
Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games

A. Convergence under Imperfect Feedback with Absolute Random Noise
In this section, we analyze the convergence of OGD-based learning on λ-cocercive games under imperfect feedback with
absolute random noise (4). We first establish that OGD under noisy feedback converges almost surely in last-iterate to the
set of Nash equilibria of a co-coercive game if σ2

t ∈ (0, σ2) for some σ2 < +∞ and the finite-time O(1/
√
T ) convergence

rate on (1/T )E[
∑T
t=0 ε(xt)] under properly diminishing step-size sequences. We also present a finite-time convergence rate

on E[ε(xT )] if σ2
t satisfies certain conditions.

A.1. Almost Sure Last-Iterate Convergence

We start by developing a key iterative formula for E[ε(xt)] in the following lemma.

Lemma A.1 Fix a λ-cocoercive game G with a continuous action space, G = (N ,X =
∏N
i=1 Rni , {ui}Ni=1), and let the set

of Nash equilibria, X ∗, be nonempty. Under the noisy model (2) with absolute random noise (4) and letting the OGD-based
learning run with a step-size sequence ηt ∈ (0, λ), the noisy OGD iterate xt satisfies

E[ε(xt+1)] ≤ E[ε(xt)] +
σ2
t

ληt+1
.

We are now ready to establish last-iterate convergence in a strong, almost sure sense. Note that the conditions imposed on
σ2
t and ηt are minimal.

Theorem A.2 Fix a λ-cocoercive game G with a continuous action space, G = (N ,X =
∏N
i=1 Rni , {ui}Ni=1), and let

the set of Nash equilibria, X ∗, be nonempty. Consider the noisy model (2) with absolute random noise (4) satisfying
σ2
t ∈ (0, σ2] for some σ2 < +∞ and letting the OGD-based learning run with a step-size sequence satisfying

∞∑
t=1

ηt = +∞,
∞∑
t=1

η2t < +∞.

Then the noisy OGD iterate xt converges to X ∗ almost surely.

A.2. Finite-Time Convergence Rate: Time-Average and Last-Iterate

For completeness, we characterize two types of rates: the time-average and last-iterate convergence rate, as formalized by
the following theorems.

Theorem A.3 Fix a λ-cocoercive game G with a continuous action space, G = (N ,X =
∏N
i=1 Rni , {ui}Ni=1), and let the

set of Nash equilibria, X ∗, be nonempty. Under the noisy model (2) with absolute random noise (4) satisfying σ2
t ∈ (0, σ2]

for some σ2 < +∞ and letting the OGD-based learning run with a step-size sequence ηt = c/
√
t for some constant

c ∈ (0, λ), the noisy OGD iterate xt satisfies

1

T + 1

(
E

[
T∑
t=0

ε(xt)

])
= O

(
log(T )√

T

)
.

Inspired by Lemma A.1, we impose an intuitive condition on the variance of noisy process {σ2
t }t≥0. More specifically, there

exists a function α : R+ → R+ satisfying a(t) = o(1) and a(t) = Ω(1/t) such that

1

T + 1

(
T−1∑
t=0

(t+ 1)σ2
t

)
= O(a(T )). (15)

Under this condition, the noisy iterate generated by the OGD-based learning achieves the finite-time last-iterate convergence
rate regardless of a sequence of possibly constant step-sizes ηt satisfying 0 < η ≤ ηt ≤ η < λ for all t ≥ 1.

Theorem A.4 Fix a λ-cocoercive game G with a continuous action space, G = (N ,X =
∏N
i=1 Rni , {ui}Ni=1), and let the

set of Nash equilibria, X ∗, be nonempty. Under the noisy model (2) with absolute random noise (4) satisfying Eq. (15) and
letting the OGD-based learning run with an nonincreasing step-size sequence satisfying 0 < η ≤ ηt ≤ η < λ for all t ≥ 1,
the noisy OGD iterate xt satisfies

E[ε(xT )] = O(a(T )).
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B. Proof of Lemma 3.1
Since Xi = Rni , we have

‖xi,t+2 − xi,t+1‖2

= ‖xi,t+1 − xi,t + η(vi(xt+1)− vi(xt))‖2

= ‖xi,t+1 − xi,t‖2 + 2η(xi,t+1 − xi,t)>(vi(xt+1)− vi(xt)) + η2‖vi(xt+1)− vi(xt)‖2.

