
Generalized and Scalable Optimal Sparse Decision Trees

Jimmy Lin * 1 Chudi Zhong * 2 Diane Hu 2 Cynthia Rudin 2 Margo Seltzer 1

Abstract
Decision tree optimization is notoriously diffi-
cult from a computational perspective but essen-
tial for the field of interpretable machine learn-
ing. Despite efforts over the past 40 years, only
recently have optimization breakthroughs been
made that have allowed practical algorithms to
find optimal decision trees. These new tech-
niques have the potential to trigger a paradigm
shift where it is possible to construct sparse deci-
sion trees to efficiently optimize a variety of ob-
jective functions without relying on greedy split-
ting and pruning heuristics that often lead to sub-
optimal solutions. The contribution in this work
is to provide a general framework for decision
tree optimization that addresses the two signifi-
cant open problems in the area: treatment of im-
balanced data and fully optimizing over contin-
uous variables. We present techniques that pro-
duce optimal decision trees over a variety of ob-
jectives including F-score, AUC, and partial area
under the ROC convex hull. We also introduce
a scalable algorithm that produces provably op-
timal results in the presence of continuous vari-
ables and speeds up decision tree construction by
several orders of magnitude relative to the state-
of-the art.

1. Introduction
Decision tree learning has served as a foundation for in-
terpretable artificial intelligence and machine learning for
over half a century (Morgan & Sonquist, 1963; Payne &
Meisel, 1977; Loh, 2014). The major approach since the
1980’s has been decision tree induction, where heuris-
tic splitting and pruning procedures grow a tree from the
top down and prune it back afterwards (Quinlan, 1993;
Breiman et al., 1984). The problem with these methods

*Equal contribution 1University of British Columbia,
2

Vancou-
ver, Canada Duke University, Durham, North Carolina, USA.
Correspondence to: Cynthia Rudin <cynthia@cs.duke.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

is that they tend to produce suboptimal trees with no way
of knowing how suboptimal the solution is. This leaves
a gap between the performance that a decision tree might
obtain and the performance that one actually attains, with
no way to check on (or remedy) the size of this gap–and
sometimes, the gap can be large.

Full decision tree optimization is NP-hard, with no
polynomial-time approximation (Laurent & Rivest, 1976),
leading to challenges in proving optimality or bounding the
optimality gap in a reasonable amount of time, even for
small datasets. It is possible to create assumptions that re-
duce hard decision tree optimization to cases where greedy
algorithms suffice, such as independence between features
(Klivans & Servedio, 2006), but these assumptions do not
hold in reality. If the data can be perfectly separated with
zero error, SAT solvers can be used to find optimal decision
trees rapidly (Narodytska et al., 2018); however, real data
is generally not separable, leaving us with no choice other
than to actually solve the problem.

Decision tree optimization is amenable to branch-and-
bound methods, implemented either via generic mathe-
matical programming solvers or by customized algorithms.
Solvers have been used from the 1990’s (Bennett, 1992;
Bennett & Blue, 1996) to the present (Verwer & Zhang,
2019; Blanquero et al., 2018; Nijssen et al., 2020; Bertsi-
mas & Dunn, 2017; Rudin & Ertekin, 2018; Menickelly
et al., 2018; Vilas Boas et al., 2019), but these generic
solvers tend to be slow. A common way to speed them
up is to make approximations in preprocessing to reduce
the size of the search space. For instance, “bucketization”
preprocessing is used in both generic solvers (Verwer &
Zhang, 2019) and customized algorithms (Nijssen et al.,
2020) to handle continuous variables. Continuous variables
pose challenges to optimality; even one continuous variable
increases the number of possible splits by the number of
possible values of that variable in the entire database, and
each additional split leads to an exponential increase in the
size of the optimization problem. Bucketization is tempt-
ing and seems innocuous, but we prove in Section 3 that it
sacrifices optimality.

Dynamic programming methods have been used for vari-
ous decision tree optimization problems since as far back
as the early 1970’s (Garey, 1972; Meisel & Michalopou-

Generalized Scalable Optimal Sparse Decision Trees

los, 1973). Of the more recent attempts at this challenging
problem, Garofalakis et al. (2003) use a dynamic program-
ming method for finding an optimal subtree within a pre-
defined larger decision tree grown using standard greedy
induction. Their trees inherit suboptimality from the induc-
tion procedure used to create the larger tree. The DL8 al-
gorithm (Nijssen & Fromont, 2007) performs dynamic pro-
gramming on the space of decision trees. However, without
mechanisms to reduce the size of the space and to reduce
computation, the method cannot be practical. A more prac-
tical extension is the DL8.5 method (Nijssen et al., 2020),
which uses a hierarchical upper bound theorem to reduce
the size of the search space. However, it also uses bucketi-
zation preprocessing, which sacrifices optimality; without
this preprocessing or other mechanisms to reduce compu-
tation, the method suffers in computational speed.

The CORELS algorithm (Angelino et al., 2017; 2018;
Larus-Stone, 2017), which is an associative classification
method rather than an optimal decision tree method, breaks
away from the previous literature in that it is a custom
branch-and-bound method with custom bounding theo-
rems, its own bit-vector library, specialized data structures,
and an implementation that leverages computational reuse.
CORELS is able to solve problems within a minute that,
using any other prior approach, might have taken weeks, or
even months or years. Hu et al. (Hu et al., 2019) adapted
the CORELS philosophy to produce an Optimal Sparse
Decision Tree (OSDT) algorithm that leverages some of
CORELS’ libraries and its computational reuse paradigm,
as well as many of its theorems, which dramatically reduce
the size of the search space. However, OSDT solves an ex-
ponentially harder problem than that of CORELS’ rule list
optimization, producing scalability challenges, as we might
expect.

