
Generalized Scalable Optimal Sparse Decision Trees

A. Comparison Between Decision Tree Methods

Attributes GOSDT DL8 DL8.5 BinOCT DTC CART
Built-in Preprocessor Yes No No Yes No No

Preprocessing Strategy All values Weka Dis-
cretization Bucketization Bucketization None None

Preprocessing Preserves Opti-
mality? Yes No No No N/A N/A

Optimization Strategy DPB DP DPB ILP Greedy
Search

Greedy
Search

Optimization Preserves
mality?

Opti- Yes Yes Yes Yes No No

Applies
bound
Space?

Hierarchical
to Reduce

Upper
Search Yes No Yes N/A N/A N/A

Uses Support Set Node Identi-
fiers? Yes No No N/A N/A N/A

Can use Multiple Cores? Yes No No Yes No No
Can prune using updates from
partial evaluation of subprob-
lem?

Yes No No
Depends
(generic)
solver

on
N/A N/A

Strategy for preventing overfit-
ting

Penalize
Leaves

Structural
Constraints

Structural
Constraints

Structural
Constraints

MDL Crite-
ria

Structural
Constraints

Can we modify this to use reg-
ularization? N/A Yes Yes Yes N/A No

Does it
ance?

address class imbal- Yes Maybe Maybe Maybe Maybe Maybe

Table 1. Comparison of GOSDT, DL8 (Nijssen & Fromont, 2007), DL8.5 (Nijssen et al., 2020), BinOCT (Verwer & Zhang, 2019), DTC
(Garofalakis et al., 2003), and CART (Breiman et al., 1984). Green is a comparative advantage. Red is a comparative disadvantage.
Blue highlights dynamic programming-based methods. White is neutral.

B. Objectives and Their Lower Bounds for Arbitrary Monotonic Losses
Before deriving the bounds for arbitrary monotonic losses, we first introduce some notation. As we know, a leaf set
d = (l1, l2, ..., lHd

) containsHd distinct leaves, where li is the classification rule of the leaf i. If a leaf is labeled, then (leaf)
yi

is the label prediction for all data in leaf i. Therefore, a labeled partially-grown tree d with the leaf set d = (l1, l2, ..., lHd
)

could be rewritten as d = (dfix, δfix, dsplit, δsplit,K,Hd), where dfix = (l1, l2, ..., lK) is a set of K fixed leaves that are not
permitted to be further split, (leaf) (leaf) (leaf)

δfix = (y1 , y2 , ..., yK ) ∈ {0, 1}K are the predicted labels for leaves dfix, dsplit =
(leaf) (leaf) (leaf)

(lK+1, lK+2..., lHd
) is the set of Hd −K leaves that can be further split, and δsplit = (yK+1, yK+2, ..., y ) ∈ {0, 1}KH

are the predicted labels for leaves dsplit.
d

B.1. Hierarchical objective lower bound for arbitrary monotonic losses

Theorem B.1. (Hierarchical objective lower bound for arbitrary monotonic losses) Let loss function `(d,x,y) be mono-
tonically increasing in FP and FN . We now change notation of the loss to be only a function of these two quantities,
written now as ˜̀(FP, FN). Let d = (dfix, δfix, dsplit, δsplit,K,H) be a labeled tree with fixed leaves dfix, and let FPfix and
FNfix be the false positives and false negatives of dfix. Define the lower bound to the risk R(d,x,y) as follows (taking the
lower bound of the split terms to be 0):

R(d,x,y) ≥ b(dfix,x,y) = `(dfix,x,y) + λH = ˜̀(FPfix, FNfix) + λH.

Let d′ = (d′fix, δ
′
fix, d

′
split, δ

′
split,K

′, H ′) ∈ σ(d) be any child tree of d such that its fixed leaves d′fix contain dfix and K ′ > K
and H ′ > H . Then, b(dfix,x,y) 6 R(d′,x,y).

The importance of this result is that the lower bound works for all (allowed) child trees of d. Thus, if d can be excluded via
the lower bound, then all of its children can too.
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Proof. Let FPfix and FNfix be the false positives and false negatives within leaves of dfix, and let FPsplit and FNsplit be
the false positives and false negatives within leaves of dsplit. Similarly, denote FPfix′ and FNfix′ as the false positives and
false negatives of d′ ′

fix and let FPsplit′ and FNsplit′ be the false positives and false negatives of dsplit. Since the leaves are
mutually exclusive, ˜FPd = FPfix + FPsplit and FNd = FNfix + FNsplit. Moreover, since `(FP, FN) is monotonically
increasing in FP and FN , we have:

R(d,x,y) = ˜̀(FPd, FNd) + λH > ˜̀(FPfix, FNfix) + λH = b(dfix,x,y). (11)

Similarly, R(d′,x,y) > b(d′fix,x,y). Since dfix ⊆ dfix′ , FPfix′ > FPfix and FNfix′ > FNfix, thus ˜̀(FPfix′ , FNfix′) >
˜̀(FPfix, FNfix). Combined with H ′ > H , we have:

b(dfix,x,y) = ˜̀(FPfix, FNfix) + λH 6 ˜̀(FPfix′ , FNfix′) + λH ′ = b(d′fix,x,y) 6 R(d′,x,y). (12)

Let us move to the next bound, which is the one-step lookahead. It relies on comparing the best current objective we have
seen so far, denoted Rc, to the lower bound.
Theorem B.2. (Objective lower bound with one-step lookahead) Let d be a H-leaf tree with K leaves fixed and let Rc be
the current best objective. If b(dfix,x,y) + λ > Rc, then for any child tree d′ ∈ σ(d), its fixed leaves d′fix include dfix and
H ′ > H . It follows that R(d′,x,y) > Rc.

Proof. According to definition of the objective lower bound,

R(d′,x,y) > b(d′fix,x,y) = ˜̀(FPfix′ , FNfix′) + λH ′

= ˜̀(FPfix′ , FNfix′) + λH + λ(H ′ −H)

> b(dfix,x,y) + λ > Rc,

(13)

where on the last line we used that since H ′ and H are both integers, then H ′ −H ≥ 1.

According to this bound, even though we might have a tree d whose fixed leaves dfix obeys lower bound b(dfix,x,y) 6 Rc,
its child trees may still all be guaranteed to be suboptimal: if b(dfix,x,y) + λ > Rc, none of its child trees can ever be an
optimal tree.
Theorem B.3. (Hierarchical objective lower bound for sub-trees and additive losses) Let loss functions `(d,x,y) be
monotonically increasing in FP and FN , and let the loss of a tree d be the sum of the losses of the leaves. Let Rc

be the current best objective. Let d be a tree such that the root node is split by a feature, where two sub-trees dleft and
dright are generated with Hleft leaves for dleft and Hright leaves for dright. The data captured by the left tree is (xleft,yleft)
and the data captured by the right tree is (xright,yright). Let b(dleft,xleft,yleft) and b(dright,xright,yright) be the objective
lower bound of the left sub-tree and right sub-tree respectively such that b(dleft,xleft,yleft) 6 `(dleft,xleft,yleft) + λHleft
and b(dright,xright,yright) 6 `(dright,xright,yright) + λHright. If b(dleft,xleft,yleft) > Rc or b(dright,xright,yright) > Rc or
b(dleft,xleft,yleft) + b(dright,xright,yright) > Rc, then the tree d is not the optimal tree.

This bound is applicable to any tree d, even if part of it has not been constructed yet. That is, if a partially-constructed d’s
left lower bound or right lower bound, or the sum of left and right lower bounds, exceeds the current best risk Rc, then we
do not need to construct d since we have already proven it to be suboptimal from its partial construction.

Proof. R(d,x,y) = `(d,x,y) + λH = `(dleft,xleft,yleft) + `(dright,xright,yright) + λHleft + λHright > b(dleft,xleft,yleft) +
b(dright,xright,yright). If b(dleft,xleft,yleft) > Rc or b(dright,xright,yright) > Rc or b(dleft,xleft,yleft) + b(dright,xright,yright) >
Rc, then R(d,x,y) > Rc. Therefore, the tree d is not the optimal tree.

B.2. Upper bound on the number of leaves

Theorem B.4. (Upper bound on the number of leaves) For a dataset withM features, consider a state space of all trees. Let
H be the number of leaves of tree d and let Rc be the current best objective. For any optimal tree d∗ ∈ argmindR(d,x,y),
its number of leaves obeys:

H∗ 6 min([Rc/λ], 2M ) (14)

where λ is the regularization parameter.
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Proof. This bound adapts directly from OSDT (Hu et al., 2019), where the proof can be found.

Theorem B.5. (Parent-specific upper bound on the number of leaves) Let d = (dfix, δfix, dsplit, δsplit,K,H) be a tree,
d′ = (d′fix, δ

′
fix, d

′
split, δ

′
split,K

′, H ′) ∈ σ(d) be any child tree such that dfix ⊆ d′fix, and Rc be the current best objective. If
d′fix has lower bound b(d′fix,x,y) < Rc, then

H ′ < min

(
H +

[
Rc − b(dfix,x,y)

λ

]
, 2M

)
. (15)

where λ is the regularization parameter.

Proof. This bound adapts directly from OSDT (Hu et al., 2019), where the proof can be found.

B.3. Incremental Progress Bound to Determine Splitting and Lower Bound on Incremental Progress

In the implementation, Theorem B.6 below is used to check if a leaf node within dsplit is worth splitting. If the bound is
satisfied and the leaf can be further split, then we generate new leaves and Theorem B.7 is applied to check if this split
yields new nodes or leaves that are good enough to consider in the future. Let us give an example to show how Theorem
B.6 is easier to compute than Theorem B.7. If we are evaluating a potential split on leaf j, Theorem B.6 requires FPj and
FNj which are the false positives and false negatives for leaf j, but no extra information about the split we are going to
make, whereas Theorem B.7 requires that additional information. Let us work with balanced accuracy as the loss function:
for Theorem B.6 below, we would need to compute τ = 1 FN

( j FP
2 N+ + j

N− ) but for Theorem B.7 below we would need to
calculate quantities for the new leaves we would form by splitting j into child leaves i and i+ 1. Namely, we would need
FNi, FNi+1, FPi, and FPi+1 as well.

Theorem B.6. (Incremental progress bound to determine splitting) Let d∗ = (dfix, δfix, dsplit, δsplit,K,H) be any optimal
tree with objective R∗, i.e., d∗ ∈ argmindR(d,x,y). Consider tree d′ derived from d∗ by deleting a pair of leaves li and
li+1 and adding their parent leaf lj , d′ = (l1, ..., li−1, li+2, ..., lH , lj). Let ˜τ := `(FPd′ , FNd′)− ˜̀(FPd′ −FPlj , FNd′ −
FNlj ). Then, τ must be at least λ.

Proof. `(d′ ˜,x,y) = `(FPd′ , FNd′) and `(d∗ ˜,x,y) = `(FPd′+FPli +FPli+1
−FPlj , FNd′+FNli +FNli+1

−FNlj ).
The difference between `(d∗,x,y) and `(d′,x,y) is maximized when li and li+1 correctly classify all the captured data.
Therefore, τ is the maximal difference between `(d′,x,y) and `(d∗,x,y). Since l(d′,x,y)− `(d∗,x,y) 6 τ , we can get
`(d′,x,y) + λ(H − 1) 6 `(d∗,x,y) + λ(H − 1) + τ , that is (and remember that d∗ is of size H whereas d′ is of size
H−1),R(d′,x,y) 6 R(d∗,x,y)−λ+τ . Since d∗ is optimal with respect toR, 0 6 R(d′,x,y)−R(d∗,x,y) 6 −λ+τ ,
thus, τ > λ.

Hence, for a tree d, if any of its internal nodes contributes less than λ in loss, even though b(dfix,x,y) 6 R∗, it cannot be
the optimal tree and none of its child tree could be the optimal tree. Thus, after evaluating tree d, we can prune it.

