Supplementary Material for
“Improving Generative Imagination in Object-Centric World Models”

A. Model Details

In this section, we will give a detailed description of each
stage, especially those not described in detail in the main
text.

For each timestep ¢, we will describe the generation of
z$™, 7y, Oy, Zt, Oy, O, Xy (in that order), given the full history
z°<”;, Z<t, and o;. Generation consists of the following
stages:

1. Context. Given context history z%, we generate the

new context z™*.

2. Propagation. We compute {Z} }_ | and then update
the object attributes {of |} to {oF} X .

3. Discovery. A grid of H x W new object latents
{zy,(i,7) € {(1,1),...,(H,W)}} will be sampled
from some predefined prior and then for each (i, j) €
{(1,1),...,(H,W)}, 6; will be obtained by passing
each z,” through some determlnlstlc function. As men-
tioned in the main text, discovery will only be used
during inference but not generation. Here, the discov-
ery priors are only used to regularize inference.

4. Rendering. Given the set of propagated objects 0Oy
and discovered objects 0, we will select a maximum
number of K objects {o*}%_ | with the highest pres-
ence value. These objects will also be propagated to
the next timestep. We then render the frame x; using
the selected objects {oF}E |, which generates the fore-
ground image uf and mask o, and the context latent

z$™, which generates the background image ut .

Below we describe the implementation details of each stage.

A.1. Context

Generation. The prior pg(z;™|z2}) is implemented as fol-
lows:

B = RNNG, (2, 05 (1)

7] = MLEGS, (1) @

~ N5, ®

Inference. The posterior g4 (2™ |x¢,2%%) is implemented

as follows:

B = RNNGS, (7%, B,) @
€ne,r = Conven (x¢) 5)
[, o] = MLPgk ([, e]) ()
2~ N (5, o5). ™
A.2. Propagation

Generation. The overall procedure is described in the main
text, so we only describe some network implementation
details.

The self—mteractlon encoding e;’", pairwise-interaction en-

coding et , and the interaction weights wf are computed
as follows:
k k se
= MLP3 (uf) ®)
= MLP,,(uf, uy) ©)
weigh
= MLPyi"™ (u,). (10)

Given the hidden state hf of the OS-RNN, the state latent

state, k

z, is computed as follows:
~ state,k ~ state,k tat k
(7", 647" = MLPyG (hy) (11
zilale,k ~ N(Nztate k, (;_ztate,k)7 (12)
and given the state latent z;“*, the attribute latents z2""* =
[gdePhk pwhere,k | what, k] are computed as follows:

pres,k ~depth, k ~ depth k ~where,k ~ where,k
(P u

t oy Wt y Ut
[L;Vhal k’ &;Nhat k] MLP;;lrllor< ~state, k) (13)
i‘t’res’k ~ Bernoulli(pP™*) (14)

~depth, k ~depth,k ~ depth,k
2, 7~ N (P) (15)

~where, k ~ where,k ~ where,k
Zy ~ N (fa; y Ot) (16)

i:vhal,k -~ N(plrlhat,k7 &:vhal,k). (17)

Inference. We only need to describe the implementation of
(73" x4, 2%, ;). First, a posterior OS-RNN will be
used to update the posterior object state:

h¥ = RNN®

state,k _ctx,k rel k k
pmt([ot 15 %¢ € 1€ 1] ht 1) - (18)

x,k
Here, €,7}" is computed using exactly the same process

Lk .
and network as generation, and ef 1 1s computed using a

similar process during generation but with a separate set of
posterior networks MLP*!t MLP™! | and MLPY¢™,

post? post? post

Then, a proposal region of the image x; centered at the
previous object location oty’lk is extracted and encoded.
The size s}"? (2-dimensional for (h,w)) of this proposal

area is computed from hf.

hw.k . .
Sgrnp — Ot 71)1 + Smln + (smax _ Smln) .

o (MLPP™P (h¥))
19)

Where s™" and s™* are hyperparameters that control the

minimum and maximum proposal update size. After that,

the proposal is extracted and encoded:

gl P = ST(x, 07YF | PP (20)
el PF — ConyProP(gh™P k), (21)