Expanding the right-hand side of the above inequality and summing up the resulting inequality over i ∈ N yields that

‖xt+2 − xt+1‖2 =
∑
i∈N
‖xi,t+2 − xi,t+1‖2 (16)

≤
∑
i∈N

(
‖xi,t+1 − xi,t‖2 + η2‖vi(xt+1)− vi(xt)‖2 + 2η(xi,t+1 − xi,t)>(vi(xt+1)− vi(xt))

)
= ‖xt+1 − xt‖2 + 2η(xt+1 − xt)

>(v(xt+1)− v(xt)) + η2‖v(xt+1)− v(xt)‖2.

Since G is a λ-cocoercive game, we have

(xt+1 − xt)
>(v(xt+1)− v(xt)) ≤ −λ‖v(xt+1)− v(xt)‖2.

Plugging the above equation into Eq. (16) together with the condition η ∈ (0, λ] yields that

‖xt+2 − xt+1‖2 ≤ ‖xt+1 − xt‖2.

Using the update formula in Eq. (1), we have ‖v(xt+1)‖ ≤ ‖v(xt)‖ for all t ≥ 0.

Then we proceed to bound
∑+∞
t=0 ‖v(xt)‖2. Indeed, for any xi ∈ Xi, we have

(xi − xi,t+1)>(xi,t+1 − xi,t − ηvi(xt)) = 0.

Applying the equality a>b = (‖a+ b‖2 − ‖a‖2 − ‖b‖2)/2 yields that

(xi,t+1 − xi)>vi(xt) =
1

2η

(
‖xi,t − xi,t+1‖2 + ‖xi − xi,t+1‖2 − ‖xi − xi,t‖2

)
.

Summing up the resulting inequality over i ∈ N yields that

(xt+1 − x)>v(xt) =
1

2η

(
‖xt − xt+1‖2 + ‖x− xt+1‖2 − ‖x− xt‖2

)
, ∀x ∈ X .

Letting x = x∗ ∈ X ∗, we have

(xt+1 − x∗)>v(xt) =
1

2η

(
‖xt − xt+1‖2 + ‖x∗ − xt+1‖2 − ‖x∗ − xt‖2

)
. (17)

Furthermore, we have
(xt+1 − x∗)>v(xt) = (xt − x∗)>v(xt) + (xt+1 − xt)

>v(xt).

Since G is a λ-cocoercive game and v(x∗) = 0, we have

(xt − x∗)>v(xt) = (xt − x∗)>(v(xt)− v(x∗)) ≤ −λ‖v(xt)− v(x∗)‖2 = −λ‖v(xt)‖2.

By Young’s inequality we have

(xt+1 − xt)
>v(xt) ≤

λ‖v(xt)‖2

2
+
‖xt+1 − xt‖2

2λ
.

Putting these pieces together yields that

(xt+1 − x∗)>v(xt) ≤
‖xt+1 − xt‖2

2λ
− λ‖v(xt)‖2

2
. (18)
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Plugging Eq. (18) into Eq. (17) together with the condition η ∈ (0, λ] yields that

λ‖v(xt)‖2 ≤
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

η
.

Summing up the above inequality over t = 0, 1, 2, . . . and using the boundedness of X yields that

+∞∑
t=0

‖v(xt)‖2 ≤
‖x∗ − x0‖2

ηλ
.

Note that x∗ ∈ X ∗ is chosen arbitrarily, we let x∗ = ΠX∗(x0) and conclude the desired inequality.

C. Postponed Proofs in Section 4
In this section, we present the missing proofs in Section 4.

C.1. Proof of Lemma 4.1

Using the update formula of xi,t+1 in Eq. (1), we have the following for any x∗i ∈ X ∗i :

‖xi,t+1 − x∗i ‖2 = ‖xi,t + ηt+1v̂i,t+1 − x∗i ‖2.

which implies that

‖xi,t+1 − x∗i ‖2 = ‖xi,t − x∗i ‖2 + η2t+1‖v̂i,t+1‖2 + 2ηt+1(xi,t − x∗i )>v̂i,t+1.