This work addresses two fundamental limitations in ex-
isting work: unsatisfying results for imbalanced data and
scalability challenges when trying to fully optimize over
continuous variables. Thus, the first contribution of this
work is to massively generalize sparse decision tree opti-
mization to handle a wide variety of objective functions,
including weighted accuracy (including multi-class), bal-
anced accuracy, F-score, AUC and partial area under the
ROC convex hull. Both CORELS and OSDT were de-
signed to maximize accuracy, regularized by sparsity, and
neither were designed to handle other objectives. CORELS
has been generalized (Aı̈vodji et al., 2019; Chen & Rudin,
2018) to handle some constraints, but not to the wide va-
riety of different objectives one might want to handle in
practice. Generalization to some objectives is straightfor-
ward (e.g., weighted accuracy) but non-trivial in cases of
optimizing rank statistics (e.g., AUC), which typically re-
quire quadratic computation in the number of observations
in the dataset. However, for sparse decision trees, this time

is much less than quadratic, because all observations within
a leaf of a tree are tied in score, and there are a sparse num-
ber of leaves in the tree. Taking advantage of this permits
us to rapidly calculate rank statistics and thus optimize over
them. The second contribution is to present a new repre-
sentation of the dynamic programming search space that
exposes a high degree of computational reuse when mod-
elling continuous features. The new search space represen-
tation provides a useful solution to a problem identified in
the CORELS paper, which is how to use “similar support”
bounds in practice. A similar support bound states that if
two features in the dataset are similar, but not identical,
to each other, then bounds obtained using the first feature
for a split in a tree can be leveraged to obtain bounds for
the same tree, were the second feature to replace the first
feature. However, if the algorithm checks the similar sup-
port bound too frequently, the bound slows the algorithm
down, despite reducing the search space. Our method uses
hash trees that represent similar trees using shared subtrees,
which naturally accelerates the evaluation of similar trees.
The implementation, coupled with a new type of incremen-
tal similar support bound, is efficient enough to handle a
few continuous features by creating dummy variables for
all unique split points along a feature. This permits us to
obtain smaller optimality gaps and certificates of optimal-
ity for mixed binary and continuous data when optimizing
additive loss functions several orders of magnitude more
quickly than any other method that currently exists.

Our algorithm is called Generalized and Scalable Optimal
Sparse Decision Trees (GOSDT, pronounced “ghost”). A
chart detailing a qualitative comparison of GOSDT to pre-
vious decision tree approaches is in Appendix A.

2. Notation and Objectives
We denote the training dataset as {(xi, yi)}Ni=1 , where
xi ∈ {0, 1}M are binary features. Our notation uses
yi ∈ {0, 1}, though our code is implemented for multiclass
classification as well. For each real-valued feature, we cre-
ate a split point at the mean value between every ordered
pair of unique values present in the training data. Follow-
ing notation of Hu et al. (2019), we represent a tree as a set
of leaves; this is important because it allows us not to store
the splits of the tree, only the conditions leading to each
leaf. A leaf set d = (l1, l2, ..., lHd

) contains Hd distinct
leaves, where li is the classification rule of the leaf i, that
is, the set of conditions along the branches that lead to the
leaf, and leafŷi is the label prediction for all data in leaf i.
For a tree d, we define the objective function as a combina-
tion of the loss and a penalty on the number of leaves, with
regularization parameter λ:

R(d,x,y) = `(d,x,y) + λHd. (1)

Generalized Scalable Optimal Sparse Decision Trees

Let us first consider monotonic losses `(d,x,y), which are
monotonically increasing in the number of false positives
(FP) and the number of false negatives (FN), and thus can
be expressed alternatively as l̃(FP, FN). We will specifi-
cally consider the following objectives in our implementa-
tion. (These are negated to become losses.)

• Accuracy = 1− FP+FN
N : fraction of correct predictions.

• Balanced accuracy = 1 − 1 (FN2 N+ + FP
N−): the average of

true positive rate and true negative rate. Let N+ be the
number of positive samples in the training set and N−

be the number of negatives.
• Weighted accuracy = 1− FP+ωFN

ωN++N− for a predetermined
threshold ω: the cost-sensitive accuracy that penalizes
more on predicting positive samples as negative.

• F-score = 1− FP+FN
2N++FP−FN : the harmonic mean of pre-

cision and recall.

Optimizing F-score directly is difficult even for linear mod-
eling, because it is non-convex (Nan et al., 2012). In opti-
mizing F-score for decision trees, the problem is worse – a
conundrum is possible where two leaves exist, the first leaf
containing a higher proportion of positives than the other
leaf, yet the first is classified as negative and the second
classified as positive. We discuss how this can happen in
Appendix D and how we address it, which is to force mono-
tonicity by sweeping across leaves from highest to lowest
predictions to calculate the F-score (see Appendix D).

We consider two objectives that are rank statistics:

• Area under the ROC convex hull (AUCch): the fraction
of correctly ranked positive/negative pairs.

• Partial area under the ROC convex hull (pAUCch) for
predetermined threshold θ: the area under the leftmost
part of the ROC curve.