Theorem B.7. (Lower bound on incremental progress) Let d∗ = (dfix, δfix, dsplit, δsplit,K,H) be any optimal tree with
objective R∗, i.e., d∗ ∈ argmindR(d,x,y). Let d∗ have leaves dfix = (l1, ..., lH) and (leaf) (leaf) (leaf)

δfix = (y1 , y2 , ..., yH ).
Consider tree d′ derived from d∗ by deleting a pair of leaves li and li+1 with corresponding labels leafyi and leafyi+1 and
adding their parent leaf lj and its label leafyj . Define ai as the incremental objective of splitting lj to get li, li+1: ai :=
`(d′,x,y)− `(d∗,x,y). In this case, λ provides a lower bound s.t. ai > λ.

Proof. Let d′ = (d′fix, δ
′
fix, d

′
split, δ

′
split,K

′, H ′) be the tree derived from d∗ by deleting a pair of leaves li and li+1, and
adding their parent leaf lj . Then,

R(d′,x,y) = `(d′,x,y) + λ(H − 1) = ai + l(d∗,x,y) + λ(H − 1)

= ai +R(d∗,x,y)− λ.
(16)

Since 0 6 R(d′,x,y)−R(d∗,x,y), then ai > λ.
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In the implementation, we apply both Theorem B.6 and Theorem B.7. If Theorem B.6 is not satisfied, even though
b(dfix,x,y) 6 R∗, it cannot be an optimal tree and none of its child trees could be an optimal tree. In this case, d can
be pruned, as we showed before. However, if Theorem B.6 is satisfied, we check Theorem B.7. If Theorem B.7 is not
satisfied, then we would need to further split at least one of the two child leaves–either of the new leaves i or i+ 1–in order
to obtain a potentially optimal tree.

B.4. Permutation Bound

Theorem B.8. (Leaf Permutation bound) Let π be any permutation of {1, ...,H}. Let d = (dfix, dsplit,K,H) and D =
(Dfix, Dsplit,K,H) be trees with leaves (l1, ..., lH) and (lπ(1), ..., lπ(H)) respectively, i.e., the leaves in D correspond to a
permutation of the leaves in d. Then the objective lower bounds of d and D are the same and their child trees correspond
to permutations of each other.

Proof. This bound adapts directly from OSDT (Hu et al., 2019), where the proof can be found.

Therefore, if two trees have the same leaves, up to a permutation, according to Theorem B.8, one of them can be pruned.
This bound is capable of reducing the search space by all future symmetries of trees we have already seen.

B.5. Equivalent Points Bound

As we know, for a tree d = (dfix, δfix, dsplit, δsplit,K,H), the objective of this tree (and that of its children) is minimized
when there are no errors in the split leaves: FPsplit = 0 and FNsplit = 0. In that case, the risk is equal to b(dfix,x,y).
However, if multiple observations captured by a leaf in dsplit have the same features but different labels, then no tree,
including those that extend dsplit, can correctly classify all of these observations, that is FPsplit and FNsplit cannot be zero.
In this case, we can apply the equivalent points bound to give a tighter lower bound on the objective.

Let Ω be a set of leaves. Capture is an indicator function that equals 1 if xi falls into one of the leaves in Ω, and 0 otherwise,
in which case we say that cap(xi,Ω) = 1. We define a set of samples to be equivalent if they have exactly the same feature
values. Let eu be a set of equivalent points and let qu be the minority class label that minimizes the loss among points in
eu. Note that a dataset consists of multiple sets of equivalent points. Let {eu}Uu=1 enumerate these sets.

Theorem B.9. (Equivalent points bound) Let d = (dfix, δfix, dsplit, δsplit,K,H) be a tree such that lk ∈ dfix for k ∈
{1, ...,K} and lk ∈ dsplit for k ∈ {K + 1, ...,H}. For any tree d′ ∈ σ(d),

`(d′,x,y) > ˜̀(FPfix + FPe, FNfix + FNe), where (17)

FPe =
N∑
i=1

U∑
u=1

H∑
k=K+1

cap(xi, lk) ∧ 1[yi = 0] ∧ 1[xi ∈ eu]1[yi = qu]

FNe =
N∑
i=1

U∑
u=1

H∑
k=K+1

cap(xi, lk) ∧ 1[yi = 1] ∧ 1[xi ∈ eu]1[yi = qu].

(18)

Proof. Since d′ ∈ σ(d), d′ = (l′1, ..., l
′
K , l
′
K+1, ..., l

′
K′ , ..., lH′) where we have both l′ ∈k d′fix for k ∈ {1, ...,K ′}, which

are the fixed leaves and also l′ ∈k d′split for k ∈ {K ′ + 1, ...,H ′}. Note that for k ∈ {1, ...,K}, l′k = lk.

Let ∆ = d′ \fix dfix which are the leaves in d′fix that are not in ˜ ˜d ′
fix. Then `(d ,x,y) = `(FPd′ , FNd′) = `(FPfix + FP∆ +

FPsplit′ , FNfix + FN∆ + FNsplit′), where FP∆ and FN∆ are false positives and false negatives in d′fix but not dfix and
FPsplit′ and FNsplit′ are false positives and false negatives in d′split. For tree d′, its leaves in ∆ are those indexed from K to
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K ′. Thus, the sum over leaves of d′ from K to H ′ includes leaves from ∆ and leaves from d′split.

FP∆ + FPsplit′ =
N∑
i=1

U∑
u=1

H′∑
k=K+1

cap(xi, l
′
k) ∧ 1[yi = ŷ

(leaf)
k ] ∧ 1[yi = 0] ∧ 1[xi ∈ eu]

>
N∑
i=1

U∑
u=1

H′∑
k=K+1

cap(xi, l
′
k) ∧ 1[yi = 0] ∧ 1[xi ∈ eu]1[yi = qu]

FN∆ + FNsplit′ =
N∑
i=1

U∑
u=1

H′∑
k=K+1

cap(xi, l
′
k) ∧ 1[yi = ŷ

(leaf)
k ] ∧ 1[yi = 1] ∧ 1[xi ∈ eu]

>
N∑
i=1

U∑
u=1

H′∑
k=K+1

cap(xi, l
′
k) ∧ 1[yi = 1] ∧ 1[xi ∈ eu]1[yi = qu].

(19)

6

6

∑
For , the samples in are the same ones captured by either or ′ , that is H

i ∈ {1, ..., N} dsplit ∆ dsplit k=K+1 cap(xi, lk) =∑H′

k=K+1 cap(xi, l
′
k). Then

FP∆ + FPsplit′ >
N∑
i=1

U∑
u=1

H∑
k=K+1

cap(xi, lk) ∧ 1[yi = 0] ∧ 1[xi ∈ eu]1[yi = qu] = FPe. (20)

Similarly, FN∆ + FNsplit′ > FNe. Therefore,

`(d′,x,y) = ˜̀(FPfix + FP∆ + FPsplit′ , FNfix + FN∆ + FNsplit′) > ˜̀(FPfix + FPe, FNfix + FNe). (21)

B.6. Similar Support Bound

Given two trees that are exactly the same except for one internal node split by different features f1 and f2, we can use the
similar support bound for pruning.

Theorem B.10. (Similar support bound) Define d = (dfix, δfix, dsplit, δsplit,K,H) and D = (Dfix,∆fix, Dsplit,∆split,K,H)
to be two trees that are exactly the same except for one internal node split by different features. Let f1 and f2 be the
features used to split that node in d and D respectively. Let t1, t2 be the left and right sub-trees under the node f1 in d and
let T1, T2 be the left and right sub-trees under the node f2 in D. Let ω be the observations captured by only one of t1 or
T1, i.e.,

ω := {i : [cap(xi, t1) ∧ ¬cap(xi, T1) + ¬cap(xi, t1) ∧ cap(xi, T1)]}. (22)

Let FP−ω and FN−ω be the false positives and false negatives of samples except ω. The difference between the two trees’
objectives is bounded as follows:

|R(d,x,y)−R(D,x,y)| 6 γ, where (23)

γ := max
a∈{0,...,|ω|}

[˜̀(FP−ω + a, FN−ω + |ω| − a)]− ˜̀(FP−ω, FN−ω). (24)

Then we have ∣∣∣∣ min
d+∈σ(d)

R(d+,x,y)− min
D+∈σ(D)

R(D+,x,y)

∣∣∣∣ 6 γ. (25)

Proof. The difference between the objectives of d and D is largest when one of them correctly classifies all the data in ω
but the other misclassifies all of them. If d classifies all the data corresponding to ω correctly while D misclassifies them,

R(d,x,y)−R(D,x,y) > ˜̀(FP−ω, FN−ω)− max
a∈{0,...,|ω|}

[˜̀(FP−ω + a, FN−ω + |ω| − a)] = −γ. (26)

We can get R(d,x,y)−R(D,x,y) 6 γ in the same way. Therefore, γ > R(d,x,y)−R(D,x,y) > −γ.
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Figure 7. Four cases of positions of li1 and li2

Let d∗ be the best child tree of d, i.e., R(d∗,x,y) = mind+∈σ(d)R(d+,x,y). Let D′ ∈ σ(D) be its counterpart which is
exactly the same except for one internal node split by a different feature. Then, using Equation 26,

min
d+∈σ(d)

R(d+,x,y) = R(d∗,x,y) > R(D′,x,y)− γ > min
D+∈σ(D)

R(D+,x,y)− γ. (27)

Similarly, using the symmetric counterpart to Equation 26 and the same logic, min R(D+,x,y) + γ
D+

>
∈σ(D)

min R(d+,x,y).
d+∈σ(d)

C. Objectives and Their Lower Bounds for Rank Statistics
In this appendix, we provide proofs for Theorem 2.1 and Theorem 2.2, and adapt the Incremental Progress Bound to
Determine Splitting and the Equivalent Points Bound for the objective AUCch. The Upper Bound on the Number of
Leaves, Parent-Specific Upper Bound on the Number of Leaves, Lower Bound of Incremental Progress, and Permutation
Bound are the same as the bounds in Appendix B. We omit these duplicated proofs here. At the end of this appendix, we
define the objective pAUCch and how we implement the derived bounds for this objective. As a reminder, we use notation
d = (dfix, rfix, dsplit, rsplit,K,Hd) to represent tree d.

Lemma C.1. Let d = (dfix, rfix, dsplit, rsplit,K,Hd) be a tree. The AUC convex hull does not decrease when an impure leaf
is split.

Proof. Let li be the impure leaf that we intend to split, where i ∈ {1, ...,Hd}. Let n+
i be the positive samples in li and n−i

negative samples. Suppose li is ranked in position “pos.” If the leaf is split once, it will generate two leaves li1 and li2 such
that ri1 ≥ ri ≥ ri2 without loss of generality. Let d′ be the tree that consists of the leaf set (l1, ..., li−1, li+1, ..., lHd

, li1 , li2).
If ri1 = ri = ri2 , then the rank order of leaves (according to the ri’s) will not change, so AUCch will be unchanged after
the split. Otherwise (if the rank order of leaves changes when introducing a child) we can reorder theH+1 leaves, leading
to the following four cases. For the new leaf set (l1, ..., li−1, li+1, ..., lHd

, li1 , li2), either:

1. The rank of li1 is smaller than pos and the rank of li2 equals pos + 1 (requires ri1 > ri and ri ≥ ri2 );
2. The rank of li1 is smaller than pos and the rank of li2 is larger than pos + 1 (requires ri1 > ri and ri > ri2 );
3. The rank of li1 is equal to pos and the rank of li2 is equal to pos + 1 (requires ri1 ≥ ri and ri ≥ ri2 );
4. The rank of li1 is pos and the rank of li2 is larger than pos + 1 (requires ri1 ≥ ri and ri > ri2 ).

Figure 7 shows four cases of the positions of li1 and li2 .

Let us go through these cases in more detail.

For the new leaf set after splitting li, namely (l1, ..., li−1, li+1, ..., lHd
, li1 , li2), we have that:

1. li1 has rank smaller than pos (which requires ri1 > ri) and li2 has rank pos + 1 (which requires ri ≥ ri2 ).