Then h¥ and e” °P:* will be used to infer 7 en: -
[ﬁilale,k7 &ilale,k] MLP;?S([hk prop,k]) , (22)
Zztate,k ~ N(ﬂ;mte’k, &;tdte,k). (23)

Attribute updates. For this part we describe the details
of object attribute update function fP's, f depth - pwhere and
f¥hat These functions are implemented as follows:

[ggepth k,g;vhermk, gwhat,k] (MLPgate(~ state, k)) (24)
apres,k _ ngslk Zgres (25)
6depth,k _ O?epth,k + cdepth . g(tflepthJc . Zdepth7k (26)
6fy’k = oY ke, gmy’k tanh(z; ¥ k) 27
o,k = o - M gl F tanh(z)) (28)
6zvhat,k _ Ozvhal k + cwhat . gWhat k tanh(~what, k) (29)
Note we split o"here into o and o%Y. Here,

cdepth czy chw ewhat gre real-valued hyperparameters be-
tween 0 and 1 that control the degree of update we want.
Note that for fdepth = fwhere and fwhat " the corresponding
update gates gP™F gk and gMtE will first be com-

puted from z™** and used to mask the update values.

A.3. Discovery

Generation. We assume an independent prior for each
object:

p(z?) = (@)p(E"™) {p(E ™)
Spres,ij

p(Z\tNhere,ij)p(izvhat,ij) }) (30)

All of these priors are fixed Gaussian distributions with
chosen mean and variance except for p(zP**), which is a
Bernoulli distribution.

Inference. We feed in the image x; along with the differ-
ence between the x; and the reconstructed background into
an encoder to get an encoding of the current image e} © of
shape (H, W, C):

img

e™ = Conv®™([x, x; — /ft’g]) 31

To infer z;, besides the current image x;, we also consider
the propagated objects {6,{“}sz1 to prevent rediscovering
already propagated objects. We adopt the same mechanism
in SILOT to condition discovery on propagation. Specifi-
cally, for each discovery cell (i,5) € {(1,1),...,(H, W)},
a vector €™ will be computed as a weighted sum of all
propagated objects {z} } 2|, with the weights computed by
passing the relative distance between the propagated object
67" and the cell center ¢/ into a Gaussian kernel:

ZG ~zy.k i"

where G is a 2-D Gaussian kernel, and o
rameter.

cond Ky

cond) MLPcond() (32)

cond

is a hyperpa-

The discovered latents will then be computed conditioned on
the image features and the encoding of propagated objects:

—state,ij —state,ij —pres,ij .- depth,ij —depth,ij _ where,ij
Y Y T TSy T

&:/here,ijj ﬁ\tazhat,ij76_¥/hat,i]] MLPdlSC([img,ij e;:ond,ij]
(33)
Zilale,ij ~ ./\/(ﬂitate,ij7 6_;tate,ij) (34)
Zfres’ij ~ Bernoulli(pP™%) (35)
deplh7i'j NN(ﬂdepth,ij &geplhjj) (36)
szhere,ij NN(H;/Nhere 17 a_zvhere,ij) (37)
Z;«hat,ij ~ N(“\t)vhat 1]7 6_\tzvhat,ij) (38)

Finally, we compute the object representation 6? us-
ing these latents. ol st GiePthid GWhaLis - hey will
just be equal to zP" depth i ’Whal i) For o,
(6,4 &%, we want 6" to be in range (0,1) and
6:Y"" in range (—1,1). Besides, as in SILOT, z/¥"" is rela-
tive to the cell center ¢/, so we need to transform relative

locations to global locations using
= o(z/"") (39)
6;”“] =c"” +2-tanh(z W’”)/[VV, H) (40)

For o;
—where,ij

(—)hw,ij

where ¢ = 2 - ([i,j] +0.5)/[W, H] — 1

A.4. Rendering

The background image u]t)g will be decoded from the context
latent z§™:

Ctx Ctx

pb® = DeconvS™ (z5%) (41)

For foreground, we will first select a set of K objects
{oF}£ | from the set of discovered and propagated ob-
jects 6; U 6;. To render the set of selected objects {of }1X_,
into the foreground image uig and foreground mask oy, a
similar procedure in SILOT is used. First, individual object