Summing up the above inequality over i ∈ N and rearranging yields that

‖xt+1 − x∗‖2 = ‖xt − x∗‖2 + 2ηt+1(xt − x∗)>v̂t+1 + η2t+1‖v̂t+1‖2. (19)

Using Young’s inequality, we have

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + 2η2t+1‖ξt+1‖2 + 2η2t+1‖v(xt)‖2 + 2ηt+1(xt − x∗)>(v(xt) + ξt+1).

Since x∗ ∈ X ∗ and G is a λ-cocoercive game, we have v(x∗) = 0 and

(xt − x∗)>v(xt) = (xt − x∗)>(v(xt)− v(x∗)) ≤ −λ‖v(xt)− v(x∗)‖2 = −λ‖v(xt)‖2.

Putting these pieces yields the desired inequality.

C.2. Proof of Lemma 4.2

Using the same argument as in Lemma 4.1, we have

E[ε(xt+1) | Ft]− ε(xt) ≤
E[‖ξt+1‖2 | Ft]

ληt+1
+

(
1− λ

ηt+1

)
E
[
‖v(xt+1)− v(xt)‖2 | Ft

]
.

Since the noisy model (2) is with relative random noise (4), we have E[‖ξt+1‖2 | Ft] ≤ τt‖v(xt)‖2. Also, ηt ∈ (0, λ) for
all t ≥ 1. Therefore, we conclude that

E[ε(xt+1) | Ft]− ε(xt) ≤
τt‖v(xt)‖2

ληt+1
.

Taking an expectation of both sides yields the desired inequality.
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C.3. Proof of Theorem 4.4

Using the same argument as in Theorem 4.3, we obtain that

E[‖xt+1 − x∗‖2 | Ft] ≤ ‖xt − x∗‖2 − 2(λ− η − τη)ηt+1‖v(xt)‖2. (20)

Taking an expectation of both sides of Eq. (20) and rearranging yields that

E[ε(xt)] ≤
1

2(λ− η − τη)ηt+1

(
E[‖xt − x∗‖2]− E[‖xt+1 − x∗‖2]

)
. (21)

Summing up the above inequality over t = 0, 1, . . . , T yields that

E

[
T∑
t=0

ε(xt)

]
≤

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[‖xt − x∗‖2]

2(λ− η − τη)
+

‖x0 − x∗‖2

2(λ− η − τη)η1
.

On the other hand, we have E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2]. This implies that E[‖xt − x∗‖2] ≤ ‖x0 − x∗‖2 for all
t ≥ 1. Therefore, we conclude that

E

[
T∑
t=0

ε(xt)

]
≤ ‖x0 − x∗‖2

2(λ− η − τη)η1
+
‖x0 − x∗‖2

2(λ− η − τη)

T∑
t=1

(
1

ηt+1
− 1

ηt

)
=

‖x0 − x∗‖2

2(λ− η − τη)η1
+

‖x0 − x∗‖2

2(λ− η − τη)ηT+1

≤ ‖x0 − x∗‖2

(λ− η − τη)η
= O(1).

This completes the proof.

C.4. Proof of Theorem 4.7

Since the step-size sequence {ηt}t≥1 is decreasing and converges to zero, we define the first iconic time in our analysis as
follows,

t∗ = max

{
t ≥ 0 | ηt+1 >

λ

2(1 + τ)

}
< +∞.

First, we claim that E[‖xt − ΠX∗(xt∗)‖] ≤ D where D = max1≤t≤t∗ E[‖xt − ΠX∗(xt∗)‖]. Indeed, it suffices to show
that E[‖xt −ΠX∗(xt∗)‖] ≤ E[‖xt∗ −ΠX∗(xt∗)‖] holds for t > t∗. By the definition of t∗, we have ηt+1 < λ/(1 + τ) for
all t > t∗. The desired inequality follows from Eq. (21) and the fact that E[ε(xt)] ≥ 0 for all t > t∗.

Furthermore, we derive an upper bound for the term
∑T
t=0 ‖v(xt)‖2. Using the update formula (cf. Eq. (1)) to obtain that

(xt+1 − x∗)>(v(xt) + ξt+1) =
1

2ηt+1

(
‖xt − xt+1‖2 + ‖x∗ − xt+1‖2 − ‖x∗ − xt‖2

)
.

Recall that G is λ-cocoercive and the noisy model is defined with relative random noise, we have

E[(xt − x∗)>(v(xt) + ξt+1) | Ft] ≥ λ‖v(xt)‖2.