Let A = {la1 , la2 , ...laU } be a collection of leaves ranked before li1 and let B = {lb1 , lb2 , ...lbV } be a collection of
leaves ranked after li1 but before pos + 1. In this case, recalling Equation (2), a change in the AUCch after splitting on
leaf i is due only to a subset of leaves, namely li1 , lb1 , ..., lbV , li2 . Then we can compute the change in the AUCch as
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Figure 8. Four different cases of changing the rank orders after introducing a child. Each column represents a case. Subplots in the first
row show the ROCCH of tree d and subplots in the second row indicate the ROCCH of tree d′ corresponding to the different positions
of two child leaves. Subplots in the third row present the change of AUCch after introducing the child leaves.

follows:

∆AUCch =
1

N+N−

(
n−i1n

+
i1

2
+

( V∑
v=1

n−bv

)
n+
i1

+ n−i2

[
n+
i1

+

( V∑
v=1

n+
bv

)
+
n+
i2

2

]
− n−i

[( V∑
v=1

n+
bv

)
+
n+
i

2

])
(28)

To derive the expression for ∆AUCch , we first sum shaded areas of rectangles and triangles under the ROC curves’
convex hull for both tree d and its child tree d′, and then calculate the difference between the two shaded areas, as
indicated in Figure 8 (a-c). This figure shows where each of the terms arises within the ∆AUCch : terms n−b n

+∑ v i1
and

− + − +
V

n− + +
i [n + (
2 i1 v=1 nb )]

v
come from the area of rectangles colored in dark pink in Figure 8 (b). Terms

n ni i1 1

2 and
n ni i2 2∑ 2

handle the top triangles colored in light pink. Term − V
ni ( v=1 n

+
b )
v

represents the rectangles colored in dark green in

Figure 8 (a) and term n−n+
i i

2 deals with the triangles colored in light green. Subtracting green shaded areas from red
shaded areas, we get ∆AUCch , which is represented by the (remaining) pink area in Figure 8 (c).

Simplifying Equation (28), we get

∆AUCch =
1

N+N−

(
n+
i1

( V∑
v=1

n−bv

)
+n−i2

( V∑
v=1

n+
bv

)
−n−i

( V∑
v=1

n+
bv

)
+
n−i1n

+
i1

+ 2n−i2n
+
i1

+ n−i2n
+
i2
− n−i n

+
i

2

)
. (29)

Recall that n−i = n−i1 + n−i2 and n+
i = n+

i1
+ n+

i2
. Then, simplifying,

∆AUCch =
1

N+N−

(
n+
i1

( V∑
v=1

n−bv

)
− n−i1

( V∑
v=1

n+
bv

)
+
n+
i1
n−i2 − n

−
i1
n+
i2

2

)
. (30)

+ +

Since
n n

ri1 > rb1 > rb2 > ... > rbV , ∀v ∈ {1, 2, ..., V }, i1 bv + − + −
n+ +n−

> + − . Then we can get ni nb > n n
1 v bv i1

. Hence
n +ni i b b1 1 v v
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∑ ∑ n+ n+
V V

n+( − −i v=1 nb ) n−i ( +
v=1 nb ) > 0. Similarly, because ri1 > ri2 , i1

+ − > i2
+ −1 v 1 v

. Then n+ −
i ni > n−n+

n +n n +n 1 2 i1 i2
.

i i i i

Therefore, .
1 1 2 2

∆AUCch > 0

2. li1 has a ranking smaller than pos (which requires ri1 > ri) and li2 has a ranking larger than pos + 1 (which requires
ri > ri2 ).

Let A = {la1 , ...laU } be a collection of leaves that ranked before li1 and B = {lb1 , ...lbV } be a collection of leaves that
ranked after li1 but before pos + 1, and C = {lc1 , ..., lcW } be a collection of leaves that ranked after pos + 1 but before
the rank of li2 . In this case, the change is caused by li1 , lb1 , ..., lbV , lc1 , ..., lcW , li2 . Then we can compute the change in
the AUCch as follows:

∆AUCch =
1

N+N−

(
n−i1n

+
i1

2
+

( V∑
v=1

n−bv

)
n+
i1

+

( W∑
w=1

n−cw

)
n+
i1

+ n−i2

[
n+
i1

+

( V∑
v=1

n+
bv

)
+

( W∑
w=1

n+
cw

)
+
n+
i2

2

]

− n−i
[( V∑

v=1

n+
bv

)
+
n+
i

2

]
−
( W∑
w=1

n−cw

)
n+
i

)
.

(31)
Similar to the derivation proposed in case 1, we first sum shaded areas of rectangles and triangles under the ROC curves’
convex hull for both tree d and its child tree d′ and then calculate the difference between two shaded areas as indicated
in Figure 8 (d-f). These three subfigures show where each of the terms arises within the ∆AUCch : terms n−b n

+
v i1

, n−cwn
+
i1

,
and n−i [n+ ∑V

2 i +(
1 v=1 n

+ ∑W
b )+(
v w=1 n

+
cw)] come from the area of rectangles colored in dark pink in Figure 8 (e). Terms

n− n+
i i1 1

2 and
n− n+
i i2 2

2 handle the top triangles colored in light pink. Terms n−i n
+
bv

and n+
i n
−
cw represent the rectangles

colored in dark green in Figure 8 (d) and term n−n+
i i

2 deals with the triangles colored in light green. Subtracting green
shaded areas from red shaded areas, we can get ∆AUCch , which is represented by the light red area in Figure 8 (f).

Recall that n−i = n−i + n−i2 and n+
i = n+ +

1 i + n
1 i2

. Then, simplifying Equation (31), we get

∆AUCch =
1

N+N−

(( V∑
n−bv

v=1

)
n+
i1

+

( W∑
n−cw

)
n+
i1

+

( V∑
n+
bv

)
n−i2 +

( W∑
n+
cw

)
n−i2 −

( V∑
n+
bv

)
n−i

w=1 v=1 w=1 v=1

−
( W∑
w=1

n−cw

)
n+
i +

n−i1n
+
i1

+ 2n−i2n
+
i1

+ n−i2n
+
i2
− n−i n

+
i

2

)

=
1

N+N−

(( V∑
v=1

n−bv

)
n+
i1
−
( V∑
v=1

n+
bv

)
n−i1 +

( W∑
w=1

n+
cw

)
n−i2 −

( W∑
w=1

n−cw

)
n+
i2

+
n−i2n

+
i1
− n−i1n

+
i2

2

)
.

(32)
+ +

Since
n

r > r > ... > r , ∀v ∈ {1, ..., V }, i n
1

i b b + − > bv
+ − . Then we get n+ − + −

i nb > nb ni . Thus,∑ 1 1 ∑ V n +n n n 1 v v 1
i i bv b1 1 v

V V
( −

v=1 n )n+ − ( n+ )n− > 0. Similarly, since r > ... > r > r , ∀w ∈ {1, ...,W}, n+ n− > n+n−∑b i v=1 ∑b i c1 cW i2v 1 v 1 cw i2 i2 cw .
Thus, W

( w=1 n
+
cw)n−

W−i (
2 w=1 n

−
cw)n+

i > 0
2

. Moreover, because ri1 > ri2 , n−i n
+

2 i > n−
1 i n

+
1 i2

. Hence, ∆AUCch > 0.

3. li1 has a ranking same as pos (which requires ri1 ≤ ri) and li2 has a ranking pos + 1 (which requires ri ≤ ri2 ).

In this case, the change of AUCch is caused by li1 and li2 . Then we compute the change in the AUCch as follows:

∆AUCch =
1

N+N−

(
n−i1n

+
i1

2
+ n−i2n

+
i1

+
n−i2n

+
i2

2
− n−i n

+
i

2

)
. (33)

We derive the expression in the similar way as case 1 and case 2. Term n−i n
+

2 i1
comes from the area of rectangle colored

n− n+ n− n+
n− +

in dark pink in Figure 8 (h) and terms i i i i n1 1 and 2 2 handle the top triangles colored in light pink. Term i i

2 2 2 deals
with the top triangle colored in light green in Figure 8 (g). Subtracting green shaded areas from pink shaded areas, we
get ∆AUCch , which is represented by the (remaining) pink area in Figure 8 (i).

Recall n−i = n−i + n−
1 i2

and n+
i = n+

i + n+
1 i2

. Simplifying Equation (33), we get

∆AUCch =
1

N+N−

(
n+
i1
n−i2 − n

+
i2
n−i1

2

)
(34)
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Since ri1 > ri2 , n+
i n
− −

1 i n+
2 i n

−
2 i1

. Therefore, ∆AUCch > 0.

4. li1 has a ranking same as pos (which requires ri1 ≤ ri) and li2 has a ranking larger than pos + 1 (which requires
ri > ri2 ).

Let A = {la1 U 1 1 V

that ranked after li1 but before li2 . In this case the change of AUCch is caused by li1 , lb1 , ..., lbV , li2 . Then we can
compute the change as follows:

, ..., la } be a collection of leaves that ranked before li and B = {lb , ..., lb } be a collection of leaves

∆AUCch =
1

N+N−

(
n−i1n

+
i1

2
+

( V∑
v=1

n−bv

)
n+
i1

+ n−i2

[
n+
i1

+

( V∑
v=1

n+
bv

)
+
n+
i2

2

]
− n−i n

+
i

2
−
( V∑
v=1

n−bv

)
n+
i

)
(35)

∑
The Figure 8 (j-l) show where each of the terms arises within the ∆AUCch : terms n− n+ n− + V

b i [n + ( n+ )]
v 1

and i2 i1 v=1 bv
− + − +

come from the area of rectangles colored in dark pink in Figure 8 (k) and terms
n n

and
n ni i i i1 1 2 2

2 2 handle triangles
− +

colored in light pink. Term − + n n
n i i
b nv i represents the rectangle colored in dark green in Figure 8 (j) and term 2 deals

with the triangle colored in light green. Subtracting green shaded areas from pink shaded areas, we get ∆AUCch , which
is represented by the (remaining) pink area in Figure 8 (l).

Recall n−i = n−i + n−
1 i2

and n+
i = n+

i + n+
1 i2

. Simplifying Equation (35), we get

∆AUCch =
1

N+N−

(( V∑
v=1

n−bv

)
n+
i1

+

( V∑
v=1

n+
bv

)
n−i2 −

( V∑
v=1

n−bv

)
n+
i +

n−i1n
+
i1

+ 2n−i2n
+
i1

+ n−i2n
+
i2
− n−i n

+
i

2

)

=
1

N+N−

(( V∑
v=1

n+
bv

)
n−i2 −

( V∑
v=1

n−bv

)
n+
i2

+
n−i2n

+
i1
− n−i1n

+
i2

2

)
(36)∑ ∑

Since V V
rb1 > ... > rbv > ri2 , ∀v ∈ {1, ..., V }, n+ n− +

b i > ni n
−
b . Thus, ( v=1 n

+
b )n− − +

v 2 2 v v i > ( n
2 v=1 b )n

v i2
. Since

r + − + −
i1 > ri2 , n n −i n n

1 i2 i2 i1
. Therefore, ∆AUCch > 0.

Therefore, once an impure leaf is split, the AUCch doesn’t decrease. If the split is leading to the change of the rank order
of leaves, then AUCch increases.

C.1. Proof of Theorem 2.1

Proof. Let tree d = (dfix, rfix, dsplit, rsplit,K,Hd) and leaves of tree d are mutually exclusive. According to Lemma C.1,
for leaves that can be further split, we can do splits to increase the AUCch. In the best possible hypothetical case, all new
generated leaves are pure (contain only positive or negative samples). In this case, AUCch is maximized for dsplit. In this( [ ( ) ] )∑K i∑−1

case, we will show that b(d ,x,y) = 1− 1 n− N+ + n+ + 1n+ +N+ −
fix N+N− i split j N + λHd2 i split as defined

i=1 j=1

by Equation (4). Then b(dfix,x,y) ≤ R(d,x,y).

