix trick 
method which copies and expands the normalized weights 
matrix into a band matrix. This second approach yields 
faster execution time for shorter sequences but is more mem­
ory intensive. In order to be fair, in our experiments we used 
unfolding to sequences longer than 500 tokens and band ma­
trices for shorter sequences. We also set K to 3 and 31, the 
first being the smallest kernel size dynamic convolutions use 
and the second being the largest. Finally, for our method we 
measured the time to compute the large kernel convolution 
operation given the relative offsets. We evaluated for 100K 
iterations across four different sequence lengths n. 

Table 6 shows that our method yields much better through­
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Table 7. Ablation on IWSLT De-En validation set. (+) indicates that a result includes all preceding features. 

Model Param BLEU 

TaLK Convolution (al i, a
r 
i =1x7, H=1) 42M diverges 

+ Output Normalization 42M 35.70 ± 0.1 
+ Increasing Max Offsets (al i, a

r 
i =1,3,7,15x4) 42M 36.23 ± 0.1 

+ Offsets Dropout (p=0.1) 42M 36.37 ± 0.05 
+ Fully-headed Kernels (H=512) 47M 36.51 ± 0.07 
+ Multi-headed Kernels (H=4) 42M 36.65 ± 0.05 

Replacing Swish with ReLU 42M 36.21 ± 0.05 

put than all other methods. Specifically, the number of 
iterations of self-attention per second is comparable to dy­
namic convolutions for short sentences (n < 500). Our 
method allows for more sentences to be processed each 
second, leading to a much higher throughput. For longer 
sentences, self-attention is notably slower than our method 
and for the case of n = 10, 000, self-attention was running 
out-of-memory and was not able to execute an iteration. 
Although our method has a logarithmic time complexity for 
computing the summed-area table (Section 3.7), the fact 
that we are computing a much more inexpensive in terms of 
complexity operation, specifically we only utilize additions, 
other methods with O(1) complexity are less efficient due 
to the employment of both multiplication as well as addition 
operations. Therefore, our method has a considerably higher 
throughput compared to dynamic convolutions. 

Furthermore, we examined the running memory require­
ments for all three different non-autoregressive methods. We 
compared dynamic convolutions and our proposed method 
against self-attention and report the number of times we re­
duced the running memory compared to self-attention. For 
all sequence length cases, our method requires less memory 
than dynamic convolutions when compared to the “expen­
sive” self-attention operation. The times we were able to 
decrease the memory consumption can be seen on Table 6. 

4.7. Model Ablation 

In order to evaluate the importance of the different choices 
for the TaLK Convolutions, we varied our baseline model, 
described in Section 3.2, using the different proposed ex­
tensions mentioned in Sections 3.3 and 3.4. We measured 
the performance on the validation set of the IWSLT De-En 
translation benchmark dataset. We used beam search as 
described in Section 4.1. We report the results in Table 7. 

Initially, we modified the baseline model with the addition 
of the output normalization (Section 3.3). As seen in Table 
7, the original method is not able to converge. This vali­
dates our intuition that since we are summing the available 
information inside the kernel, not normalized outputs make 

learning difficult for the layers that follow. Next, we in­
creased the values lmax, rmax to allow larger adaptive kernel 
sizes which yielded a higher performance without additional 
computation cost. Further, we introduced a dropout unit 
with probability p = 0.1 on the generated relative offsets. 
This allowed for the performance to increase further as we 
stopped the model from overfitting over the same window 
size. Next, we increased the number of heads H from 1 to 
512 (all available dimensions) and we called this fully-head 
TaLK Convolution. We can see that by treating each of 
the 512 dimensions separately and generating 512 relative 
offsets, we were able to increase the performance. However, 
we believe that by having each dimension generate its own 
offsets actually brings some noise. Thus, we reduced the 
number of heads to H = 4 which increased the performance 
even more. Finally, we show that by substituting the Swish 
activation function with the ReLU function the performance 
drops which justifies our decision to use the former. 

5. Conclusion 

In this work, we presented Time-aware Large Kernel (TaLK) 
Convolutions, a novel adaptive convolution method based 
on summation kernel for sequence representation and en­
coding. It learns to predict the kernel boundaries for each 
time-step of the sequence. In contrast to all other non-
autoregressive methods, this approach needs true linear time 
O(n) with respect to the sequence length, while being able 
to successfully encode a sequence without using the no­
tion of attention. We validated the proposed method on 
three NLP tasks, machine translation, abstractive summa­
rization and language modeling, and achieved a comparative 
performance. Moreover, we showed both analytically and 
empirically that the proposed method is faster than previous 
approaches and that it is able to encode longer sentences 
quicker and with a smaller running memory footprint. For 
future work, we plan to apply our method to other sequential 
tasks such as question answering and the PG-19 benchmark 
dataset (Rae et al., 2020). We will also explore this novel 
convolution mechanism in the area of computer vision. 
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