Using Young’s inequality, we have

E[(xt+1 − xt)
>(v(xt) + ξt+1) | Ft] ≥ −

λ‖v(xt)‖2

2
− (1 + τ)E[‖xt+1 − xt‖2 | Ft]

λ
.

Putting these pieces together and taking an expectation yields that

λE[‖v(xt)‖2] ≤ E
[
‖x∗ − xt‖2 − ‖x∗ − xt+1‖2

ηt+1

]
+ E

[(
2(1 + τ)

λ
− 1

ηt+1

)
‖xt − xt+1‖2

]
. (22)
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Recall that the step-size sequence {ηt}t≥1 is nonincreasing and ‖xt −ΠX∗(xt∗)‖ ≤ D, we let x∗ = ΠX∗(xt∗) in Eq. (22)
and obtain that

T∑
t=0

λE[‖v(xt)‖2] ≤ E
[
D2

ηT+1

]
+

T∑
t=0

E
[(

2(1 + τ)

λ
− 1

ηt+1

)
‖xt − xt+1‖2

]
.

To proceed, we define the second iconic time as

t∗1 = max

{
t ≥ 0 | ηt+1 >

λ

4(1 + τ)D2 + 2(1 + τ)

}
> t∗.

It is clear that t∗1 < +∞ and ηt+1 ≤ λ/(2 + 2τ) for all t > t∗1 which implies that (2 + 2τ)/λ− 1/ηt+1 ≤ 0. Assume T
sufficiently large without loss of generality, we have

T∑
t=0

λE[‖v(xt)‖2] ≤ E
[
D2

ηT+1

]
+

2(1 + τ)

λ

 t∗1∑
t=0

E[‖xt − xt+1‖2]

 = I + II.

We also use Lemmas A.1 and A.2 from Bach & Levy (2019) to bound terms I and II. For convenience, we present these two
lemmas here:

Lemma C.1 For a sequence of numbers a0, a1, . . . , an ∈ [0, a] and b ≥ 0, the following inequality holds:√√√√b+

n−1∑
i=0

ai −
√
b ≤

n∑
i=0

ai√
b+

∑i−1
j=0 aj

≤ 2a√
b

+ 3
√
a+ 3

√√√√b+

n−1∑
i=0

ai.

Bounding I: We derive from the definition of ηt and Jensen’s inequality that

I ≤ D2

√√√√β + log(T + 1) +

T−1∑
j=0

E

[
‖xj − xj+1‖2

η2j+1

]
.

Since E[‖xt−ΠX∗(xt∗)‖] ≤ D for all t ≥ 0 and the notion of λ-cocercivity implies the notion of (1/λ)-Lipschiz continuity,
we have

E
[
‖xt − xt+1‖2

η2t+1

]
≤ (2 + 2τ)E[‖v(xt)‖2] ≤ (2 + 2τ)‖xt −ΠX∗(xt∗)‖2

λ2
≤ (2 + 2τ)D2

λ2
.

Using the first inequality in Lemma C.1, we have

I ≤ D2
√
β + log(T + 1) +

T∑
t=0

D2E[‖xt − xt+1‖2/η2t+1]√
β + log(T + 1) +

∑t−1
j=0 E[‖xj − xj+1‖2/η2j+1]

≤ D2
√
β + log(T + 1) +

t∗1∑
t=0

D2E[‖xt − xt+1‖2/η2t+1]√
β + log(T + 1) +

∑t−1
j=0 E[‖xj − xj+1‖2/η2j+1]

+

T∑
t=t∗1+1

D2ηt+1E
[
‖xt − xt+1‖2

η2t+1

]

≤ D2
√
β + log(T + 1) +

t∗1∑
t=0

D2E[‖xt − xt+1‖2/η2t+1]√
β + log(T + 1) +

∑t−1
j=0 E[‖xj − xj+1‖2/η2j+1]

+

T∑
t=t∗1+1

(2 + 2τ)D2ηt+1E[‖v(xt)‖2]. (23)
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Since ηt+1 ≤ λ/[4(1 + τ)D2] for all t > t∗1, we have

T∑
t=t∗1+1

(2 + 2τ)D2ηt+1E[‖v(xt)‖2] ≤
T∑

t=t∗1+1

λE[‖v(xt)‖2]

2
. (24)

Using the second inequality in Lemma 3.5, we have

t∗1∑
t=0

D2E[‖xt − xt+1‖2/η2t+1]√
β + log(T + 1) +

∑t−1
j=0 E[‖xj − xj+1‖2/η2j+1]

(25)

≤ (4 + 4τ)D2

λ2
√
β + log(T + 1)

+
3D
√

2 + 2τ

λ
+ 3

√√√√β + log(T + 1) +

t∗1−1∑
j=0

E

[
‖xj − xj+1‖2

η2j+1

]
.

