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Abstract
The Bayesian learning rule is a natural-gradient
variational inference method, which not only con-
tains many existing learning algorithms as special
cases but also enables the design of new algo-
rithms. Unfortunately, when variational parame-
ters lie in an open constraint set, the rule may not
satisfy the constraint and requires line-searches
which could slow down the algorithm. In this
work, we address this issue for positive-definite
constraints by proposing an improved rule that
naturally handles the constraints. Our modifica-
tion is obtained by using Riemannian gradient
methods, and is valid when the approximation at-
tains a block-coordinate natural parameterization
(e.g., Gaussian distributions and their mixtures).
Our method outperforms existing methods with-
out any significant increase in computation. Our
work makes it easier to apply the rule in the pres-
ence of positive-definite constraints in parameter
spaces.

1. Introduction
The Bayesian learning rule, a recently proposed method,
enables derivation of learning algorithms from Bayesian
principles (Khan & Rue, 2020). It is a natural-gradient
variational inference method (Khan & Lin, 2017) where, by
carefully choosing a posterior approximation, we can derive
many algorithms in fields such as probabilistic graphical
models, continuous optimization, and deep learning. Khan
& Lin (2017) derive approximate inference methods, such
as stochastic variational inference and variational message
passing; Khan et al. (2018) derive connections to deep-
learning algorithms; and Khan & Rue (2020) derive many
classical algorithms such as least-squares, gradient descent,
Newton’s method, and the forward-backward algorithm.
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We can also design new algorithms using this rule such as
uncertainty estimation in deep learning (Osawa et al., 2019)
and the ensemble of Newton methods (Lin et al., 2019a).

An issue with the rule is that when parameters of an poste-
rior approximation lie in an open constraint set, the update
may not always satisfy the constraints. For Gaussian ap-
proximations, the posterior covariance needs to be positive
definite but the rule may violate this; see Appendix D.1 in
Khan et al. (2018) for detail. A straightforward solution is
to use a backtracking line-search to keep the updates within
the constraint set (Khan & Lin, 2017), but this can lead to
slow convergence. In some cases, we can find an approxi-
mate update which always satisfies the constraints, e.g., for
Gaussian approximations (Khan et al., 2018). However, in
general, it is difficult to come up with such approximations
that are both fast and reasonably accurate. Our goal in this
paper is to modify the Bayesian learning rule so that it can
naturally handle such constraints.

We propose an improved Bayesian learning rule to han-
dle the positive-definite constraints. This is obtained by
using a generalization of natural-gradient methods called
Riemannian-gradient methods. We show that, for many
useful approximations with a specific block-diagonal struc-
ture on the Fisher information matrix, the constraints are
satisfied after an additional term is added to the rule. Such
a structure is possible when the parameters of the approxi-
mation are partitioned in what we call the block-coordinate
natural (BCN) parameterizations. Fortunately, for many
approximations with such parameterizations, the improved
rule requires almost the same computation as the original
rule. An example is shown in Figure 1 where our improved
rule fixes an implementation issue with an algorithm pro-
posed by Osawa et al. (2019) for deep learning. We present
examples where the improved rule converges faster than the
original rule and many existing baseline methods.

2. Bayesian Learning Rule
Given a dataset D, it is common to estimate unknown
variables z of a statistical model by minimizing1 ¯̀(z) ≡
`(D, z) + R(z) where `(D, z) is a loss function and R(z)

1We assume∇z
¯̀(z) and∇2

z
¯̀(z) exist almost surely whenever

they are needed. ∇ denotes the standard derivative in this paper.
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Variational Online Gauss-Newton (VOGN) Algorithm
1: z← µ+ (N ŝ)

−1/2 � ε, where ε ∼ N (0, I)
2: Randomly sample a minibatchM of size M
3: Compute and store individual gradients gi,∀i ∈M
4: gµ ← λ

Nµ+ 1
M

∑M
i=1 gi

5: m← r1 m + (1− r1) gµ, m̄←m/(1− rk1 )

6: gs ← λ
N − ŝ + 1

M

∑M
i=1(gi � gi)

7: ŝ← ŝ + (1− r2) gs
8: µ← µ− t m̄/s̄, where s̄← ŝ/(1− rk2 )

Our Adam-like Optimizer
1: z← µ+ (N ŝ)

−1/2 � ε, where ε ∼ N (0, I)
2: Randomly sample a minibatchM of size M
3: Compute a mini-batch gradient ḡ← 1

M

∑M
i=1 gi

4: gµ ← λ
Nµ+ ḡ

5: m← r1 m + (1− r1) gµ, m̄←m/(1− rk1 )

6: gs ← λ
N − ŝ + [(N ŝ)� (z− µ)]� ḡ

7: µ← µ− t m̄/s̄, where s̄← ŝ/(1− rk2 )
8: ŝ← ŝ + (1− r2) gs + 1

2 (1− r2)2gs � ŝ−1 � gs

Figure 1. Our improved Bayesian learning rule solves an implementation issue with an existing algorithm known as VOGN (Khan et al.,
2018) (shown in the left). VOGN is an Adam-like optimizer which gives state-of-the-art results on large deep learning problems (Osawa
et al., 2019). However, it requires us to store individual gradients in a minibatch which makes the algorithm slow (shown with blue in line
3 and 6). This is necessary for the scaling vector ŝ to obtain a good estimate of uncertainty. Our work in this paper fixes this issue using
the improved Bayesian learning rule. Our Adam-like optimizer (shown in the right) only requires average over the minibatch (see line
3). Line 6 is simply changed to use the re-parametrization trick with the averaged gradient. The additional terms added to the Bayesian
learning rule is shown in red in line 8. These changes do not increase the computation cost significantly while fixing the implementation
issue of VOGN. Due to our modification, the scaling vector ŝ always remains positive. A small difference is that the mean µ is updated
before in our optimizer (see line 7 and 8), while in VOGN it is the opposite. The difference shows that NGD depends on parameterization.

is a regularizer. Many estimation strategies can be used,
giving rise to various learning algorithms. E.g., maximum-
likelihood approaches use gradient-based methods such as
gradient descent and Newton’s method, while Bayesian ap-
proaches use inference algorithms such as message passing.