Some of the bounds from OSDT (Hu et al., 2019) have
straightforward extensions to the objectives listed above,
namely the Upper Bound on Number of Leaves and
Leaf Permutation Bound. The remainder of OSDT’s
bounds do not adapt. Our new bounds are the Hierar-
chical Objective Lower Bound, Incremental Progress
Bound to Determine Splitting, Lower Bound on In-
cremental Progress, Equivalent Points Bound, Similar
Support Bound, Incremental Similar Support Bound,
and a Subset Bound. To focus our exposition, deriva-
tions and bounds for balanced classification loss, weighted
classification loss, and F-score loss are in Appendix B,
and derivations for AUC loss and partial AUC loss are in
Appendix C, with the exception of the hierarchical lower
bound for AUCch, which appears in Section 2.1 to demon-
strate how these bounds work.

2.1. Hierarchical Bound for AUC Optimization

Let us discuss objectives that are rank statistics. If a classi-
fier creates binary (as opposed to real-valued) predictions,
its ROC curve consists of only three points (0,0), (FPR,
TPR), and (1,1). The AUC of a labeled tree is the same as
the balanced accuracy, because AUC = 1 (TP2 N+ × FP

N−) +

(1− FP
N−)× TP

N+ + 1 ((1− TP
2 N+)×(1− FP

N−)), and since TP =

N+ − FN , we have AUC = 1 (N
+−FN

+ × FP
−) + (1 −2 N N

FP N+

)× −FN + 1 (FN
−

× N −FP
− + + −) = 1− 1 (FPN N 2 N N 2 N− + FN

N+).
The more interesting case is when we have real-valued
predictions for each leaf and use the ROC convex hull
(ROCCH), defined shortly, as the objective.

Let n+
i be the number of positive samples in leaf i (n−i

is the number of negatives) and let ri be the fraction of
positives in leaf i. Let us define the area under the ROC
convex hull (ROCCH) (Ferri et al., 2002) for a tree. For a
tree d consisting ofHd distinct leaves, d = (l1, ..., lHd

), we
reorder leaves according to the fraction of positives, r1 ≥
r2 ≥ ... ≥ rHd

. For any i = 0, ...,Hd, define a labeling
Si for the leaves that labels the first i leaves as positive
and remaining Hd − i as negative. The collection of these
labelings is Γ = S0, S1, ..., SHd

, where each Si defines one
of the Hd + 1 points on the ROCCH (see e.g., Ferri et al.,
2002). The associated misranking loss is then 1-AUCch:

`(d,x,y)=1− 1

2N+N−

H∑
i=1

n−i

[(i−1∑
j=1

2n+
j

)
+n+

i

]
. (2)

Now let us derive a lower bound on the loss for trees that are
incomplete, meaning that some parts of the tree are not yet
fully grown. For a partially-grown tree d, the leaf set can
be rewritten as d = (dfix, rfix, dsplit, rsplit,K,Hd), where dfix
is a set of K fixed leaves that we choose not to split further
and dsplit is the set ofHd−K leaves that can be further split;
this notation reflects how the algorithm works, where there
are multiple copies of a tree, with some nodes allowed to
be split and some that are not. rfix and rsplit are fractions of
positives in the leaves. If we have a new fixed d′fix, which
is a superset of dfix, then we say d′fix is a child of dfix. We
define σ(d) to be all such child trees:

σ(d) = {(d′fix, r
′
fix, d

′
split, r

′
split,K

′, H ′d) : dfix ⊆ d′fix}. (3)

Denote N+
split and N−split as the number of positive and neg-

ative samples captured by dsplit respectively. Through ad-
ditional splits, in the best case, dsplit can give rise to pure
leaves, where positive ratios of generated leaves are either
1 or 0. Then the top-ranked leaf could contain up to N+

split
positive samples (and 0 negative samples), and the lowest-
ranked leaf could capture as few as 0 positive samples and
up to N−split samples. Working now with just the leaves in
dfix, we reorder the leaves in dfix by the positive ratios (rfix),

Generalized Scalable Optimal Sparse Decision Trees

such that ∀i ∈ {1, ...,K}, r1 > r2 > ... > rK . Combining
these fixed leaves with the bounds for the split leaves, we
can define a lower bound on the loss as follows.

Theorem 2.1. (Lower bound for negative AUC convex
hull) For a tree d = (dfix,
AUCch as the objective, a
b(dfix,x,y) 6 R(d,x,y), w

rfix, dsplit, rsplit,K,Hd) using
lower bound on the loss is

here:

b(dfix,x,y) = 1− 1

2N+N−

(K∑
i=1

n−i

[
2N+

split +

(i−1∑
j=1

2n+
j

)

+n+
i

]
+ 2N+N−split

)
+ λHd. (4)

This leads directly to a hierarchical lower bound for the
negative of the AUC convex hull.

Theorem 2.2. (Hierarchical objective lower
bound for negative AUC convex hull) Let d =
(dfix, rfix, dsplit, rsplit,K,Hd) be a tree with fixed leaves
dfix and d′ = (d′fix, r

′
fix, d

′
split, r

′
split,K

′, H ′d) ∈ σ(d) be any
child tree such that its fixed leaves d′fix contain dfix, and
H ′d > Hd, then b(dfix,x,y) 6 R(d′,x,y).

This type of bound is the fundamental tool that we use to
reduce the size of the search space: if we compare the lower
bound b(dfix,x,y) for partially constructed tree d to the
best current objective Rc, and find that b(dfix,x,y) ≥ Rc,
then there is no need to consider d or any subtree of d, as it
is provably non-optimal. The hierarchical lower bound dra-
matically reduces the size of the search space. However, we
also have a collection of tighter bounds at our disposal, as
summarized in the next subsection.

We leave the description of partial AUC to Appendix C.
Given a parameter θ, the partial AUC of the ROCCH fo-
cuses only on the left area of the curve, consisting of the
top ranked leaves, whose FPR is smaller than or equal to θ.
This metric is used in information retrieval and healthcare.