~att,k ~ att,k hat, k
appearance y; " and mask & " are computed from o}
pres,k .
and o;
att,k att,ky _ what /_what,k
ly; ", ay "] = o(Deconv™ (0, ")) (42)
~att,k att,k 5,k
&t = ot o™ (43)
~att,k _ aatt,k att, k
Y =0y, (44)

Here, °"* and & ™" will be of a small glimpse size

(Hy,W,). We will then transform them into full image
size (Himg, Wimg) by putting them in an empty canvas using
a (inverse) Spatial Transformer:

yic — ST—l (yetm,k7 Orlhere,k) (45)

aic — ST_l(dzn’k, O;vhere,k) (46)

Then uig and o will be computed as pixel-wise weighted
sums of these image-sized maps:

r_ of -o(0f™")
Wi = =K depth, (47)
Zj:l a; - o(oy)
K
f
pit =y wi-y (48)
k=1
K
oy = Z wi - of (49)
k=1

The final rendered image will be p, = uig +(1-ay) ,u]t’g.

The likelihood py(x;|z%, Z<;) is then

po(xt22y, 7<) = N (xe|ay, 0°T) (50)

where o is a hyperparameter.

B. Architectures, Hyperparameters, and
Training
B.1. Training

For all experiments, we use the Adam (Kingma & Ba, 2014)
optimizer with a learning rate of 1 x 10~* except for the
maze dataset. We use a batch size of 16 for all experiments.
Gradient clipping (Pascanu et al., 2013) with a maximum
norm of 1.0 is applied. For both z} " and 2R we
use a Gumbel-Softmax relaxation (Jang et al., 2016) with

temperature 7 to make sampling differentiable.

For experiments on datasets without background, we manu-
ally set ,u?g to empty images. For the maze dataset, we turn
off the gradient of the foreground module and only learn to
reconstruct background for the first 500 steps. Also, we use
a learning rate of 5 x 10~° instead of 1 x 107%.

B.2. Architectures

All RNNs are implemented as LSTMs (Hochreiter &
Schmidhuber, 1997). For all equations that describe RNN
recurrence, the notation h includes both the hidden state
and cell state used in common LSTMs. However, when h is
used as an input to another network, we use only the hidden
state. For all initial states (hg), we treat them as learnable
parameters with unit Gaussian random initialization. For
both the prior and posterior object-state RNN, inputs are
first embedded with a single fully connected layer denoted
by MLPY. —and MLP®

prior post*

For all networks that output variances of Gaussian distri-
butions, we apply a softplus function to ensure that the
variances are positive. For all networks that output the pa-
rameters of Bernoulli distributions (for zP**), we apply a
sigmoid function.

Table 1 lists all networks. Here, LSTM(a, b) denotes an
LSTM with input size a and hidden size b. For MLPs, the
Architecture column lists the hidden layer sizes, not includ-
ing input and output layer. The identity of input and output
variables can be found in equations where each network
appears, and the dimensions of these variables will be given
in Section B.3.

For all network layers except for output layers, we use the
CELU (Barron, 2017) activation function. For all convolu-
tion layers except for output layers, we use group normal-
ization (Wu & He, 2018) with 16 channels per group. Note
that MLPS0, MLPLA®, MLPL MLPS are implement as
stride-1 convolutions to facilitate parallel computation.

In Table 1, Conv¥* is implemented with ResNetl18 (He
et al., 2016) by taking the feature volume from the third
block (1/8 of the image size) and applying a stride-1 or -2,
3 x 3 convolution layer depending on the grid size (H, W)
(in this work H = W and is either 8 or 4) to obtain e,".
Table 2, Table 3, Table 4, Table 5, and Table 6 list other
convolutional encoders and decoders that are referred to in
Table 1. In these tables, Subconv denotes a sub-pixel convo-
lution (Shi et al., 2016) implemented by a normal convolu-
tion layer plus a PyTorch PixelShuffle operation. The stride
of Subconv will be used as a parameter for PixelShuffle.
GN(n) denotes group normalization with n groups.

B.3. Hyperparameters

Table 7 lists the hyperparameters for the 2 LAYER dataset.
Hyperparameters for other experiments are similar.