By the definition of ηt, we have√√√√β + log(T + 1) +

t∗1−1∑
j=0

E

[
‖xj − xj+1‖2

η2j+1

]
(26)

≤ 1

ηt∗1+1
+
√

log(T + 1) <
4(1 + τ)D2 + 2(1 + τ)

λ
+
√

log(T + 1).

Putting Eq. (24)-(26) together yields that

I ≤ D2
√
β + log(T + 1) +

(4 + 4τ)D2

λ2
√
β + log(T + 1)

+
3D
√

2 + 2τ

λ
+

12(1 + τ)D2 + 6(1 + τ)

λ

+
√

log(T + 1) +

T∑
t=t∗1+1

λE[‖v(xt)‖2]

2
.

Bounding II: Recalling that

E
[
‖xt − xt+1‖2

η2t+1

]
≤ (2 + 2τ)D2

λ2
,

and ηt ≤ 1/β for all t ≥ 1, we have

E
[
‖xt − xt+1‖2

]
≤ (2 + 2τ)D2

λ2β2
,

Putting these pieces together yields that

II =
2(1 + τ)

λ

 t∗1∑
t=0

E[‖xt − xt+1‖2]

 ≤ 4(1 + τ)2D2t∗1
λ3β2

.

Therefore, we have

T∑
t=0

λE[‖v(xt)‖2]

2
≤ D2

√
β + log(T + 1) +

√
log(T + 1) +

(4 + 4τ)D2

λ2
√
β + log(T + 1)

+
3D
√

2 + 2τ

λ
+

12(1 + τ)D2 + 6(1 + τ)

λ
+

4(1 + τ)2D2t∗1
λ3β2

.

By the definition, we have t∗1 < +∞ is uniformly bounded. To this end, we conclude that
∑T
t=0 E[‖v(xt)‖2] ≤ C1 +

C2

√
log(T + 1), where C1 > 0 and C2 > 0 are universal constants.
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Finally, we proceed to bound the term ε(xT ). Without loss of generality, we can start the sequence at a later index t∗1 since
t∗1 < +∞. This implies that ηt+1 ≤ λ/2(1 + τ). Using the last equation in the proof of Lemma 4.2, we have

E[ε(xT )] ≤ E[ε(xt)] +

T−1∑
j=t

τj
λ
E
[
‖v(xj)‖2

ηj+1

]
.

Summing up the above inequality over t = t∗1, . . . , T+ yields

(T − t∗1 + 1)E[ε(xT )] ≤
T∑
t=t∗1

E[ε(xt)] +
1

λ

T−1∑
t=t∗1

T−1∑
j=t

τjE
[
‖v(xj)‖2

ηj+1

] .

Since {τt}t≥0 is an nonincreasing sequence, we have

T−1∑
t=t∗1

T−1∑
j=t

τjE
[
‖v(xj)‖2

ηj+1

]
≤

(
T−1∑
t=0

τj

)T−1∑
t=t∗1

E
[
‖v(xj)‖2

ηj+1

] .

Using Eq. (20) and ηt+1 ≤ λ/2(1 + τ) for all t > t∗1, we have

E
[
‖v(xj)‖2

ηj+1

]
≤ E

[
‖xj − x∗‖2 − ‖xj+1 − x∗‖2

η2j+1

]
.

Note that {ηt}t≥0 is an nonnegative and nonincreasing sequence and E[‖xj+1 − x∗‖2] ≤ D2. Putting these pieces together
yields that

T−1∑
t=t∗1

E
[
‖v(xj)‖2

ηj+1

]
≤ E

[
D2

η2T

]
≤ D2

(
β + log(T ) +

T∑
t=0

E
[
‖xt − xt+1‖2

η2t+1

])

≤ D2

(
β + log(T ) + 2(1 + τ)

T∑
t=0

E
[
‖v(xt)‖2

])
= O(log(T )).