2.2. Summary of Bounds

Appendix B presents our bounds, which are crucial for
reducing the search space. Appendix B presents the Hi-
erarchical Lower Bound (Theorem B.1) for any objec-
tive (Equation 1) with an arbitrary monotonic loss func-
tion. This theorem is analogous to the Hierarchical Lower
Bound for AUC optimization above. Appendix B also
contains the Objective Bound with One-Step Lookahead
(Theorem B.2), Objective Bound for Sub-Trees (Theo-
rem B.3), Upper Bound on the Number of Leaves (The-
orem B.4), Parent-Specific Upper Bound on the Number of
Leaves (Theorem B.5), Incremental Progress Bound to De-
termine Splitting (Theorem B.6), Lower Bound on Incre-
mental Progress (Theorem B.7), Leaf Permutation Bound
(Theorem B.8), Equivalent Points Bound (Theorem B.9),

and General Similar Support Bound (Theorem B.10). As
discussed, no similar support bounds have been used suc-
cessfully in prior work. In Section 4.2, we show how a new
Incremental Similar Support Bound can be implemented
within our specialized DPB (dynamic programming with
bounds) algorithm to make decision tree optimization for
additive loss functions (e.g., weighted classification error)
much more efficient. Bounds for AUCch and pAUCch are
in Appendix C, including the powerful Equivalent Points
Bound (Theorem C.3) for AUCch and pAUCch and proofs
for Theorem 2.1 and Theorem 2.2. In Appendix G, we pro-
vide a new Subset Bound implemented within DPB algo-
rithm to effectively remove thresholds introduced by con-
tinuous variables.

Note that we do not use convex proxies for rank statis-
tics, as is typically done in supervised ranking (learning-
to-rank). Optimizing a convex proxy for a rank statistic can
yield results that are far from optimal (see Rudin & Wang,
2018). Instead, we optimize the original (exact) rank statis-
tics directly on the training set, regularized by sparsity.

3. Data Preprocessing Using Bucketization
Sacrifices Optimality

As discussed, a preprocessing step common to DL8.5 (Ni-
jssen et al., 2020) and BinOct (Verwer & Zhang, 2019) re-
duces the search space, but as we will prove, also sacrifices
accuracy; we refer to this preprocessing as bucketization.

Definition: The bucketization preprocessing step proceeds
as follows. Order the observations according to any feature
j. For any two neighboring positive observations, no split
can be considered between them. For any two neighboring
negative observations, no split can be considered between
them. All other splits are permitted. While bucketization
may appear innocuous, we prove it sacrifices optimality.

Theorem 3.1. The maximum training accuracy for a deci-
sion tree on a dataset preprocessed with bucketization can
be lower (worse) than the maximum accuracy for the same
dataset without bucketization.

The proof is by construction. In Figure 1 we present
a data set such that optimal training with bucketization
cannot produce an optimal value of the objective. In
particular, the optimal accuracy without bucketization is
93.5%, whereas the accuracy of training with bucketization
is 92.2%. These numbers were obtained using BinOCT,
DL8.5, and GOSDT. Remember, the algorithms provide a
proof of optimality; these accuracy values are optimal, and
the same values were found by all three algorithms.

Our dataset is two-dimensional. We expect the sacrifice to
become worse with higher dimensions.

Generalized Scalable Optimal Sparse Decision Trees

Figure 1. Proof by construction. Bucketization leads to subopti-
mality. The left plot’s vertical split is not allowed in bucketization.

4. GOSDT’s DPB Algorithm
For optimizing non-additive loss function, we use Py-
GOSDT: a variant of GOSDT that is closer to OSDT (Hu
et al., 2019). For optimizing additive loss functions we use
GOSDT which uses dynamic programming with bounds
(DPB) to provides a dramatic run time improvement. Like
other dynamic programming approaches, we decompose a
problem into smaller child problems that can be solved ei-
ther recursively through a function call or in parallel by
delegating work to a separate thread. For decision tree op-
timization, these subproblems are the possible left and right
branches of a decision node.

GOSDT maintains two primary data structures: a prior-
ity queue to schedule problems to solve and a dependency
graph to store problems and their dependency relation-
ships. We define a dependency relationship dep(pπ, pc)
between problems pπ and pc if and only if the solution of
pπ depends on the solution of pc. Each pc is further speci-
fied as jpl or pjr indicating that it is the left or right branch
produced by splitting on feature j.

Sections 4.1, 4.2, and 4.3 highlight two key differences be-
tween GOSDT and DL8.5 (since DL 8.5 also uses a form
of dynamic programming): (1) DL8.5 uniquely identifies
a problem p by the Boolean assertion that is a conjunc-
tive clause of all splitting conditions in its ancestry, while
GOSDT represents a problem p by the samples that sat-
isfy the Boolean assertion. This is described in Section 4.1.
(2) DL8.5 uses blocking recursive invocations to execute
problems, while GOSDT uses a priority queue to schedule
problems for later. This is described in Section 4.3. Section
4.4 presents additional performance optimizations. Section
4.5 presents a high-level summary of GOSDT. Note that
GOSDT’s DPB algorithm operates on weighted, additive,
non-negative loss functions. For ease of notation, we use
classification error as the loss in our exposition.

4.1. Support Set Identification of Nodes

GOSDT leverages the Equivalent Points Bound in Theo-
rem B.9 to save space and computational time. To use this
bound, we find the unique values of {x1, ..., xN}, denoted
by {z1, ..., zU}, so that each xi equals one of the zu’s. We
store fractions z+

u and z−u , which are the fraction of positive
and negative samples corresponding to each zu.