To derive the expression for b(dfix,x,y), we sum areas of rectangles and triangles under the ROC curve’s convex hull.
Figure 9 shows where each of the terms arises within this sum: the first term in the sum, which is n−N+

i split, comes from the
area of the lower rectangle of the ROC curve’s convex hull, colored in green. This rectangle arises from the block of N+( split)

i∑−1

positives at the top of the ranked list (within the split leaves, whose hypothetical predictions are 1). The n−i n+
j

j=1

term handles the areas of the growing rectangles, colored in blue in Figure 9. The areas of the triangles comprising the top
of the ROCCH account for the third term 1n−2 i n

+
i . The final term N+N−split comes from the rectangle on the right, colored

red, stemming from the split observations within a hypothetical purely negative leaf.

C.2. Proof of Theorem 2.2

Proof. According to Theorem 2.1, R(d′,x,y) > b(d′fix,x,y) and R(d,x,y) > b(dfix,x,y). Since dfix ⊆ d′fix, leaves in
dsplit but not in d′split can be further split to generate pure leaves for tree d but fixed for tree d′. Based on Lemma C.1 and
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Figure 9. Example derivation of the hierarchical objective lower bound for rank statistics. N+ at top left is the number of positive
samples in the dataset. N+ −

split at bottom left is the number of positive samples (Nsplit is the number of negative samples) captured by
leaves that can be further split.

Hd 6 Hd′ , b(dfix,x,y) 6 b(d′fix,x,y). Therefore, b(dfix,x,y) 6 R(d′,x,y).

C.3. Incremental Progress Bound to Determine Splitting for Rank Statistics

Theorem C.2. (Incremental progress bound to determine splitting for rank statistics) Let d∗ = (dfix, rfix, dsplit, rsplit,K,Hd)
be any optimal tree with objective R∗, i.e., d∗ ∈ argmindR(d,x,y). Consider tree d′ derived from d∗ by deleting a pair
of leaves li and li+1 and adding their parent leaf lj , d′ = (l1, ..., li−1, li+2, ..., l

+
Hd
, lj). Let nj be the number of positive

samples (n−j be the number of negative samples) in leaf j. Calculate `(d′,x,y) as in Equation (2). Define d′−j as the tree
d′ after dropping leaf j, adding two hypothetical pure leaves (i.e., one has all positives and the other has all negatives),
and reordering the remaining Hd − 2 leaves based on the fraction of positives. Then, we can calculate the loss of the tree
d′−j as

`(d′−j ,x,y) = 1− 1

N+N−

(Hd−2∑
i=1

n−i

[
n+
j +

( i−1∑
v=1

n+
v

)
+

1

2
n+
i

]
+N+n−j

)
. (37)

Let τ := `(d′,x,y)− `(d′−j ,x,y). Then τ must be at least λ.

Proof. By the way `(d′−j ,x,y) is defined (using the same counting argument we used in the proof of Theorem 2.1), it is a
lower bound for `(d∗,x,y). These two quantities are equal when the split leaves are all pure. So, we have `(d′−j ,x,y) ≤
`(d∗,x,y). Since `(d′,x,y) − `(d∗,x,y) 6 `(d′,x,y) − `(d′−j ,x,y) = τ , we can get `(d′,x,y) + λ(Hd − 1) 6
`(d∗,x,y) + λ(Hd − 1) + τ , that is (and remember that d∗ is of size Hd whereas d′ is of size Hd − 1), R(d′,x,y) ≤
R(d∗,x,y)−λ+ τ . Since d∗ is optimal with respect to R, then 0 6 R(d′,x,y)−R(d∗,x,y) 6 −λ+ τ , thus τ > λ.

Similar to the Incremental Progress Bound to Determine Splitting for arbitrary monotonic losses, for a tree d, if any of its
internal node contributes less than λ in loss, it is not the optimal tree. Thus, after evaluating tree d, we can prune it.

C.4. Equivalent points bound for rank statistics

Similar to the equivalent points bound for arbitrary monotonic losses, for a tree d = (dfix, rfix, dsplit, rsplit,K,Hd), the
objective of this tree and its children is minimized when leaves that can be further split to generate pure leaves. In the
case when it is possible to split the data into pure leaves, the risk could be equal to b(dfix,x,y). However, if multiple
observations captured by a leaf in dsplit have the same features but different labels, then no tree, including those that extend
dsplit, can correctly classify all of these observations; that is, leaves in dsplit can not generate pure leaves. In this case, we
can leverage these equivalent points to give a tighter lower bound for the objective. We use the same notation for capture
and set of equivalent points as in Appendix B, and minority class label is simply the label with fewer samples.

Let d = (dfix, rfix, dsplit, rsplit,K,Hd) be a tree. Data in leaves from dsplit can be separated into U equivalence classes. For∑
u = 1, ..., U , let N

Nu = i=1 cap(xi, dsplit) ∧ 1[xi ∈ eu], that is, the number of samples captured by dsplit belonging to∑
equivalence set u, and let N

δu = i=1 cap(xi, dsplit) ∧ 1[xi ∈ eu]1[yi = qu] be the number of minority-labeled samples
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captured by dsplit in equivalence point set u. Then we define r̃u as the classification rule we would make on each equivalence
class separately (if we were permitted):

r̃u =
δu
Nu

if δu ≥ 0 and qu = 1
Nu−δu
Nu

if δu ≥ 0 and qu = 0.

{

Let us combine this with dfix to get a bound. We order the combination of leaves in dfix and equivalence classes u ∈
{1, ..., U} by the fraction of positives in each, Sort(r1, ..., ri, ..., rK , r̃1, ..., r̃u, ..., r̃U ) from highest to lowest. Let us re-
index these sortedK+U elements by index ĩ. Denote n+

˜ as the number of positive samples in either the leaf or equivalence
i

class corresponding to ĩ. (Define n−i to be the number of negative samples analogously). We define our new, tighter, lower
bound as:

b(dequiv,x,y) = 1− 1

N+N−

K+U∑
ĩ=1

n−
ĩ

[( ĩ−1∑
j=1

n+
j

)
+

1

2
n+

ĩ

]
+ λHd. (38)

Theorem C.3. (Equivalent points bound for rank statistics) For a tree d = (dfix, rfix, dsplit, rsplit,K,Hd), Let tree d′ =
(d′fix, r

′
fix, d

′
split, r

′
split,K

′, Hd′) ∈ σ(d) be any child tree such that its fixed leaves d′fix contain dfix and Hd′ > Hd. Then
b(dequiv,x,y) 6 R(d′,x,y), where b(dequiv,x,y) is defined in Equation (38).

Proof. The proof is similar to the proof of Theorem 2.1 and Theorem 2.2.

C.5. Partial area under the ROCCH

We discuss the partial area under the ROC convex hull in this section. The ROCCH for a decision tree is defined in Section
2.1, where leaves are rank-ordered by the fraction of positives in the leaves. Given a threshold θ, the partial area under
the ROCCH (pAUCch) looks at only the leftmost part of the ROCCH, that is focusing on the top ranked leaves. This
measure is important for applications such as information retrieval and maintenance (see, e.g., Rudin & Wang, 2018). In
our implementation, all bounds derived for the objective AUCch can be adapted directly for pAUCch, where all terms are
calculated only for false positive rates smaller or equal to θ.

In our code, we implement all of the rank statistics bounds, with one exception for the partial AUCCH – the equivalent
points bound. We do not implement the equivalent points bound for partial AUCCH since the pAUCch statistic is heavily
impacted by the leaves with high fraction of positives, which means that the leaves being repeatedly calculated for the
objective tend not to be impure, and thus the equivalence points bound is less effective.

D. Optimizing F-score with Decision Trees
For a labeled tree d = (dfix, δfix, dsplit, δsplit,K,H), the F-score loss is defined as

`(d,x,y) =
FP + FN

2N+ + FP − FN
. (39)

For objectives like accuracy, balanced accuracy and weighted accuracy, the loss of a tree is the sum of loss in each leaf. For
F-score loss, however, FP and FN appear in both numerator and denominator, thus the loss no longer can be calculated
using a sum over the leaves.
Lemma D.1. The label of a single leaf depends on the labels of other leaves when optimizing F-score loss.

Proof. Let l1, ..., lHd
be the leaves of tree d. Suppose Hd − 1 leaves are labeled. Let FPHd−1 and FNHd−1 be the

number of false positives and false negatives of these Hd − 1 leaves, respectively. Let A = FPHd−1 + FNHd−1 and
B = 2N+ + FPHd−1 − FNHd−1, and by these definitions, we will always have A ≤ B. Let n+

Hd
be the number of

positive samples in leaf Hd and n−Hd
be the number of negative samples. The leaf’s predicted label can be either positive

or negative. The loss of the tree depends on this predicted label as follows:

If ŷ(leaf)
Hd

= 1, there can be only false positives, thus `(d,x,y) =
A+ n−Hd

B + n−Hd

. (40)

If ŷ(leaf)
Hd

= 0, there can be only false negatives, thus `(d,x,y) =
A+ n+

Hd

B − n+
Hd

. (41)
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Calculating loss (41) minus loss (40):

A+ n+
Hd

B − n+
Hd

−
A+ n−Hd

B + n−Hd

=
(A+ n+

Hd
)× (B + n−Hd

)− (A+ n−Hd
)× (B − n+

Hd
)

(B − n+
Hd

)(B + n−Hd
)

. (42)

Denote ∆ as the numerator of (42), that is

(A+ n+
Hd

)× (B + n−Hd
)− (A+ n−Hd

)× (B − n+
Hd

).

Then we can get

∆ = AB +An−Hd
+Bn+

Hd
+ n+

Hd
n−Hd
−AB +An+

Hd
−Bn−Hd

+ n−Hd
n+
Hd

(43)

= 2n+
Hd
n−Hd

+An+
Hd

+Bn+
Hd

+An−Hd
−Bn−Hd

. (44)

The value of ∆ depends on A, B, n+
Hd

and n−Hd
. Hence, in order to minimize the loss, the predicted label of leaf Hd is 0 if

∆ ≤ 0 and 1 otherwise. Therefore, the predicted label of a single leaf depends on A and B, which depend on the labels of
the other samples, as well as the positive and negative samples captured by that leaf.

Theorem D.2. (Optimizing F-score Poses a Unusual Challenge) Let l1, ..., lHd
be the leaves of tree d and let N+ be the

number of positive samples in the dataset. Let Γ1 and Γ2 be two predicted labelings for the first Hd − 1 leaves. Leaf Hd

has a fixed predicted label. Suppose the loss for the F-score (Equation (39)) of the first Hd − 1 leaves based on labeling
method Γ1 is smaller than the loss based on labeling method Γ2 (where in both cases, leaf Hd has the same predicted
label). It is not guaranteed that the F1 loss of the tree d based on the first labeling Γ1 is always smaller than the loss based
on the second labeling Γ2.

Proof. Let (1)
FPHd−1 and (1)

FNHd−1 be the number of false positives and number of false negatives for the first Hd − 1

leaves from the labeling method Γ1 and similarly define (2) (2)
FPH −1 and FNH −1 for labeling method Γ2. Denote A1 =

d d

(1) (1)
FP + FN + (1) (1) (2) (2)

H −1 H −1 and B1 = 2N + FPH − −1 FNH −1. Similarly, denote A2 = FPH −1 + FN
d d d d d Hd−1 and B2 =

2N+ (2) (2)
+ FPHd− −1 FNHd−1. As we know from the assumptions of the theorem, A1 ≤ A2

B1 B2
.

Denote FPHd
and FNHd

be the number of false positives and number of false negatives of the last leaf lHd
.

Let `(1)(d,x,y) and `(2)(d,x,y) be the loss of the tree d based on two different predicted labelings of the leaves.

Suppose the predicted label of leaf lHd
is 1. (An analogous result holds when the predicted label of leaf lHd

is 0.) Then
A1+FPH and A2+FP

`(1)(d,x,y) = d `(2)(d,x,y) = Hd ∆ `(2)(d,x,y)− `(1)(d,x,y)B1+FPH B2+FPH
. Let be the numerator of .

d d

∆ = (A2 + FPHd
)(B1 + FPHd

)− (A1 + FPHd
)(B2 + FPHd

)

= A2B1 −A1B2 + (A2 −B2 +B1 −A1)FPHd
. (45)

Since A1 ≤ A2

B1 B2
, A2B1 ≥ A1B2, that is, the first two terms together are nonnegative. Meanwhile, A1 ≤ B1 and A2 ≤ B2.