Table 1. Network details

Description Symbol Architecture
Context prior RNN RNN;‘r’i‘Or LSTM(128, 128)
Generate z$™ from h§™ MLP}, [128, 128]
Decode z5™ into g2 Deconv™ See Table 3
Context posterior RNN RNNIC)‘O"St LSTM(128, 128)
Infer 28 from [h°*, x;] MLPS, [128, 128]
Encode x; into €S Conv™ See Table 2
Encode x; into e} Cony®* See the text
Encode 6f during discovery MLpeod [128, 128]

Infer Z’ from [e}"*" """ MLpdse [128, 128]

Prior OS-RNN RNNgls.ior LSTM(128, 128)
OS-RNN input embedding MLPL, [
Self-interaction encoding MLP;;%{H [128, 128]
Pairwise-interaction encoding MLP [128, 128]
Attention weights over object pairs MLPKrigrh[[128, 128]
Attention on Environment encoder ~ Conv; See Table 4
Generate Z, ™ from h? MLPES [128, 128]
Generate 7" from z;“'** MLP MLPE 128, 128]
Posterior OS-RNN RNNBZSt LSTM(128, 128)
OS-RNN input embedding MLPy [l

Predict proposal size sP"P"" MLPP™P [128, 128]
Encode proposal into e?™P** ConvP™P See Table 5
Self-interaction encoding MLP‘E)%]:t [128, 128]
Pairwise-interaction encoding MLPffolSt [128, 128]
Attention weights over object pairs MLP;;“(S’Si;‘"hl [128, 128]

Infer z™** from [h}, &P MLP;ite [128, 128]
Decode z)™"" into y*“* o Decony"h See Table 6

Table 2. Conv‘™

Table 6. Deconv*™

Layer Size/Ch. Stride Norm./Act.
Input 3
Conv7 x7 64 2 GN@4)/CELU
Conv3 x3 128 2 GN(8)/CELU
Conv3 x3 256 2 GN(16)/CELU
Conv3 x3 512 2 GN(32)/CELU
Flatten
Linear 128
Table 3. Deconv™
Layer Size/Ch. Stride Norm./Act.
Input 128 (1d)
Reshape 128 (3d)
Subconv 3 x 3 64 2 GN(4)/CELU
Subconv 3 x 3 32 2 GN(2)/CELU
Subconv 3 x 3 16 2 GN(1)/CELU
Subconv3 x3 3 2
Sigmoid
Table 4. Convey
Layer Size/Ch. Stride Norm./Act.
Input 3
Conv3 x3 16 2 GN(1)/CELU
Conv3 x3 32 2 GN(2)/CELU
Conv3 x3 64 2 GN#4)/CELU
Conv3 x3 128 2 GN(8)/CELU
Flatten
Linear 128
Table 5. Conv™P
Layer Size/Ch. Stride Norm./Act.
Input 3
Conv3 x3 16 2 GN(1)/CELU
Conv3 x3 32 2 GN(2)/CELU
Conv3 x3 64 2 GN4)/CELU
Conv3 x3 128 2 GN(8)/CELU
Flatten
Linear 128

Layer Size/Ch. Stride Norm./Act.

Input 128 (1d)

Reshape 128 (3d)