Z = {zu : zu ∈ unique(X), 1 ≤ u ≤ U ≤ N}

z−u =
1

N

N∑
i=1

1[yi = 0 ∧ xi = zu]

z+
u =

1

N

N∑
i=1

1[yi = 1 ∧ xi = zu].

Define a as a Boolean assertion that is a conjunctive clause
of conditions on the features of zu (e.g., a is true if and only
if the first feature of zu is 1 and the second feature of zu is
0). We define support set sa as the set of zu that satisfy
assertion a:

sa = {zu : a(zu) = True, 1 ≤ u ≤ U}. (5)

We implement each sa as a bit-vector of length U and use
it to uniquely identify a problem p in the dependency graph.
The bits {sau}u of sa are defined as follows.

sau = 1 ⇐⇒ zu ∈ sa. (6)

With each p, we track a set of values including its lower
bound (lb) and upper bound (ub) of the optimal objective
classifying its support set sa.

In contrast, DL8.5 identifies each problem p using Boolean
assertion a rather than sa: this is an important difference
between GOSDT and DL8.5 because many assertions a
could correspond to the same support set sa. However,
given the same objective and algorithm, an optimal deci-
sion tree for any problem p depends only on the support
set sa. It does not depend on a if one already knows sa.
That is, if two different trees both contain a leaf capturing
the same set of samples s, the set of possible child trees for
that leaf is the same for the two trees. GOSDT solves prob-
lems identified by s. This way, it simultaneously solves all
problems identified by any a that produces s.

4.2. Connection to Similar Support Bound

No previous approach has been able to implement a simi-
lar support bound effectively. We provide GOSDT’s new
form of similar support bound, called the incremental sim-
ilar support bound. There are two reasons why this bound
works where other attempts have failed: (1) This bound
works on partial trees. One does not need to have con-
structed a full tree to use it. (2) The bound takes into ac-
count the hierarchical objective lower bound, and hence

Generalized Scalable Optimal Sparse Decision Trees

leverages the way we search the space within the DBP
algorithm. In brief, the bound effectively removes many
similar trees from the search region by looking at only
one of them (which does not need to be a full tree). We
consider weighted, additive, non-negative loss functions:∑
`(d,x,y) = i weightiloss(xi, yi). Define the maximum
weighted loss: `max = maxx,y[weight(x, y)× loss(x, y)].

Theorem 4.1. (Incremental Similar Support Bound) Con-
sider two trees d = (dfix, dsplit,K,H) and D =
(Dfix, Dsplit,K,H) that differ only by their root node
(hence they share the same K and H values). Further,
the root nodes between the two trees are similar enough
that the support going to the left and right branches differ
by at most ω fraction of the observations. (That is, there
are ωN observations that are captured either by the left
branch of d and right branch of D or vice versa.) Define
Suncertain as the maximum of the support within dsplit and
Dsplit: Suncertain = max(supp(dsplit), supp(Dsplit)). For any
child tree d′ ∈ σ(d) grown from d (grown from the nodes in
dsplit, that would not be excluded by the hierarchical objec-
tive lower bound) and for any child tree D′ ∈ σ(D) grown
from D (grown from nodes in Dsplit, not excluded by the
hierarchical objective lower bound), we have:

|R(d′,x,y)−R(D′,x,y)| ≤ (ω + 2Suncertain)`max.

The proof is in Appendix F. Unlike the similar support
bounds in CORELS and OSDT, which require pairwise
comparisons of problems, this incremental similar support
bound emerges from the support set representation. The de-
scendants σ(d) and σ(D) share many of the same support
sets. Because of this, the shared components of their upper
and lower bounds are updated simultaneously (to similar
values). This bound is helpful when our data contains con-
tinuous variables: if a split at value v was already visited,
then splits at values close to v can reuse prior computation
to immediately produce tight upper and lower bounds.

4.3. Asynchronous Bound Updates

GOSDT computes the objective values hierarchically by
defining the minimum objective R∗(p) of problem p as an
aggregation of minimum objectives over the child problems
jpl and pjr of p for 1 ≤ j ≤M .

R∗(p) = min
j

(R∗(pjl) +R∗(pjr)). (7)

Since DL8.5 computes eachR∗ j(pl) andR∗(pjr) in a block-
ing call to the the child problems jpl and pjr, it necessarily
computes R∗ j(pl) +R∗(pjr) after solving jpl and pjr, which
is a disadvantage. In contrast, GOSDT computes bounds
over R∗ j(pl) + R∗(pjr) that are available before knowing
the exact values of R∗ j(pl) and R∗(pjr). The bounds over

R∗ j(pl) and R∗(pjr) are solved asynchronously and possi-
bly in parallel. If for some j and j′ the bounds imply that
R∗ j(pl) + R∗(pjr) > R∗ j′(pl) + R∗(pj

′

r), then we can con-
clude that p’s solution no longer depends on jpl and pjr.
Since GOSDT executes asynchronously, it can draw this
conclusion and focus on R∗ j′(pl) + R∗(pj

′

r) without fully
solving R∗ j(pl) +R∗(pjr).

To encourage this type of bound update, GOSDT uses the
priority queue to send high-priority signals to each parent
pπ of p when an update is available, prompting a recalcula-
tion of R∗(pπ) using Equation 7.