Thus, ∆ could be negative or positive. Therefore, even though the labeling method Γ1 leads to smaller loss for the first
Hd− 1 leaves and the label of the last leaf depends on the label of previous Hd− 1 leaves, it is not guaranteed that the loss
of the tree is smaller than that based on Γ2. It is easy to construct examples of A1, A2, B1, B2, and FPHd

where the result
is either positive or negative, as desired.

Lemma D.1 and Theorem D.2 indicate that optimizing F-score loss is much harder than other arbitrary monotonic losses
such as balanced accuracy and weighted accuracy. Thus, we simplify the labeling step by incorporating a parameter ω at
each leaf node s.t. li is labeled as 0 if ωn+

i 6 n−i and 1 otherwise ∀i ∈ {1, ...,Hd}.

E. Dynamic Programming Formulation
Note that this section describes standard dynamic programming, where possible splits describe subproblems. The more
interesting aspects are the bounds and how they interact with the dynamic programming.
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We will work only with the weighted misclassification loss for the following theorem, so that the loss is additive over the
data:

`(d,x,y) =
∑
i

weightiloss(xi, yi).

We denote (x,y) as a data set of features x and binary labels y containing a total of N samples and M features.

Initial Problem: We define a tree optimization problem as a minimization of the regularized risk R(d,x,y) over the
domain σ(D), where D is a tree consisting of a single split leaf

D = (Dfix, rfix, Dsplit, rsplit,K,H) = (∅, ∅, Dsplit, rsplit, 0, 1)

d∗ ∈ argmind∈σ(D)R(d,x,y). (46)

Since all trees are descendants of a tree that is a single split leaf, this setup applies to tree optimization of any arbitrary data
set x, y. We can rewrite the optimization problem as simply:

d∗ ∈ argmindR(d,x,y). (47)

We partition the domain d ∈ σ(D) intoM+1 cases: One Leaf Case andM Tree Cases. We solve each case independently,
then optimize over the solutions of each case:

σ(D) = Leaf ∪ Tree1 ∪ Tree2 ∪ · · · ∪ TreeM

d∗Leaf ∈ argmind∈σ(Leaf)R(d,x,y)

d∗Treei ∈ argmind∈σ(Treei)R(d,x,y)

argmind∈σ(D) ∈ argmind∈{d∗Leaf ,d
∗
Tree1

,d∗Tree2
,...,d∗TreeM

}.

The Leaf Case forms a base case in a recursion, while each Tree Case is a recursive case that further decomposes into two
instances of tree optimization of the form described in (46).

Leaf Case: In this case, d∗Leaf is a tree consisting of a single fixed leaf. This tree’s only prediction r∗fix is a choice of two
possible classes {0, 1}.

r∗fix ∈ argminrfix∈{true,false}R((dfix, rfix, ∅, ∅, 1, 1),x,y),

d∗Leaf = (dfix, r
∗
fix, ∅, ∅, 1, 1) (48)

where a tie would be broken randomly.

Tree Case: For every possible i in the set feature indices {1, 2, 3, ...,M} we designate an ith Tree Case and an d∗Treei
as

the optimal descendent of a tree Di. We define Di as a tree consisting of a root split on feature i and two resulting split
leaves dLeft and dRight so that:

Treei = σ(Di) (the children of Di)

Di = (∅, ∅, dsplit, rsplit, 0, 2) = (∅, ∅, {dLeft, di}, {r−i, ri}, 0, 2)

d∗Treei ∈ argmind∈σ(Di)R(d,x,y). (49)

Instead of directly solving (49), we further decompose this into two smaller tree optimization problems that match the
format of (46). Since we are working with the weighted misclassification loss, we can optimize subtrees extending from
from d−i and di independently. We define data within the support set of d−i as x−i, y−i. We define data within the support
set of di as xi, yi. For each Di, we define an optimization over the extensions of the left split leaf d−i as:

Lefti = (∅, ∅, {d−i}, rsplit, 0, 1).

d∗Lefti ∈ argmind∈σ(Lefti)R(d,x−i,y−i). (50)

By symmetry, we define an optimization over the extensions of the right split leaf di:

Righti = (∅, ∅, {di}, rsplit, 0, 1)
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d∗Righti ∈ argmind∈σ(Righti)R(d,xi,yi). (51)

d∗
Lefti

is the optimal subtree that classifies x−i and d∗
Righti

is the optimal subtree that classifies xi. Together, with a root
node splitting on the ith feature, d∗

Lefti
combines with d∗

Righti
to form d∗Treei . Thus, we can solve (50) and (51) to get the

solution of (49).

In (46) we defined a decomposition of an optimization problem over the domain σ(D), where D is a tree consisting of a
single split leaf. Both expressions (50) and (51) are also optimizations over the domain of children of a tree consisting of a
single split leaf. Recall that the descendants of any tree consisting of only a single split leaf covers the space of all possible
trees, therefore the trees are optimized over an unconstrained domain. We can thus rewrite (50) as:

d∗Lefti ∈ argmindR(d,x−i,y−i). (52)

Symmetrically we can also rewrite (51) as:

d∗Righti ∈ argmindR(d,xi,yi). (53)

Observe that (52) and (53) are simply tree optimization problems over a specific set of data (in this case x−i,y−i and
xi,yi). Hence, these tree optimizations form a recursion, and each can be solved as though they were (47).

Termination: To ensure this recursion terminates, we consider only splits where x−i and xi are strict subsets of x. This
ensures that the support strictly decreases until a minimum support is reached, which prunes all of Tree1 ∪ Tree2 ∪ · · · ∪
TreeM leaving only the leaf case described in (48).

Identifying Reusable Work: As we perform this decomposition, we identify each problem using its data set x, y by
storing a bit vector to indicate it as a subset of the initial data set. At each recursive step, we check to see if a problem has
already been visited by looking for an existing copy of this bit vector.

Figure 10 shows a graphical representation of the algorithm. Note that we use the following shortened notations in the
figure:

(x,y)k = (xk,yk) (54)

(x,y)−k = (x−k,y−k) (55)

(x,y)k,l = (xk,l,yk,l). (56)

Equation (54) denotes a data set (x,y) filtered by the constraint that samples must respond positive to feature k. Equation
(55) denotes a data set (x,y) filtered by the constraint that samples must respond negative to feature k. Equation (56)
denotes a data set (x,y) filtered by the constraint that samples must respond positive to both feature k and feature l.

F. Incremental Similar Support Bound Proof
We will work only with weighted misclassification loss for the following theorem, so that the loss is additive over the data:

`(d,x,y) =
∑
i

weightiloss(xi, yi).

Define the maximum possible weighted loss:

`max = max
x,y

[weight(x, y)× loss(x, y)].

The following bound is our important incremental similar support bound, which we leverage in order to effectively remove
many similar trees from the search region by looking at only one of them.

Theorem F.1. (Incremental Similar Support Bound) Consider two trees d = (dfix, dsplit,K,H) and D =
(Dfix, Dsplit,K,H) that differ only by their root node (hence they share the same K and H values). Further, the root
nodes between the two trees are similar enough that the support going to the left and right branches differ by at most ω
fraction of the observations. (That is, there are ωN observations that are captured either by the left branch of d and right
branch of D or vice versa.) Define Suncertain as the maximum of the support within dsplit and Dsplit:

Suncertain = max(supp(dsplit), supp(Dsplit)).
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Figure 10. Graphical representation of dependency graph Produced by this algorithm. Filled vertices show problems identified by a
support set. Solid edges show one possible tree that can be extracted from the graph.

For any child tree d′ grown from d (grown from the nodes in dsplit, that would not be excluded by the hierarchical objective
lower bound) and for any child tree D′ grown from D (grown from the nodes in Dsplit, that would not be excluded by the
hierarchical objective lower bound), we have:

|R(d′,x,y)−R(D′,x,y)| ≤ (ω + 2Suncertain)`max.

This theorem tells us that any two child trees of d and D that we will ever generate during the algorithm will have similar
objective values. The similarity depends on ω, which is how many points are adjusted by changing the top split, and the
other term involving Suncertain is determined by how much of the tree is fixed. If most of the tree is fixed, then there can be
little change in loss among the children of either d or D′, leading to a tighter bound. In standard classification tasks, the
value of `max is usually 1, corresponding to a classification error for an observation.

Proof. We will proceed in three steps. The first step is to show that

R(d,x,y)−R(D,x,y) ≤ ω`max.

The second step is to show:
R(d,x,y) ≤ R(d′,x,y) + Suncertain`

max,

for all feasible children d′ of d. The same bound will hold for D and any of its children D′. The third step is to show

R(d′,x,y) ≤ R(d,x,y) + Suncertain`
max,

which requires different logic than the proof of Step 2. Together, Steps 2 and 3 give

|R(d′,x,y)−R(d,x,y)| ≤ Suncertain`
max.

From here, we use the triangle inequality and the bounds from the three steps to obtain the final bound:

|R(d′,x,y)−R(D′,x,y)|
= |R(d′,x,y)−R(d,x,y) +R(d,x,y)−R(D,x,y) +R(D,x,y)−R(D′,x,y)|
≤ |R(d′,x,y)−R(d,x,y)|+ |R(d,x,y)−R(D,x,y)|+ |R(D,x,y)−R(D′,x,y)|
≤ Suncertain`

max + ω`max + Suncertain`
max,
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which is the statement of the theorem. Let us now go through the three steps.

First step: Define “move” as the set of indices of the observations that either go down the left branch of the root of d
and the right of D, or that go down the right of d and the left of D. The remaining data will be denoted “/move.” These
remaining data points will be classified the same way by both d and D. The expression above follows from the additive
form of the objective R:

R(d,x,y) = `(d,xmove,ymove) + `(d,x/move,y/move) + λH,

R(D,x,y) = `(D,xmove,ymove) + `(D,x/move,y/move) + λH,

and since /move /move /move move`(d,x ,y ) = `(D,x ,y/ ) since this just considers overlapping leaves, we have:

|R(d,x,y)−R(D,x,y)| ≤ |`(d,xmove,ymove)− `(D,xmove,ymove)| ≤ ω`max.

(For the last inequality, the maximum is attained when one of move move move move`(d,x ,y ) and `(D,x ,y ) is zero and the other
attains its maximum possible value.)

Second step: Recall that d′ is a child of d so that d′fix contains dfix. Let us denote the leaves in d′fix that are not in dfix by
d′fix/dfix. Then,

R(d′,x,y) = `(d′fix,x,y) + `(d′split,x,y) + λHd′

= `(dfix,x,y) + `(d′fix/dfix,x,y) + `(d′split,x,y) + λHd′ .

Adding `(dsplit,x,y) to both sides,

R(d′,x,y) + `(dsplit,x,y) = `(dfix,x,y) + `(dsplit,x,y) + `(d′fix/dfix,x,y) + `(d′split,x,y) + λHd′

= R(d,x,y) + `(d′fix/dfix,x,y) + `(d′split,x,y) + λ(Hd′ −H)

≥ R(d,x,y),

since the terms we removed were all nonnegative. Now,

R(d,x,y) ≤ R(d′,x,y) + `(dsplit,x,y)

≤ R(d′,x,y) + supp(dsplit)`
max

≤ R(d′,x,y) + Suncertain`
max.

Third step: Here we will use the hierarchical objective lower bound. We start by noting that since we have seen d, we have
calculated its objective R(d,x,y), and it must be as good or worse than than the current best value that we have seen so far
(or else it would have replaced the current best). So Rc ≤ R(d,x,y). The hierarchical objective lower bound (Theorem
B.1) would be violated if the following holds. This expression states that b(d′,x,y) is worse than R(d,x,y) (which is
worse than the current best), which means we would have already excluded d′ from consideration:

Rc ≤ R(d,x,y) < b(d′,x,y) = R(d′,x,y)− `(d′split,x,y).

This would be a contradiction. Thus, the converse holds:

R(d′,x,y)− `(d′split,x,y) = b(d′,x,y) ≤ R(d,x,y).