Therefore, we conclude that

E[ε(xT )] ≤
∑T
t=t∗1

E[ε(xt)]

T − t∗1 + 1
+

C log(T + 1)

λ(T − t∗1 + 1)

(
T−1∑
t=0

τt

)
for some C > 0.

This completes the proof.

D. Postponed Proofs in Section A
In this section, we present the missing proofs in Section A.

D.1. Proof of Lemma A.1

By the definition of ε(x), we have

ε(xt+1)− ε(xt) = ‖v(xt+1)‖2 − ‖v(xt)‖2 = (v(xt+1)− v(xt))
>(v(xt+1) + v(xt))

= 2(v(xt+1)− v(xt))
>v(xt) + ‖v(xt+1)− v(xt)‖2.

Using the update formula in Eq. (1), it holds that v(xt) = η−1t+1(xt+1 − xt)− ξt+1. Therefore, we have

ε(xt+1)− ε(xt) =
2

ηt+1

(
(v(xt+1)− v(xt))

>(xt+1 − xt)− (v(xt+1)− v(xt))
>ξt+1

)
+ ‖v(xt+1)− v(xt)‖2.
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Since G is a λ-cocoercive game, we have

(v(xt+1)− v(xt))
>(xt+1 − xt) ≤ −λ‖v(xt+1)− v(xt)‖2.

Using Young’s inequality, we have

−(v(xt+1)− v(xt))
>ξt+1 ≤

λ‖v(xt+1)− v(xt)‖2

2
+
‖ξt+1‖2

2λ
.

Putting these pieces together yields that

ε(xt+1)− ε(xt) ≤
‖ξt+1‖2

ληt+1
+

(
1− λ

ηt+1

)
‖v(xt+1)− v(xt)‖2. (27)

Taking an expectation of Eq. (27) conditioned on Ft yields that

E[ε(xt+1) | Ft]− ε(xt) ≤
E[‖ξt+1‖2 | Ft]

ληt+1
+

(
1− λ

ηt+1

)
E
[
‖v(xt+1)− v(xt)‖2 | Ft

]
.

Since the noisy model (2) is with absolute random noise (4), we have E[‖ξt+1‖2 | Ft] ≤ σ2
t . Also, ηt ∈ (0, λ) for all t ≥ 1.

Therefore, we conclude that

E[ε(xt+1) | Ft]− ε(xt) ≤
σ2
t

ληt+1
.

Taking the expectation of both sides yields the desired inequality.

D.2. Proof of Theorem A.2

Recalling Eq. (11) (cf. Lemma 4.1), we take the expectation of both sides conditioned on Ft to obtain

E[‖xt+1−x∗‖2 | Ft] ≤ ‖xt−x∗‖2−(2λ−2ηt+1)ηt+1‖v(xt)‖2+2η2t+1E[‖ξt+1‖2 | Ft]+2ηt+1E[(xt−x∗)>ξt+1 | Ft].

Since the noisy model (2) is with absolute random noise (4) satisfying σ2
t ∈ (0, σ2] for some σ2 < +∞, we have

E[(xt − x∗)>ξt+1 | Ft] = 0 and E[‖ξt+1‖2 | Ft] ≤ σ2. Therefore, we have

E[‖xt+1 − x∗‖2 | Ft] ≤ ‖xt − x∗‖2 − (2λ− 2ηt+1)ηt+1‖v(xt)‖2 + 2η2t+1σ
2.

Since
∑∞
t=1 η

2
t <∞, we have ηt → 0 as t→ +∞. Without loss of generality, we assume ηt ≤ λ for all t. Then we have

E[‖xt+1 − x∗‖2 | Ft] ≤ ‖xt − x∗‖2 + 2η2t+1σ
2. (28)

We let Mt = ‖xt − x∗‖2 + 2σ2(
∑
j>t η

2
j ) and obtain that Mt is an nonnegative supermartingale. Then Doob’s martingale

convergence theorem shows that Mn converges to an nonnegative and integrable random variable almost surely. Let
M∞ = limt→+∞Mt, it suffices to show that M∞ = 0 almost surely.