4.4. Fast Selective Vector Sums

New problems (i.e., pl and pr) require initial upper and
lower bounds on the optimal objective. We define the ini-
tial lower bound lb and upper bound ub for a problem p
identified by support set s as follows. For 1 ≤ u ≤ U ,
define:

zmin
u = min(z−u , z

+
u). (8)

This is the fraction of minority class samples in equivalence
class u. Then,

lb = λ+
∑
u

suz
min
u . (9)

This is a basic equivalence points bound, which predicts all
minority class equivalence points incorrectly. Also,

ub = λ+ min

(∑
u

suz
−
u ,
∑
u

suz
+
u

)
. (10)

This upper bound comes from a baseline algorithm of pre-
dicting all one class.

We use the prefix sum trick in order to speed up computa-
tions of sums of a subset of elements of a vector. That is,
for any vector vecz (e.g., zmin, z−, z+), we want to compute
a sum of a subsequence of vecz : we precompute (during
preprocessing) a prefix sum vector cumulativez of the vector∑vec defined by the cumulative sum cumulative u vecz zu = j=1 zj .
During the algorithm, to sum over ranges of contiguous val-
ues in vecz , over some indices a through b, we now need
only take cumulative cumulativez [b] − z [a − 1]. This reduces a
linear time calculation to constant time. This fast sum is
leveraged over calculations with the support sets of input
features–for example, quickly determining the difference
in support sets between two features.

4.5. The GOSDT Algorithm

Algorithm 1 constructs and optimizes problems in the de-
pendency graph such that, upon completion, we can extract
the optimal tree by traversing the dependency graph by
greedily choosing the split with the lowest objective value.

Generalized Scalable Optimal Sparse Decision Trees

This extraction algorithm and a more detailed version of the
GOSDT algorithm is provided in Appendix J. We present
the key components of this algorithm, highlighting the dif-
ferences between GOSDT and DL8.5. Note that all fea-
tures have been binarized prior to executing the algorithm.

Lines 8 to 11: Remove an item from the queue. If its
bounds are equal, no further optimization is possible and
we can proceed to the next item on the queue.

Lines 12 to 18: Construct new subproblems, pl, pr by split-
ting on feature j. Use lower and upper bounds of pl and
pr to compute new bounds for p. We key the problems by
the bit vector corresponding to their support set s. Keying
problems in this way avoids processing the same problem
twice; other dynamic programming implementations, such
as DL8.5, will process the same problem multiple times.

Lines 19 to 22: Update p with lb′ and ub′ computed us-
ing Equation 7 and propagate that update to all ancestors
of p by enqueueing them with high priority (p will have
multiple parents if two different conjunctions produce the
same support set). This triggers the ancestor problems to
recompute their bounds using Equation 7. The high prior-
ity ensures that ancestral updates occur before processing
pl and pr. This scheduling is one of the key differences be-
tween GOSDT and DL8.5; by eagerly propagating bounds
up the dependency tree, GOSDT prunes the search space
more aggressively.

Lines 25 to 31: Enqueue pl and pr only if the interval be-
tween their lower and upper bounds overlaps with the in-
terval between p’s lower and upper bounds. This ensures
that eventually the lower and upper bounds of p converge
to a single value.

Lines 33 to 41: Define FIND OR CREATE NODE,
which constructs (or finds an existing) problem p corre-
sponding to support set s, initializing the lower and upper
bound and checking if p is eligible to be split, using the
Incremental Progress Bound to Determine Splitting (Theo-
rem B.6) and the Lower Bound on Incremental Progress
(Theorem B.7) (these bounds are checked in subroutine
fails bounds). get lower bound returns lb using Equation
9. get upper bound returns ub using Equation 10.

An implementation of the algorithm is
available at: https://github.com/Jimmy-
Lin/GeneralizedOptimalSparseDecisionTrees.

Algorithm 1 GOSDT(R, x, y, λ)

1: input: R, Z, z−, z+, λ // risk, samples, regularizer
2: Q = ∅ // priority queue
3: G = ∅ // dependency graph
4: s0 ← {1, ..., 1} // bit-vector of 1’s of length U
5: p0 ← FIND OR CREATE NODE(G, s0) // root
6: Q.push(s0) // add to priority queue
7: while p0.lb = p0.ub do
8: s← Q.pop() // index of problem to work on
9: p← G.find(s) // find problem to work on
10: if p.lb = p.ub then
11: continue // problem already solved
12: (lb′, ub′)← (∞,∞) // loose starting bounds
13: for each feature j ∈ [1,M] do
14: sl, sr ← split(s, j, Z) // create children
15: jp ←l FIND OR CREATE NODE(G, sl)
16: pjr ←FIND OR CREATE NODE(G, sr)

// create bounds as if j were chosen for splitting
17: lb′ ← min(lb′ j, pl .lb+ pjr.lb)

18: ub′ ← min(ub′ j, pl .ub+ pjr.ub)
// signal the parents if an update occurred

19: if p.lb = lb′ or p.ub = ub′ then
20: (p.lb, p.ub)← (lb′, ub′)
21: for pπ ∈ G.parent(p) do

// propagate information upwards
22: Q.push(pπ.id,priority = 1)
23: if p.lb = p.ub then
24: continue // problem solved just now

// loop, enqueue all children
25: for each feature j ∈ [1,M] do

// fetch jpl and pjr in case of update
26: repeat line 14-16
27: lb′ j← pl .lb+ pjr.lb

28: ub′ j← pl .ub+ pjr.ub
29: if lb′ < ub′ and lb′ ≤ p.ub then
30: Q.push(sl,priority = 0)
31: Q.push(sr,priority = 0)
32: return
——————————————————————–
33: subroutine FIND OR CREATE NODE(G,s)
34: if G.find(s) = NULL // p not yet in graph
35: p.id← s // identify p by s
36: p.lb← get lower bound(s, Z, z−, z+)
37: p.ub← get upper bound(s, Z, z−, z+)
38: if fails bounds(p) then
39: p.lb = p.ub // no more splitting allowed
40: G.insert(p) // put p in dependency graph
41: return G.find(s)