R(d′,x,y) ≤ R(d,x,y) + `(d′split,x,y).
Thus,

Now to create an upper bound for `(d′split,x,y) as `max times the support of d′split. Since d′ is a child of d, its support
on the split leaves is less than or equal to that of d, supp(d′split) ≤ supp(dsplit). Thus, `(d′split,x,y) ≤ `maxsupp(dsplit) ≤
`maxSuncertain. Hence, we have the result for the final step of the proof, namely:

R(d′,x,y) ≤ R(d,x,y) + Suncertain`
max.
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G. Subset Bound Proof
We will work with the loss that is additive over the data for the following theorem. The following bound is our subset bound,
which we leverage in order to effectively remove the thresholds introduced by the continuous variables, thus pruning the
search space.
Theorem G.1. (Subset Bound). Define d = (dfix, δfix, dsplit, δsplit,K,H) and D = (Dfix,∆fix, Dsplit,∆split) to be two trees
with same root node. Let f1 and f2 be the features used to split the root node. Let t1, t2 be the left and right sub-trees under
the root node split by f1 in d and let (xt1 ,yt1) and (xt2 ,yt2) be the samples captured by t1 and t2 respectively. Similarly,
let T1, T2 be the left and right sub-trees under the root node split by f2 in D and let (xT1 ,yT1) and (xT2 ,yT2) be the
samples captured by T1 and T2 respectively. Suppose t1, t2 are the optimal trees for (xt1 ,yt1) and (xt2 ,yt2) respectively,
and T1, T2 are the optimal trees for corresponding (xT1

,yT1
) and (xT2

,yT2
). If R(t1,xt1 ,yt1) ≤ R(T1,xT1

,yT1
) and

(xt2 ,yt2) ⊆ (xT2
,yT2

), then R(d,x,y) ≤ R(D,x,y).

This theorem tells us that when f1 and f2 are from different thresholds of a continuous variable, for example age ≤ 20 and
age ≤ 18, (xt2 ,yt2) ⊆ (xT2

,yT2
) is always true. In this case, we need only develop and compare the two left sub-trees.

Proof. Since (xt2 ,yt2) ⊆ (xT2
,yT2

) and t2 and T2 are optimal trees for (xt2 ,yt2) and (xT2
,yT2

) respectively,

R(t2,xt2 ,yt2) ≤ R(T2,xt2 ,yt2) ≤ R(T2,xT2 ,yT2).

Given R(t1,xt1 ,yt1) ≤ R(T1,xT1
,yT1

),

R(t1,xt1 ,yt1) +R(t2,xt2 ,yt2) ≤ R(T1,xT1
,yT1

) +R(T2,xT2
,yT2

)

R(d,x,y) ≤ R(D,x,y).
(57)

H. Complexity of Decision Tree Optimization
In this section, we show the complexity of decision tree optimization.
Theorem H.1. Let f(M) be the number of binary decision trees that can be constructed for the dataset with N samples,
M binary features and K label classes. The complexity of f(M) is O(M !).

Proof. We show the proof by induction.

Base Case:

When M = 0, the dataset cannot be split and a predicted label is assigned to all samples. Therefore, the number of binary
decision trees for the given dataset is equal to the number of classes K. Hence, f(0) = K.

Inductive Step:

WhenM > 0, the whole dataset can be split into two subsets by any of theM features. WithM possible ways to do the first
split, 2M subsets of data are created. Since binary features only have two different values, 0 and 1, a binary feature used to
produce the subsets cannot be used again. Therefore, each of the 2M subsets can only be separated using trees constructed
from at most M − 1 binary features. This produces a recursive definition of f(M). That is f(M) = 2Mf(M − 1).

Combining Step:

Each inductive step reduces M by one, guaranteeing its arrival at the base case. By combining the base case with the
inductive step, a non-recursive definition of f(M) is produced.

f(0) = K

f(1) = 2× 1× f(0) = 21 × 1×K
f(2) = 2× 2× f(1) = 22 × 2× 1×K
f(3) = 2× 3× f(2) = 23 × 3× 2× 1×K

...

f(M) = 2×M × f(M − 1) = 2M ×M !×K

(58)
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Since the term with the highest complexity in (2M )(M !)(K) is factorial, the complexity of f(M) is O(M !)

I. Experiments
In this section, we elaborate on the experimental setup, data sets, pre-processing and post-processing. Additionally, we
present extra experimental results that were omitted from the main paper due to space constraints.

I.1. Data Sets

We used a total of 11 data sets: Seven of them are from the UCI Machine Learning Repository (Dheeru & Karra Taniskidou,
2017), (monk1, monk2, monk3, tic-tac-toe, balance scale, car evaluation, iris), one from LIBSVM (Chang & Lin, 2011),
(FourClass). The other three datasets are the ProPublica recidivism dataset (Larson et al., 2016) (COMPAS), the Fair Isaac
credit risk data sets (FICO et al., 2018) (FICO), and the mobile advertisement data sets (Wang et al., 2017) (coupon).
We predict which individuals are arrested within two years of release (N = 5,020) on the recidivism data set, whether
an individual will default on a loan for the FICO dataset, and whether a customer is going to accept a coupon for a bar
considering demographic and contextual attributes.

I.2. Preprocessing

Missing Values: We exclude all observations with missing values.

monk 1, monk 2, monk 3, tic-tac-toe, balance scale, and car evaluation: We preprocessed these data sets, which contain
only categorical features, by using a binary feature to encode every observable categorical value.

iris: We encode a binary feature to represent every threshold between adjacent values for all four continuous features
(sepal length, sepal width, petal length, petal width). From the 3-class classification problem, we form 3 separate binary
classification problems. Each binary classification is 1 of the 3 classes against the remaining classes. These three problems
are referred to as iris-setosa, iris-versicolor, and iris-virginica.

Four Class: This dataset contains simulated points in a two-dimensional, bounded space with two classes that have irreg-
ular spreads over the space (241 positive samples and 448 negative samples). We split two continuous features into six
categories (e.g. feature1 ≤ 50 and feature1 ≤ 100) and the value for each column is either 0 or 1.

ProPublica Recidivism (COMPAS): We discretized each continuous variable by using a binary feature to encode a thresh-
old between each pair of adjacent values.

ProPublica Recidivism (COMPAS-2016): We selected features age, count of juvenile felony, count of juvenile misde-
meanor, count of juvenile other crimes, count of prior crimes, and the target recidivism within two years. We replace count
of juvenile felony, count of juvenile misdemeanor, count of juvenile other crimes with a single count called count of juvenile
crimes which is the sum of count of juvenile felony, count of juvenile misdemeanor, count of juvenile other crimes. We
discretized the count of prior crimes into four ranges count of prior crimes = 0, count of prior crimes = 1, count of prior
crimes between 2 to 3, and count of prior crimes > 3. These four ranges are each encoded as binary features. Therefore,
after preprocessing, these data contain 2 continuous features, 4 binary features, and one target.

ProPublica Recidivism (COMPAS-binary): We use the same discretized binary features of compas produced in (Hu
et al., 2019) which are the following: sex = Female, age < 21, age < 23, age < 26, age < 46, juvenile felonies = 0,
juvenile misdemeanors = 0, juvenile crimes = 0, priors = 0, priors = 1, priors = 2 to 3, priors > 3.

Fair Isaac Credit Risk (FICO): We discretized each continuous variable by using a binary feature to encode a threshold
between each pair of adjacent values.

Fair Isaac Credit Risk (FICO-binary): We use the same discretized binary features of compas produced in (Hu et al.,
2019) which are the following: External Risk Estimate < 0.49 , External Risk Estimate < 0.65, External Risk Estimate <
0.80, Number of Satisfactory Trades < 0.5, Trade Open Time < 0.6, Trade Open Time < 0.85, Trade Frequency < 0.45,
Trade Frequency < 0.6, Delinquency < 0.55, Delinquency < 0.75, Installment < 0.5, Installment < 0.7, Inquiry < 0.75,
Revolving Balance < 0.4, Revolving Balance < 0.6, Utilization < 0.6, Trade W. Balance < 0.33.

Mobile Advertisement (coupon): We discretized each continuous variable by using a binary feature to encode a threshold
between each pair of adjacent values. We discretized each categorical variable by using a binary feature to encode each
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observable categorical value.

Mobile Advertisement (bar-7): In order to predict whether a customer is going to accept a coupon for a bar, we selected
features age, passengers, bar, restaurant20to50, direction same, and target. For features age, bar and direction we used the
same encoding as we used for coupon. We modified passengers so that it is replaced with the binary feature passengers
> 0. We modified restaurant20to50 so that it is replaced with the binary feature restaurant20to50=0, which is 0 if the
number of times that they eat at a restaurant with average expense less than $20 per person is less than 4 times per month
and 1 otherwise.

Data Set Summary: Table 2 presents a summary of the datasets.

Data Set Samples Categorical Features Continuous Features Encoded Binary Features
monk 1 124 11 0 11
monk 2 169 11 0 11
monk 3 122 11 0 11

car evaluation 1729 15 0 15
balance scale 625 16 0 16

tic-tac-toe 958 18 0 18
iris 151 0 4 123

iris-setosa 151 0 4 123
iris-versicolor 151 0 4 123
iris-virginica 151 0 4 123

coupon 12684 26 0 129
bar-7 1913 5 0 14

Four Class 862 0 2 345
COMPAS 12382 2 20 647

COMPAS-2016 5020 4 2 85
COMPAS-binary 6907 12 0 12

FICO 1000 0 23 1407
FICO-binary 10459 17 0 17

Table 2. Comparison of different data sets (and their preprocessed derivatives). Categorical Features denote the number of features
that are inherently categorical or represent discrete ranges of a continuous feature. These features generally have a low cardinality.
Continuous Features denote the number of features that take on many integer or real number values. These features generally have
a high cardinality. Encoded Binary Features denote the number of binary features required to encode all categorical and continuous
values observed in the dataset. This is value is approximately the total cardinality of all categorical and continuous features.

I.3. Optimization Algorithms

CART: We run CART as a reference point for what is achievable with a greedy algorithm that makes no optimality
guarantee. The algorithm is run using the Python implementation from Sci-Kit Learn. The depth and leaf count are
constrained in order to adjust the resulting tree size.

BinOCT: BinOCT is modified to run using only a single thread to make comparison across algorithms fair. This algorithm
runs on the academic version of CPLEX. The depth is constrained to adjust the resulting tree size.

DL8.5: DL8.5 is implemented in C++ and is run as a native extension of the Python interpreter. The depth is constrained
to adjust the resulting tree size.

Because BinOCT and DL8.5 have hard constraints, rather than OSDT or GOSDT’s soft constraints, GOSDT and OSDT’s
optimization problem is substantially harder than that of BinOCT and DL8.5. GOSDT and OSDT effectively consider a
large number of possible tree sizes whereas the other algorithms consider only full trees of a given depth.

OSDT: OSDT is implemented in Python and run directly. The regularization coefficient is varied to adjust the resulting
tree size.
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PyGOSDT: PyGOSDT is an early Python implementation of GOSDT. The regularization coefficient is varied to adjust the
resulting tree size.

GOSDT: GOSDT is implemented in C++ and run as a native executable. The regularization coefficient is varied to adjust
the resulting tree size.

I.4. Computing Infrastructure

The experiments for optimizing rank statistics were run on a personal laptop with a 2.6GHz i5-7300U processor and 8GB
of RAM.

All other experiments were run on a 2.30 GHz (30 MB L3 cache) Intel Xeon E7-4870 v2 processor with 60 cores across 4
NUMA nodes. We disabled hyper-threading. The server has 512 GB RAM uniformly distributed (128 GB each) across the
four NUMA nodes. The host OS is Ubuntu 16.04.6 LTS. We set a 5-minute time limit on all experiments, unless otherwise
stated. All algorithms that support multi-threading are modified to run sequentially.

I.5. Experiments: Rank Statistics

Collection and Setup: We ran this experiment on the data set FourClass. We train models to optimize various objectives
with 30 minute time limits. When the time limit is reached, our algorithm returns the current best tree considering the
objectives.