Subconv 3 x 3 64 2 GN4)/CELU

Subconv 3 x 3 32 2 GN(2)/CELU

Subconv 3 x 3 16 2 GN(1)/CELU

Subconv3d x3 3+1 2

Sigmoid

Table 7. Hyperparameters

Description Symbol Value
Image size (Himg; Wimg) (64, 64)
Glimpse size (Hg, Wy) (16, 16)
Discovery grid size (H,W) 4,4
Dimension of z?"" 1
Dimension of z{"™* 1
Dimension of z} """ 4
Dimension of z}"™"* 64
Dimension of z}“** 128
Dimension of z$™ 128
Dimension of e"¢*/ 128
Dimension of €%/ 128
Dimension of 7" 128
Dimension of ef"k 128
Dimension of ef 7 128
Dimension of efy. ; 128
Dimension of 5% 128
Training sequence length T [2:20:2]
Curriculum milestones [10k:90k:10k]
#objects to select K 10
Likelihood variance o 0.2
AOE size s 0.25
Gaussian kernel sigma oo 0.1
Rejection IOU threshold 0.8
Discovery dropout 0.5
Auxiliary KL parameter D 1x1071°
Gumbel-softmax temperature 7 1.0
z2"°>" prior Bern(1 x 1071°)
zP™% prior mean 0
z2P™% prior stdev 1
z7¥"" prior mean 0
Z7¥" prior stdev 1
z!"™" prior mean -1.5
Z"™ prior stdev 0.3
z,™" prior mean 0
z,™" prior stdev 1
For updating """ clerth 1
For updating 67" fead 0.1
For updating 6, v 0.3
For updating 6}""* et 0.2
Minimum proposal size gmin 0.0
Maximum proposal size smax 0.2

C. Dataset Details
C.1. Bouncing Balls

In all settings, the balls bounce off the walls of the frame,
and no new balls are introduced in the middle of an episode.
Each episode has a length of 100. We split our data into
10,000 episodes for the training set, and 200 episodes each
for the validation set and test set.

In both the OCCLUSION and INTERACTION settings, there
are 3 balls each with a color drawn from a set of 5 colors
(blue, red, yellow, fuchsia, aqua), but for the OCCLUSION
case we do not allow duplicate colors.

C.2. Random Single Ball

In this dataset, a single ball moves down the center of the
frame for 9 timesteps. After 5 timesteps, the ball randomly
changes direction and moves towards either the bottom
left corner or the bottom right corner for the remaining
4 timesteps. We split our data into 10,000 episodes for the
training set, and 100 episodes each for the validation set and
test set.

C.3. Maze

The mazes are created using the maze1ib library! and then
removing dead ends manually. For the first frame, 3 or 4
agents of a random color drawn from 6 colors (red, lime,
blue, yellow, cyan, magenta) are randomly placed in the
corridors. The agents only move within the corridors and
continue in a straight path until it reaches an intersection. It
then randomly chooses a path, each with equal probability.
Each episode has a sequence length of 99. We split our data
into 10,000 episodes for the training set, and 100 episodes
each for the validation set and test set.

C.4. 3D Interactions

We generate the 3D Interactions dataset using Blender (Com-
munity, 2018), with the same base scene and object prop-
erties as the CLEVR dataset (Johnson et al., 2016). In this
dataset, we split our dataset into 2920 episodes for training,
and 200 episodes for validation and test. Each episode has a
length of 100.

We use three different objects (sphere, cylinder, cube), two
different materials (rubber, metal), three different sizes, and
five different colors (pink, red, blue, green, yellow) to gen-
erate the scenes. All objects move on a smooth surface
without friction.

To generate the dataset, we randomly put 3 to 5 objects
in the camera scene, and launch a sphere into the scene
colliding with other objects. The appearance and incident

'https://github.com/theJollySin/mazelib

angle of this initial sphere are also randomly selected.

D. Experiment Details

. . . _ pres, k
For all experiments that require generation, we set z}

to 1 for all timesteps at test time to ensure that objects
do not disappear. Besides, we turn off discovery after the
first timestep. For the bouncing ball experiments, during
generation, we directly take the mean of each latent instead
of sampling for all models since no stochasticity is involved.

D.1. Bouncing Balls

We draw random sequences of length 20 for training. During
testing, for each sequence of length 100, we condition on the
first 10 frames and generate the following. We use 5 random
seeds to run the experiments per model per dataset. All
models were trained till full convergence and the results are
computed using the model checkpoints that achieve the best
performances on the validation set. For quantitative results,
G-SWM is trained for 160000 steps for the INTERACTION,
OCCLUSION, and 2 LAYER settings, and 120000 steps for
the 2 LAYER-D settings.

D.2. Random Single Ball

We use full sequences of length 9 for training. At test time,
each model is provided the first 5 timesteps of the ground
truth, before the ball changes direction, and predicts the
final 4 timesteps.

D.3. Maze

We use sequences of length 10 for training. During testing,
we provide 5 ground truth timesteps as input. For quantita-
tive results, G-SWM, including its variants, are trained for a
maximum of 500000 steps.