6

6 6

Generalized Scalable Optimal Sparse Decision Trees

5. Experiments
We present details of our experimental setup and datasets
in Appendix I. GOSDT’s novelty lies in its ability to op-
timize a large class of objective functions and its ability to
efficiently handle continuous variables without sacrificing
optimality. Thus, our evaluation results: 1) Demonstrate
our ability to optimize over a large class of objectives (AUC
in particular), 2) Show that GOSDT outperforms other ap-
proaches in producing models that are both accurate and
sparse, and 3) Show how GOSDT scales in its handling
of continuous variables relative to other methods. In Ap-
pendix I we show time-to-optimality results.

Optimizing Many Different Objectives: We use the Four-
Class dataset (Chang & Lin, 2011) to show optimal deci-
sion trees corresponding to different objectives. Figures 2
and 3 show the training ROC of decision trees generated
for six different objectives and optimal trees for accuracy,
AUC and partial area under ROC convex hull. Optimizing
different objectives produces different trees with different
FP and FN . (No other decision tree method is designed
to fully optimize any objective except accuracy, so there is
no comparison to other methods.)

Figure 2. Training ROC of FourClass dataset (λ = 0.01). A/B in
the legend at the bottom right shows the objective and its param-
eters/area under the ROC.

Figure 3. Trees for different objectives. A/B in the leaf node rep-
resents the number of positive/negative samples amongst the total
samples captured in that leaf.

Binary Datasets, Accuracy vs Sparsity: We compare

Figure 4. Training accuracy achieved by BinOCT, CART, DL8.5,
GOSDT, and OSDT as a function of the number of leaves.

models produced from BinOCT (Verwer & Zhang, 2019),
CART (Breiman et al., 1984), DL8.5 (Nijssen et al., 2020),
OSDT (Hu et al., 2019), and GOSDT. For each method, we
select hyperparameters to produce trees of varying num-
bers of leaves and plot training accuracy against sparsity
(number of leaves). GOSDT directly optimizes the trade-
off between training accuracy and number of leaves, pro-
ducing points on the efficient frontier. Figure 4 and 5 show
(1) that GOSDT typically produces excellent training and
test accuracy with a reasonable number of leaves, and (2)
that we can quantify how close to optimal the other meth-
ods are. Learning theory provides guarantees that training
and test accuracy are close for sparse trees; more results are
in Appendix I.

Continuous Datasets, Slowdown vs Thresholds: We pre-
processed by encoding continuous variables as a set of bi-
nary variables, using all possible thresholds. We then re-
duced the number of binary variables by combining sets
of k variables for increasing values of k. Binary variables
were ordered, firstly, in order of the indices of the contin-
uous variable to which they correspond, and secondly, in
order of their thresholds. We measure the slow-down intro-
duced by increasing the number of binary variables relative

Generalized Scalable Optimal Sparse Decision Trees

Figure 5. Test accuracy achieved by BinOCT, CART, DL8.5,
GOSDT, and OSDT as a function of the number of leaves.

to each algorithm’s own best time. Figure 6 shows these
results for CART, DL8.5, GOSDT, and OSDT. As the num-
ber of features increases (i.e., k approaches 1), GOSDT
typically slows down less than DL8.5 and OSDT. This rel-
atively smaller slowdown allows GOSDT to handle more
thresholds introduced by continuous variables.

Appendix I presents more results including training times
several orders of magnitude better than the state-of-the-art.

An implementation of our experiments is available at:
https://github.com/Jimmy-Lin/TreeBenchmark.

6. Discussion and Future Work
GOSDT (and related methods) differs fundamentally from
other types of machine learning algorithms. Unlike neural
networks and typical decision tree methods, it provides a
proof of optimality for highly non-convex problems. Un-
like support vector machines, ensemble methods, and neu-
ral networks again, it produces sparse interpretable mod-
els without using convex proxies–it solves the exact prob-
lem of interest in an efficient and provably optimal way.
As usual, statistical learning theoretic guarantees on test
error are the tightest for simpler models (sparse models)

Figure 6. Training time of BinOCT, CART, DL8.5, GOSDT, and
OSDT as a function of the number of binary features used to en-
code the continuous dataset (λ = 0.3125 or max depth = 5).

with the lowest empirical error on the training set, hence
the choice of accuracy, regularized by sparsity (simplicity).
If GOSDT is stopped early, it reports an optimality gap,
which allows the user to assess whether the tree is suffi-
ciently close to optimal, retaining learning theoretic guar-
antees on test performance. GOSDT is most effective for
datasets with a small or medium number of features. The
algorithm scales well with the number of observations, eas-
ily handling tens of thousands.

There are many avenues for future work. Since GOSDT
provides a framework to handle objectives that are mono-
tonic in FP and FN , one could create many more objec-
tives than we have enumerated here. Going beyond these
objectives to handle other types of monotonicity, fairness,
ease-of-use, and cost-related soft and hard constraints are
natural extensions. There are many avenues to speed up
GOSDT related to exploration of the search space, garbage
collection, and further bounds.