Results: Figure 11 shows the training ROC and test ROC of decision trees generated for six different objectives. Opti-
mizing different objectives produces different trees with different FP and FN . Some interesting observations are that the
pAUCch model performs as well as the AUCch model on the left part of the ROC curve, but then sacrifices some area under
the middle and right of the curve (which is not as relevant to its objective) to obtain a sparser model (sparsity is relevant
to the objective). The pAUCch and AUCch results illustrate how the objective allows us to trade off parts of the ROC curve
(that are not important for some applications) with overall sparsity. Another interesting observation is that some of the
models are extremely sparse: recall that each leaf is a single diagonal line on the ROC curve, so one can count the number
of leaves by looking at the number of diagonal lines. In some cases, a well-chosen single split point can lead to a model
with an excellent TPR/FPR tradeoff somewhere along the ROC curve.

Figure 11. Training ROC and test ROC of FourClass dataset (λ = 0.01). A/B in the legend at the bottom right of each subfigures shows
the objective and its parameter/area under the ROC.

I.6. Experiment: Accuracy vs Sparsity

Collection and Setup: We ran this experiment on the 6 data sets car evaluations, COMPAS-binary, tic-tac-toe, monk
1, monk 2, and monk 3. For the monk data sets, we used only the samples from the training set. For each data set we
train models using varying configurations (described in the following sections) to produce models with varying number of
leaves. For any single configuration, we perform a 5-fold cross validation to measure training accuracy and test accuracy
for each fold. All runs that exceed the time limit of 5 minutes are discarded.

We omit PyGOSDT since it differs only from GOSDT in program speed, and would provide no additional information for
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this experiment.

Below are the configurations used for each algorithm:

• CART Configurations: We ran this algorithm with 6 different configurations: depth limits ranging from 1 to 6, and a
corresponding maximum leaf limit of 2, 4, 8, 16, and 64.

• BinOCT and DL8.5 Configurations: We ran these algorithms with 6 different configurations: depth limits ranging
from 1 to 6.

• OSDT and GOSDT Configurations: We ran these algorithms with 29 different regularization coefficients: 0.2, 0.1,
0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001,
0.0009, 0.0008, 0.0007, 0.0006, 0.0005, 0.0004, 0.0003, 0.0002, and 0.0001.

Calculations: For each combination of data set, algorithm, and configuration, we produce a set of up to 5 models, depend-
ing on how many runs exceeded the time limit. We summarize the measurements (e.g., training accuracy, test accuracy,
and number of leaves) across the set of up to 5 models by plotting the median. We compute the 25th and 75th percentile
and show them as lower and upper error values respectively.

Results: Figure 12 shows that the objective optimized by GOSDT (same as OSDT) reliably produces a more efficient
frontier between training accuracy and number of leaves. Figure 13 shows the same plots with test accuracy and number
of leaves. The difference between frontiers sometimes becomes insignificant due to error introduced from generalization,
particularly when the training accuracies between algorithms were close together. That is, if CART achieves a solution that
is almost optimal, then it tends to achieve high test accuracy as well. Without methods like GOSDT or OSDT, one would
not be able to determine whether CART’s training solution is close to optimal for a given number of leaves. Further, if the
training accuracies of the different algorithms are different (e.g., as in the monk2 data), this difference is reflected in an
improved test accuracy for OSDT or GOSDT.

Figure 12. Training accuracy achieved by BinOCT, CART, DL8.5, GOSDT, and OSDT as a function of the number of leaves.

I.7. Experiment: Scalability

Collection and Setup: We ran this experiment on 4 data sets: bar-7, compas-2016, compas, and fico. The four data sets
vary in the number of binary features required to fully represent their information. The number of binary features are,
respectively, 14, 85, 647, and 1407. For each data set we show runtime as a function of both sample size and number of
binary features used.
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Figure 13. Test accuracy achieved by BinOCT, CART, DL8.5, GOSDT, and OSDT as a function of the number of leaves.

Each data set is preprocessed so that categorical features produce one binary feature per unique value, and continuous
features produce one binary feature per pair of adjacent values. The samples are then randomly shuffled. We measure
run time on increasingly larger subsets of this data (with all binary features included), this is our measure of run time as
a function of sample size. We also measure run time on increasingly larger numbers of binary features (with all samples
included), this is our measure of run time as a function of binary features. For all experiments we continue increasing the
difficulty until either the difficulty covers the full data set or a time limit of 5 minutes has been exceeded 3 times by the
same algorithm.

Note that when varying the number of binary features, we include all samples. This means that adding a feature to a large
data set (e.g., COMPAS and FICO) generally increases the difficulty more than adding a feature to a small data set (e.g.,
bar-7 and COMPAS-2016). Likewise, when varying the number of samples, we include all binary features. This means
that adding a feature to a high-dimensional data set (e.g., COMPAS and FICO) generally increases the difficulty more than
adding a sample to a low-dimensional data set (e.g., bar-7 and COMPAS-2016). As a result, the sample size is not a good
measure of difficulty when comparing across different data sets of completely different features. The number of binary
features is a more robust measure when comparing across different data sets.

Below are the configurations used for each algorithm tested:

• CART is configured to have a maximum depth of log2(32) and a maximum leaf count of 32.

• BinOCT and DL8.5 are configured to have a maximum depth of log2(32).

• OSDT and GOSDT are configured with a regularization coefficient of 1
32 .

While we initially attempted to include BinOCT in this experiment, we were unable to find an instance where BinOCT
reached completion with a maximum depth of log2(32) and a time limit of 5 minutes. Consequently, BinOCT was not
included in this experiment.

Calculations: We provide two measures of speed. Training time measures the number of seconds required for an algorithm
to complete with a certificate of optimality. Slow-down measures the ratio of the algorithm’s training time against its fastest
training time over values of problem difficulty. We vary and measure problem difficulty in two separate ways. “Number
of binary features” indicates how many of the binary features generated by our binary encoding were included for training.
“Number of samples” indicates how many samples were included for training.
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Results: Figure 14 shows how each algorithm’s training time varies as additional binary features are included. Figure 15
shows how each algorithm’s training time varies as additional samples are included.

For bar-7 and compas-2016, we observe a logarithmic time complexity when increasing sample size. These problems
are sufficiently represented and solvable at a small sample size. As a result, additional samples contribute diminishing
increase in the difficulty of the problem. Under these circumstances, GOSDT, PyGOSDT, and OSDT have a significant
performance advantage over DL8.5.

For all data sets we observe an approximately factorial time complexity when increasing the number of features. This is
consistent with the theoretical worst-case time complexity of full tree optimization (see Theorem H.1). The sharp increase
in run time results in a limit on the size of problems solvable in practice by each algorithm. We observe that while all full
tree optimization algorithms have such a limit, GOSDT usually has a higher limit than other algorithms.

Figure 16 show how each algorithm’s relative slow-down varies with additional binary features. Figure 17 show how each
algorithm’s relative slow-down varies with additional samples. This reduces the effects of constant overhead, showing
the asymptotic behavior of each algorithm. Our observations from Figure 14 and Figure 15 still hold under this analysis.
Additionally, we observe that the slow-down of GOSDT and PyGOSDT under the bar-7 data set appears to become
approximately constant; this is likely a result of additional samples belonging to already-present equivalence classes (the set
of equivalence classes saturates). Recall that both PyGOSDT and GOSDT reduce the data set size to only the equivalence
classes that are present in the data set, and thus scale in this quantity rather than the number of samples.

Overall, we observe that both GOSDT, PyGOSDT and OSDT have an advantage over DL8.5 which becomes increasingly
clearer as we test on data sets of greater difficulty. GOSDT and OSDT appears to perform better than PyGOSDT, with
GOSDT having a slight advantage over OSDT on larger data sets.

Previous comparisons do not account for differences in implementation language. We observe that that GOSDT is several
orders of magnitude faster and more scalable than DL8.5, both of which are implemented in C++. However, PyGOSDT
is not quite as performant as OSDT, both of which are implemented in Python. This suggests, for data sets similar to the
ones in this experiment, there are advantageous characteristics of OSDT that are worth further exploration for extensions
of GOSDT.

(a) Training Time vs Number of Features (Full Scale)

(b) Training Time vs Number of Features (Zoomed In)

Figure 14. Time required to reach optimality (or to finish tree construction for non-optimal methods) for BinOCT, CART, DL8.5, GOSDT
(C++), PyGOSDT (Python) and OSDT as a function of the number of binary features used to encode the continuous dataset (λ = 0.3125
or max depth = 5).

I.8. Experiment: Time to Optimality

Collection and Setup: We ran this experiment on 4 data sets: bar-7, tic-tac-toe, car-evaluation, compas-binary, fico-
binary, monk-1, monk-2, and monk-3. For each experiment, we run OSDT, GOSDT, and PyGOSDT with a regularization
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(a) Training Time vs Number of Samples (Full Scale)

(b) Training Time vs Number of Samples (Zoomed In)

Figure 15. Time required to reach optimality (or to finish tree construction for non-optimal methods) for BinOCT, CART, DL8.5, GOSDT
(C++), PyGOSDT (Python) and OSDT as a function of the number of samples taken from the continuous dataset (λ = 0.3125 or max
depth = 5).

coefficient of 0.005. For each run we track the progress of the algorithm by plotting the minimum objective score seen so
far. Once the algorithm terminates or reaches a time limit of 30 minutes, the values are stored in a file.

Results: Figure 18 shows the different behaviors between GOSDT, PyGOSDT, and OSDT. In general, both PyGOSDT
and GOSDT complete their certificate of optimality earlier than OSDT.

Note that PyGOSDT’s implementation does not include high-priority bound updates. This causes PyGOSDT to maintain a
higher objective score before making a sharp drop upon completion (with a certificate of optimality). GOSDT, on the other
hand, behaves similarly to OSDT because both algorithms aggressively prioritize lowering the best observed objective
score. We observe that under the tic-tac-toe data set this appears to be less advantageous. While PyGOSDT’s progress
initially appears less promising, it completed remarkably faster than both GOSDT and OSDT. This suggests that optimal
prioritization is dependent on specifics of the optimization problem.

I.9. Optimal Trees

We present some of the trees that achieved the peak median accuracy from Section I.6. Figure 19 shows a comparison
between the results of training BinOCT (a) and GOSDT (b) on the Monk 1 data set. GOSDT is able to produce a model
with 20% higher accuracy than BinOCT even though both trees have 8 leaves. Figure 20 shows a comparison between
DL8.5 (a) and GOSDT (b) on the Monk 2 data set. GOSDT is able to produce a model with 3% higher accuracy than
DL8.5 even though both trees have 7 leaves. Figure 21 shows a comparison between BinOCT (a), DL8.5 (b), and GOSDT
(c) on the Tic-Tac-Toe data set. GOSDT is able to produce a model with higher accuracy than both BinOCT and DL8.5
when all trees have 16 leaves.

Comparison to True Model: For the results shown in Figure 19, we know that the true model used to generate the data in
Monk 1 is a set of logical rules:

class = (jacket = red) ∨ (head = body).

The data set we train on does not encode binary features for equality between two features (e.g., head = body) and
categorical variables head and body are only encoded using k−1 binary rules (this means one value from each categorical
variable will be expressed with a negation of all other values). Altogether, this means our encoding forces the true model
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(a) Slow-Down vs Number of Features (Full Scale)

(b) Slow-Down vs Number of Features (Zoomed In)

Figure 16. Slow-down experienced by BinOCT, CART, DL8.5, GOSDT (C++), PyGOSDT (Python) and OSDT as a function of the
number of binary features used to encode the continuous dataset (λ = 0.3125 or max depth = 5).

to instead be expressed as the following:

class =(jacket = red)

∨ (head = round ∧ body = round)

∨ (head = square ∧ body = square)

∨ (head = round ∧ head = square ∧ body = round ∧ body = square)6 6 6 6

We can interpret the trees produced by BinOCT as the following set of logical rules:

class =(jacket = red ∧ head = round)

∨ (jacket = red ∧ head = round ∧ body = round)

∨ (jacket = red ∧ head = round ∧ body = round)

∨ (jacket = green ∧ head = round ∧ body = round).