D.4. 3D Interactions

For this dataset, we use sequences of length 20 for training.
However, since most interactions end after 30 steps, we
draw training sequences only from the first 30 steps. During
testing, for each test sequence of length 100, we provide the
first 10 frames as input and generate the following frames.

E. Additional Results

SILOT. We also test SILOT (Crawford & Pineau, 2020) on
the four bouncing ball datasets and the results are shown in
Figure 1. Being a very similar model to SCALOR, it can
handle frequent occlusions and is scalable, but cannot handle
the ball collisions well in the INTERACTION, 2 LAYER, and
2 LAYER-D settings, despite having a simple distance-based
interaction module.

https://github.com/theJollySin/mazelib

G-SWM

SILOT

Original

INTERACTION

OCCLUSION

2 LAYER

Figure 1. Generated frames of SILOT on the bouncing ball
datasets.

Tracking Performance. Table 8 shows the tracking per-
formance for the bouncing ball datasets. For tracking, we
report the Multi-Object Tracking Accuracy (MOTA) (Milan
et al., 2016), with an IoU threshold of 0.5.

Additional Visualizations. Figure 2 and Figure 3 show
visualizations of G-SWM on the two 2 LAYER datasets.
Figure 4 and Figure 5 show additional results on the Maze
and 3D datasets respectively.

References

Barron, J. T. Continuously differentiable exponential linear
units. arXiv preprint arXiv:1704.07483, 2017.

Community, B. O. Blender - a 3D modelling and ren-
dering package. Blender Foundation, Stichting Blender

Foundation, Amsterdam, 2018. URL http://www.

blender.org.

Crawford, E. and Pineau, J. Exploiting spatial invariance
for scalable unsupervised object tracking. In AAAI pp.
3684-3692. AAAI Press, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144,2016.

Johnson, J. E., Hariharan, B., van der Maaten, L., Fei-Fei,
L., Zitnick, C. L., and Girshick, R. B. Clevr: A diagnostic
dataset for compositional language and elementary visual
reasoning. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1988-1997, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Milan, A., Leal-Taixé, L., Reid, I. D., Roth, S., and
Schindler, K. Motl6: A benchmark for multi-object
tracking. ArXiv, abs/1603.00831, 2016.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In ICML (3), vol-
ume 28 of JMLR Workshop and Conference Proceedings,
pp- 1310-1318. JMLR.org, 2013.

Shi, W., Caballero, J., Huszar, E., Totz, J., Aitken, A. P,
Bishop, R., Rueckert, D., and Wang, Z. Real-time sin-
gle image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings

of the IEEE conference on computer vision and pattern
recognition, pp. 1874-1883, 2016.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European Conference on Computer Vision (ECCV),
pp- 3-19, 2018.

http://www.blender.org
http://www.blender.org
https://JMLR.org

Table 8. Tracking performance on the bouncing ball datasets.

G-SWM SCALOR STOVE
INTERACTION 0.9870 + 0.0032 0.9688 + 0.0101 0.9979 + 0.0005
OCCLUSION 0.9919 + 0.0013 0.9447 +0.0119 0.9618 &+ 0.0023
2 LAYER 0.9967 + 0.0041 0.9686 + 0.0102 —
2 LAYER-D 0.9756 + 0.0066 0.9501 4+ 0.0087 -

GT

GT

GT
G-SWM

Figure 2. G-SWM on the 2 LAYER dataset

Figure 3. G-SWM results on the 2 LAYER-D DATASET

L
=

tih] EBTRTE]
trary] [l el
mlﬂ
Ai ki i i
IEI'[ﬂEﬂFL[l'g:l'[_ﬂ
L1 CIIE] CT CTCl

509 GT
G-SWM

514 GT
G-SWM
519 GT
322 G-SWM
GT

G-SWM

D
[<IN

GT

N
(USERUVEN (O I \S I \ 9]
S O

W L ¢
o]
W N =

G-SWM

Figure 5. G-SWM results on the 3D-Interactions dataset

D L D L
W W W W ¢
=

W
YOI
NSJEoN

)
(98]
oo

539
540
541
542
543
544
545
546
547
548
549