We first claim that every neighborhood U of X ∗ is recurrent: there exists a subsequence xtk of xt such that xtk → X ∗
almost surely. Equivalently, there exists a Nash equilibria x∗ ∈ X ∗ such that ‖xtk − x∗‖2 → 0 almost surely. To this end,
we can define Mt with such Nash equilibria. Since

∑∞
t=1 η

2
t <∞, we have

∑
j>t η

2
j → 0 as t→ +∞ and the following

statement holds almost surely:
lim

k→+∞
Mtk = lim

k→+∞
‖xtk − x∗‖2 = 0.

Since the whole sequence converges to M∞ almost surely, we conclude that M∞ = 0 almost surely.

Proof of the recurrence claim: Let U be a neighborhood of X ∗ and assume to the contrary that, xt /∈ U for sufficiently
large t with positive probability. By starting the sequence at a later index if necessary and noting that

∑∞
t=1 η

2
t < ∞,

we may assume that xt /∈ U and ηt ≤ λ/2 for all t without loss of generality. Thus, there exists some c > 0 such that
‖v(xt)‖2 ≥ c for all t. As a result, for all x∗ ∈ X ∗, we let ψt+1 = (xt − x∗)>ξt+1 and have

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − λcηt+1 + 2ηt+1ψt+1 + 2η2t+1‖ξt+1‖2.
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Summing up the above inequality over t = 0, 1, . . . , T together with θt =
∑t
j=1 ηj yields that

‖xT+1 − x∗‖2 ≤ ‖x0 − x∗‖2 − λcθT+1 + 2θT+1

[∑T+1
t=1 ηtψt

θT+1
+

∑T+1
t=1 η

2
t ‖ξt‖2

θT+1

]
. (29)

Since the noisy model (2) is with absolute random noise (4) satisfying σ2
t ∈ (0, σ2] for some σ2 < +∞, we have

E[ψt+1 | Ft] = 0. Furthermore, we obtain by taking the expectation of both sides of Eq. (28) that

E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2] + 2η2t+1σ
2,

and the following inequality holds true for all t ≥ 1:

E[‖xt − x∗‖2] ≤ ‖x0 − x∗‖2 + 2σ2
∞∑
j=1

η2j < +∞.

Since ‖xt − x∗‖2 ≥ 0, we have ‖xt − x∗‖2 < +∞ almost surely. Therefore, E[‖ψt+1‖2 | Ft] ≤ σ2‖xt − x∗‖2 < +∞.
Then the law of large numbers for martingale differences yields that θ−1T+1(

∑T+1
t=1 ηtψt)→ 0 almost surely (Hall & Heyde,

2014, Theorem 2.18). Furthermore, let Rt =
∑t
j=1 η

2
j ‖ξj‖2, then Rt is a submartingale and

E[Rt] ≤ σ2
t∑

j=1

η2j < σ2
∞∑
j=1

η2j < +∞.

From Doob’s martingale convergence theorem, Rt converges to some random, finite value almost surely (Hall & Heyde,
2014, Theorem 2.5). Putting these pieces together with Eq. (29) yields that ‖xt − x∗‖2 ∼ −λcτt → −∞ almost surely, a
contradiction. Therefore, we conclude that every neighborhood of X ∗ is recurrent.

D.3. Proof of Theorem A.3

Since ηt = c/
√
t for all t ≥ 1, we have ηt → 0 and ηt ≤ c for all t ≥ 1. This implies that

ληt+1 − η2t+1 ≥ (λ− c)ηt+1. (30)

Plugging Eq. (30) into Eq. (11) (cf. Lemma 4.1) yields that

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2(λ− c)ηt+1‖v(xt)‖2 + 2ηt+1(xt − x∗)>ξt+1 + 2η2t+1‖ξt+1‖2.

Using the same argument as in Theorem A.2, we have

E[‖xt+1 − x∗‖2 | Ft] ≤ ‖xt − x∗‖2 − 2(λ− c)ηt+1‖v(xt)‖2 + 2η2t+1σ
2. (31)

Taking the expectation of both sides of Eq. (31) and rearranging yields that

E[ε(xt)] ≤
1

2(λ− c)ηt+1

(
E[‖xt − x∗‖2]− E[‖xt+1 − x∗‖2]

)
+
ηt+1σ

2

λ− c
.