References
Aı̈vodji, U., Ferry, J., Gambs, S., Huguet, M.-J., and

Generalized Scalable Optimal Sparse Decision Trees

Siala, M. Learning Fair Rule Lists. arXiv e-prints, pp. Garofalakis, M., Hyun, D., Rastogi, R., and Shim, K.
arXiv:1909.03977, Sep 2019. Building decision trees with constraints. Data Mining

and Knowledge Discovery, 7:187–214, 2003.
Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., and

Rudin, C. Learning certifiably optimal rule lists for Hu, X., Rudin, C., and Seltzer, M. Optimal sparse decision
categorical data. In Proc. ACM SIGKDD International trees. In Proceedings of Neural Information Processing
Conference on Knowledge Discovery and Data Mining Systems (NeurIPS), 2019.
(KDD), 2017.

Klivans, A. R. and Servedio, R. A. Toward attribute effi-
Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., and cient learning of decision lists and parities. Journal of

Rudin, C. Learning certifiably optimal rule lists for cate- Machine Learning Research, 7:587–602, 2006.
gorical data. Journal of Machine Learning Research, 18
(234):1–78, 2018. Larson, J., Mattu, S., Kirchner, L., and Angwin, J. How we

analyzed the COMPAS recidivism algorithm. ProPub-Bennett, K. Decision tree construction via linear pro-
lica, 2016.gramming. In Proceedings of the 4th Midwest Artificial

Intelligence and Cognitive Science Society Conference,
Larus-Stone, N. L. Learning Certifiably Optimal RuleUtica, Illinois, 1992.

Lists: A Case For Discrete Optimization in the 21st Cen-
Bennett, K. P. and Blue, J. A. Optimal decision trees. tury. 2017. Undergraduate thesis, Harvard College.

Technical report, R.P.I. Math Report No. 214, Rensse-
Laurent, H. and Rivest, R. L. Constructing optimal binarylaer Polytechnic Institute, 1996.

decision trees is np-complete. Information processing
Bertsimas, D. and Dunn, J. Optimal classification trees. letters, 5(1):15–17, 1976.

Machine Learning, 106(7):1039–1082, 2017.
Loh, W.-Y. Fifty years of classification and regression

Blanquero, R., Carrizosa, E., Molero-Rıo, C., and Morales, trees. International Statistical Review, 82(3):329–348,
D. R. Optimal randomized classification trees. August 2014.
2018.

Meisel, W. S. and Michalopoulos, D. A partitioning al-Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
gorithm with application in pattern classification and theC. J. Classification and Regression Trees. Wadsworth,
optimization of decision tree. IEEE Trans. Comput., C-1984.
22, pp. 93–103, 1973.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for
support vector machines, 2011. software available at Menickelly, M., Gunl¨ uk,¨ O., Kalagnanam, J., and Schein-
http://www.csie.ntu.edu.tw/ cjlin/libsvm. berg, K. Optimal decision trees for categorical data via

integer programming. Preprint at arXiv:1612.03225,
Chen, C. and Rudin, C. An optimization approach to learn- January 2018.

ing falling rule lists. In International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2018. Morgan, J. N. and Sonquist, J. A. Problems in the analysis

of survey data, and a proposal. J. Amer. Statist. Assoc.,
Dheeru, D. and Karra Taniskidou, E. UCI 58:415–434, 1963.

machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml. Nan, Y., Chai, K. M., Lee, W. S., and Chieu, H. L. Optimiz-

ing F-measure: A tale of two approaches. arXiv preprintFerri, C., Flach, P., and Hernandez-Orallo,´ J. Learning
arXiv:1206.4625, 2012.decision trees using the area under the ROC curve. In

International Conference on Machine Learning (ICML), Narodytska, N., Ignatiev, A., Pereira, F., and Marques-
volume 2, pp. 139–146, 2002. Silva, J. Learning optimal decision trees with SAT. In

FICO, Google, Imperial College London, MIT, Uni- Proc. International Joint Conferences on Artificial Intel-
versity of Oxford, UC Irvine, and UC Berke- ligence (IJCAI), pp. 1362–1368, 2018.
ley. Explainable Machine Learning Challenge.

Nijssen, S. and Fromont, E. Mining optimal decisionhttps://community.fico.com/s/explainable-machine-learning-challenge,
trees from itemset lattices. In Proceedings of the ACM2018.
SIGKDD International Conference on Knowledge Dis-

Garey, M. Optimal binary identification procedures. SIAM covery and Data Mining (KDD), pp. 530–539. ACM,
J. Appl. Math., 23(2):173––186, September 1972. 2007.

Generalized Scalable Optimal Sparse Decision Trees

Nijssen, S., Schaus, P., et al. Learning optimal decision
trees using caching branch-and-bound search. In Thirty-
Fourth AAAI Conference on Artificial Intelligence, 2020.

Payne, H. J. and Meisel, W. S. An algorithm for construct-
ing optimal binary decision trees. IEEE Transactions on
Computers, C-26(9):905–916, 1977.

Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

Rudin, C. and Ertekin, S. Learning customized and op-
timized lists of rules with mathematical programming.
Mathematical Programming C (Computation), 10:659–
702, 2018.

Rudin, C. and Wang, Y. Direct learning to rank and
rerank. In International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pp. 775–783, 2018.

Verwer, S. and Zhang, Y. Learning optimal classification
trees using a binary linear program formulation. In Proc.
Thirty-third AAAI Conference on Artificial Intelligence,
2019.

Vilas Boas, M. G., Santos, H. G., Merschmann, L. H. d. C.,
and Vanden Berghe, G. Optimal decision trees for the al-
gorithm selection problem: integer programming based
approaches. International Transactions in Operational
Research, 2019.

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E.,
and MacNeille, P. A Bayesian framework for learning
rule sets for interpretable classification. Journal of Ma-
chine Learning Research, 18(70):1–37, 2017.