6
6

6 6 6

We can interpret the trees produced by GOSDT as the following set of logical rules:

class =(jacket = red)

∨ (head = round ∧ body = round)

∨ (head = square ∧ body = square)

∨ (head = round ∧ head = square ∧ body = round ∧ body = square).6 6 6 6

In this instance, BinOCT produces a model that is similar to the true model but has a few mismatches. This is mainly due
to the structural constraints of BinOCT. GOSDT, after exploring a larger space while still penalizing complexity, is able to
produce a model that perfectly matches with the ground truth.

I.10. Summary of Experimental Results

Experiment G.5 shows that the new set of objective functions allows GOSDT to produce trees with a more efficient ROC
curve than the standard accuracy objective assumed by other algorithms.

Experiment G.6 shows that the regularized risk objective used by OSDT and GOSDT produces the most efficient training
accuracy vs. sparsity frontier. When placed under time constraints, GOSDT is able to produce more of the highly accurate
models along this frontier than OSDT.
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(a) Slow-Down vs Number of Samples (Full Scale)

(b) Slow-Down vs Number of Samples (Zoomed In)

Figure 17. Slow-down experienced by BinOCT, CART, DL8.5, GOSDT (C++), PyGOSDT (Python) and OSDT as a function of the
number of samples taken from the continuous dataset (λ = 0.3125 or max depth = 5).

Figure 18. Best objective score of OSDT, GOSDT, and PyGOSDT over the course of their run time. (λ = 0.005)

Experiment G.7 shows that GOSDT is able to handle significantly more binary features than BinOCT, DL8.5, and, to
a lesser extent, OSDT. Since binary features are used to encode thresholds over continuous features, GOSDT is able to
handle continuous datasets of higher cardinality compared to other aforementioned methods.

Experiment G.8 shows that GOSDT outpaces OSDT and PyGOSDT when it comes to reducing the optimality gap, this
allows it to terminate with stronger optimality guarantees in the event of a premature termination.

Experiment G.9 shows that optimizing an efficient training accuracy vs. sparsity frontier allows GOSDT to more accu-
rately capture the ground truth compared to BinOCT when subject to the same sparsity constraints.

To summarize, we began this experimental section by showing the benefits of optimizing more sophisticated objective
functions. We then showed the benefits of a more efficient algorithm to support these objectives. Finally, we closed
this section by combining these two elements to produce provably optimal and interpretable models and showcase their
advantages.
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head = round

jacket = red

head = round

Y es Y es

body = round

Y es No
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Y es No

jacket = green

No Y es

True False

(a) BinOCT (training accuracy: 90.9%, test accuracy: 84.0%)

jacket = red

Y es head = round

body = round

Y es No

head = square

body = square

Y es No

body = round

No body = square

No Y es

True False

(b) GOSDT (training accuracy: 100%, test accuracy: 100%)

Figure 19. Eight-leaf decision trees generated by BinOCT and GOSDT on the Monk1 dataset. The tree generated by BinOCT includes
two useless splits (the head=round in the bottom left), while GOSDT avoids this problem. BinOCT is 91% accurate, GOSDT is 100%
accurate.

jacket = red

smiling = yes

No holding = sword

No Y es

bowtie = yes

body = square

Y es No

smiling = yes

Y es No

True False

(a) DL8.5 (training accuracy: 76.3%, test accuracy: 70.6%)

holding = sword

No smiling = yes

jacket = red

No head = round

bowtie = yes

No Y es

Y es

jacket = red

Y es No

True False

(b) GOSDT (training accuracy: 79.3%, test accuracy: 73.5%)

Figure 20. Seven-leaf decision trees generated by DL8.5 and GOSDT on the Monk2 dataset. With the same number of leaves, DL8.5 is
76.3% accurate, GOSDT is 79.3% accurate.

J. Algorithm
In addition to the main GOSDT algorithm (Algorithm 1), we present the subroutines get lower bound (Algorithm 2),
get upper bound (Algorithm 3), fails bound (Algorithm 4), and split (Algorithm 5) used during optimization. We also
present an extraction algorithm (Algorithm 6) used to construct the optimal tree from the dependency graph once the main
GOSDT algorithm completes.
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(a) BinOCT (training accuracy: 82.4%, test accuracy 34.4%)
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(b) DL8.5 (training accuracy: 86.9%, test accuracy: 61.5%)
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(c) GOSDT (training accuracy: 90.9%, test accuracy: 70.8%)

Figure 21. 16-leaf decision trees generated by BinOCT, DL8.5, and GOSDT on the tic-tac-toe dataset. The tree generated by BinOCT
includes some useless splits such as top,left=o on the bottom left and middle,middle=o near the center of the bottom row. These extra
splits repeat earlier decisions from the tree, so they are clearly useless and lead to at least one empty leaf. DL8.5 also prefers to generate
complete binary trees. GOSDT is more effective in generating sparse trees. With the same number of leaves, BinOCT is 82.4% accurate,
DL8.5 is 86.9% accurate, and GOSDT is 90.9% accurate.
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Algorithm 1 GOSDT(R,x,y, λ)

1: input: R, Z, z−, z+, λ // risk, unique sample set, negative sample set, positive sample set, regularizer
2: Q = ∅ // priority queue
3: G = ∅ // dependency graph
4: s0 ← {1, ..., 1} // bit-vector of 1’s of length U
5: p0 ← FIND OR CREATE NODE(G, s0) // node for root
6: Q.push(s0) // add to priority queue
7: while p0.lb = p0.ub do
8: s← Q.pop() // index of problem to work on
9: p← G.find(s) // find problem to work on
10: if p.lb = p.ub then
11: continue // problem already solved
12: (lb′, ub′)← (∞,∞) // very loose starting bounds
13: for each feature j ∈ [1,M ] do
14: sl, sr ← split(s, j, Z) // create children if they don’t exist
15: jp ←l FIND OR CREATE NODE(G, sl)
16: pjr ←FIND OR CREATE NODE(G, sr)

// create bounds as if j were chosen for splitting
17: lb′ ← min(lb′ j, pl .lb+ pjr.lb)

18: ub′ ← min(ub′ j, pl .ub+ pjr.ub)
// signal the parents if an update occurred

19: if p.lb = lb′ or p.ub = ub′ then
20: (p.lb, p.ub)← (lb′, ub′)
21: for pπ ∈ G.parent(p) do

// propagate information upwards
22: Q.push(pπ.id,priority = 1)
23: if p.lb = p.ub then
24: continue // problem solved just now

// loop, enqueue all children that are dependencies
25: for each feature j ∈ [1,M ] do

// fetch jpl and pjr in case of update from other thread
26: repeat line 14-16
27: lb′ j← pl .lb+ pjr.lb

28: ub′ j← pl .ub+ pjr.ub
29: if lb′ < ub′ and lb′ ≤ p.ub then
30: Q.push(sl,priority = 0)
31: Q.push(sr,priority = 0)
32: return
—————————————————————————
33: subroutine FIND OR CREATE NODE(G,s)
34: if G.find(s) = NULL // p not yet in dependency graph
35: p.id← s // identify p by s
36: p.lb← get lower bound(s, Z, z−, z+)
37: p.ub← get upper bound(s, Z, z−, z+)
38: if fails bounds(p) then
39: p.lb = p.ub // no more splitting allowed
40: G.insert(p) // put p in dependency graph
41: return G.find(s)

6

6 6
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Algorithm 2 get lower bound(s, Z, z−, z+)→ lb)

input: s, Z, z−, z+ // support, unique sample set, negative sample set, positive sample set
output: lb // Risk lower bound
// Compute the risk contributed if applying a class to every equivalance class independently

for each equivalence class u ∈ [1, U ] define
// Values provided in Z
z−u = 1

∑N
1N i=1 [yi = 0 ∧ xi = zu]

z+
u = 1

∑N
1N i=1 [yi = 1 ∧ xi = zu]

// Risk of assigning a class to equivalence class u
zmin
u = min(z−u , z

+
u )

// Add all risks for each class u
// Add a single λ which is a lower bound of the complexity penalty∑
lb← λ+ u suz

min
u

return lb

Algorithm 3 get upper bound(s, Z, z−, z+)→ ub

input: s, Z, z−, z+ // support, unique sample set, negative sample set, positive sample set
output: ub // Risk upper bound
// Compute the risk contributed if applying a single class to all samples in s

for each equivalence class u ∈ [1, U ] define
// Add up the positive and negative class weights under equivalence class u
z−u = 1

∑N
1 ∧N ∑i=1 [yi = 0 xi = zu]

z+
u = 1 N

1N i=1 [yi = 1 ∧ xi = zu]
// Total the positive and negatives over all classes u, choosing the smaller total as the misclassification
// Add a single λ for the complexity penalty of a leaf∑
ub← λ+ min( u suz

− ∑
u , u suz

+
u )

return ub

Algorithm 4 fails bounds(p)→ v

input: p // current problem
output: v // boolean indicating valid problem
// If this expression is true then the lower bound on incremental accuracy is crossed by all descendents
// This works because since ub− lb is an upperbound on incremental accuracy for any descendent
incremental accuracy ← p.ub− p.lb ≤ λ
// If this expression is true then the lower bound on leaf classification accuracy is crossed
leaf accuracy ← p.ub ≤ 2λ
if (incremental accuracy = True) ∨ (leaf accuracy = True) then

return True
return False

Algorithm 5 split(s, j, Z)→ sl, sr

input: s, j, Z // support set, feature index, unique sample set
output: sl, sr // left and right splits
// Create the left key which is the subset of s such that feature j tests negative
sl = {1[su = 1 ∧ Zu,j = 0]|1 ≤ u ≤ U}
// Create the right key which is the subset of s such that feature j tests positive
sr = {1[su = 1 ∧ Zu,j = 1]|1 ≤ u ≤ U}
return sl, sr
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Algorithm 6 extract(t)→ s // Extract optimal tree after running the algorithm

input: s // Key of the problem from which we want to build a tree
output: t // Optimal tree
p← FIND OR CREATE NODE(G, s) // Find the node associated to this key
t← None // Create a null tree
base bound← p.ub // The risk if we end this node as a leaf
base prediction← 0 // The prediction if we end this node as a leaf
split bound←∞ // The risk if we split this node
split feature← 0 // The index of the feature we should use to split this node
for each feature j ∈ [1,M ] do // Check all possible features

sl, sr ← split(s, j, Z) // Key of the the children for this split
jp ←l FIND OR CREATE NODE(G, sl) // Find left child
pjr ←FIND OR CREATE NODE(G, sr) // Find right child
// Check if the risk of this split is better than the best split risk so far

if jpl .ub+ pjr.ub < split bound then
jsplit bound← pl .ub+ pjr.ub // Update the best split risk

split feature← j // Best feature index to split on which minimizes loss upper bound
// Calculate the total positive and negative weights of each equivalence class

for each equivalence class u ∈ [1, U ] define
// Values come from equivalence class matrix Z as seen in Algorithm 3
z−u = 1

∑N
1N i=1 [yi = 0 ∧ xi = zu] // total negatives

z+
u = 1

∑N
1N i=1 [yi = 1 ∧ xi = zu] // total positives

// Select only the positive and negative weights captured by∑ s
negatives← u suz

−∑ u

positives← u suz
+
u

// Set the leaf prediction based on class with the higher selected total weight
if negatives < positives then

// Leaf predicts the majority class as 1 since positive weights are higher
base prediction.pred← 1

// Base case: If the risk of remaining as a leaf is better than splitting, remain as leaf
if base bound ≤ split feature

// Construct and return a leaf node
t.type← leaf
t.prediction← base prediction
return t

// Recursive case: One of the splits performs better than the leaf
// Generate left and right splits based on best split feature
sl, sr ← split(s, split feature, Z)
// Recurse onto child keys to create left and right subtrees
tl ← extract(sl)
tr ← extract(sr)
// Construct and return a split node containing the left and right subtrees
t.type← tree
t.split← split feature
t.left← tl
t.right← tr
return t
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