Summing up the above inequality over t = 0, 1, . . . , T and using ηt = c/
√
T + 1 yields that

E

[
T∑
t=0

ε(xt)

]
≤ ‖x0 − x∗‖2

2(λ− c)η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[‖xt − x∗‖2]

2(λ− c)
+

σ2

λ− c

(
T+1∑
t=1

ηt

)
.

On the other hand, we have
E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2] + 2η2t+1σ

2.

This implies that the following inequality holds for all t ≥ 1:

E[‖xt − x∗‖2] ≤ ‖x0 − x∗‖2 + 2σ2

 t∑
j=1

η2j

 ≤ ‖x0 − x∗‖2 + 2σ2c2 log(t+ 1).
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Therefore, we conclude that

E

[
T∑
t=0

ε(xt)

]
≤ ‖x0 − x∗‖2 + 2σ2c2 log(T + 1)

2(λ− c)

T∑
t=1

(
1

ηt+1
− 1

ηt

)
+
‖x0 − x∗‖2

2(λ− c)η1
+

σ2

λ− c

(
T+1∑
t=1

ηt

)

≤
√
T + 1(‖x0 − x∗‖2 + 2σ2c2 log(T + 1))

2c(λ− c)
+
‖x0 − x∗‖2

2c(λ− c)
+
σ2c
√
T + 1

λ− c

= O
(√

T + 1 log(T + 1)
)
.

This completes the proof.

D.4. Proof of Theorem A.4

Using Lemma A.1, we have

E[ε(xT )] ≤ E[ε(xt)] +
1

λ

T−1∑
j=t

σ2
j

ηj+1

 ≤ E[ε(xt)] +
1

λη

T−1∑
j=t

σ2
j

 .

Summing up the above inequality over t = 0, 1, . . . , T yields that

(T + 1)E[ε(xT )] ≤
T∑
t=0

E[ε(xt)] +
1

λ

T−1∑
t=0

T−1∑
j=t

σ2
j

ηj+1

 ≤ T∑
t=0

E[ε(xt)] +
1

λη

(
T−1∑
t=0

(t+ 1)σ2
t

)
.

On the other hand, the derivation in Theorem A.3 implies that

E

[
T∑
t=0

ε(xt)

]
≤ ‖x0 − x∗‖2

2(λ− η)η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[‖xt − x∗‖2]

2(λ− η)
+

1

λ− η

(
T+1∑
t=1

ηtσ
2
t

)

≤ ‖x0 − x∗‖2

2(λ− η)η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
E[‖xt − x∗‖2]

2(λ− η)
+

η

λ− η

(
T+1∑
t=1

σ2
t

)
.

On the other hand, we have
E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2] + 2η2t+1σ

2
t .

This implies that the following inequality holds for all t ≥ 1:

E[‖xt − x∗‖2] ≤ ‖x0 − x∗‖2 + 2η2

 t∑
j=1

σ2
j

 .

Therefore, we conclude that

E

[
T∑
t=0

ε(xt)

]
≤
‖x0 − x∗‖2 + 2η2(

∑T
t=1 σ

2
t )

2(λ− η)

T∑
t=1

(
1

ηt+1
− 1

ηt

)
+
‖x0 − x∗‖2

2(λ− η)η1
+

η

λ− η

(
T+1∑
t=1

σ2
t

)

≤
‖x0 − x∗‖2 + 2η2(

∑T
t=1 σ

2
t )

2(λ− η)η
+
‖x0 − x∗‖2

2(λ− η)η
+

η

λ− η

(
T+1∑
t=1

σ2
t

)

≤ ‖x0 − x∗‖2

(λ− η)η
+

(
1 +

η

η

)
η

λ− η

(
T+1∑
t=1

σ2
t

)

≤ ‖x0 − x∗‖2

(λ− η)η
+

(
1 +

η

η

)
η

λ− η

(
T+1∑
t=1

(t+ 1)σ2
t

)
.
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Putting these pieces together yields that

E[ε(xT )] ≤ 1

T + 1

[
T∑
t=0

E[ε(xt)] +
1

λη

(
T−1∑
t=0

(t+ 1)σ2
t

)]

≤ 1

T + 1

(
‖x0 − x∗‖2

(λ− η)η
+

(
1

λη
+

(
1 +

η

η

)
η

λ− η

)(T+1∑
t=1

(t+ 1)σ2
t

))
Eq. (15)

= O(a(T )).

This completes the proof.