Khan & Rue (2020) showed that many learning algorithms
can be obtained from Bayesian principles. The key idea is
to use the following Bayesian formulation where, instead of
minimizing over z, we minimize over a distribution q(z):

min
q(z)∈Q

Eq(z)[`(D, z)] + DKL[q(z) ‖ p(z)] ≡ L(q). (1)

Here, q(z) is an approximation of the posterior of z given
D, Q is the set of approximation distributions, p(z) ∝
exp(−R(z)) is the prior, and DKL denotes the Kullback-
Leibler divergence. To obtain existing learning algorithms
from the above formulation, we need to carefully choose
the approximation family Q. Khan & Rue (2020) consider
the following minimal exponential family (EF) distribution:

q(z|λ) := h(z) exp [〈φ(z),λ〉 −A(λ)]

where φ(z) is a vector containing sufficient statistics, h(z)
is the base measure, λ ∈ Ω is the natural parameter, Ω is
the set of valid natural-parameters so that the log-partition
function A(λ) is finite, and 〈·, ·〉 denotes an inner product.

Khan & Rue (2020) present the Bayesian learning rule to
optimize (1), which is a natural-gradient descent (NGD)
update originally proposed by Khan & Lin (2017) for varia-
tional inference. The update takes the following form:

NGD : λ← λ− tĝ, with ĝ := F−1∂λ L(λ) (2)

where t > 0 is a scalar step-size and ĝ is the natural gradient
defined using the Fisher information matrix (FIM) F :=

−Eq[∂2
λ log q(z|λ)] of q and L(λ) which is equal to L(q)

but defined in terms of λ. Khan & Rue (2020) proposed
further simplifications, e.g., for approximations with base
measure h(z) ≡ 1, we can write (2) as

λ← (1− t)λ− t∂m Eq
[
¯̀(z)

]
(3)

where m := Eq(z)[φ(z)] denotes the expectation parameter.

Existing learning algorithms can be derived as special cases
by choosing an approximate form for q(z). For example,
when q(z) := N (z|µ,S−1) is a multivariate Gaussian ap-
proximation with the mean µ and the precision matrix S,
the learning rule (3) can be expressed as follows:

S← (1− t)S + tEq
[
∇2
z
¯̀(z)

]
(4)

µ← µ− tS−1Eq
[
∇z ¯̀(z)

]
(5)

This algorithm uses the Hessian to update S which is then
used to scale the update for µ, in a similar fashion as New-
ton’s method. The main difference here is that the gradient
and Hessian are obtained at samples from q(z) instead of
the current iterate µ. Khan & Rue (2020) approximate
the expectation at µ to obtain an online Newton method.
This algorithm is closely related to deep-learning optimiz-
ers, such as, RMSprop and Adam (Khan et al., 2018; Zhang
et al., 2018). A simplified version of this algorithm obtains
state-of-the-art results on large deep-learning problems for
uncertainty estimation as shown by Osawa et al. (2019).

Many other examples are discussed in Khan & Rue (2020),
including algorithms such as stochastic gradient descent.
The relationship to message passing algorithms and stochas-
tic variational inference is shown in Khan & Lin (2017). In
summary, the Bayesian learning rule is a generic learning
rule that can be used not only to derive existing algorithms,
but also to improve them and design new ones.
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2.1. Positive-Definite Constraints

An issue with updates (2) and (3) is that the constraint
λ ∈ Ω is not taken into account, where Ω is the set of valid
parameters. The update is valid when Ω is unconstrained
(e.g., a Euclidean space), but otherwise it may violate the
constraint. An example is the multivariate Gaussian of di-
mension d where the precision matrix S ∈ Sd×d++ is required
to be real and positive-definite, while the mean µ ∈ Rd is
unconstrained. In such cases, the update may violate the
constraint. E.g., in the update (4), S can be indefinite, when
the loss ¯̀(z) is nonconvex. A similar issue appears when
flexible approximations are used such as Gaussian mixtures.

Another example is a gamma distribution: q(z|α, β) ∝
zα−1e−zβ where both α, β > 0. We denote the positivity
constraint using S1

++. The rule takes the following form:

α← (1− t)α− tĝα, β ← (1− t)β − tĝβ (6)

where ĝα and ĝβ are gradient of Eq(z)
[
¯̀(z)− log z

]
with

respect to the expectation parametersmα = Eq(z)[log z] and
mβ = Eq(z)[−z] respectively; see a detailed derivation in
Appedix E.3 in Khan & Lin (2017). Here again the learning
rule does not ensure that α and β are always positive.

In general, a backtracking line search proposed in Khan &
Lin (2017) can be used so that the iterates stay within the
constraint set. However, this could be slow in practice. Khan
et al. (2018) discuss this issue for the Gaussian case; see Ap-
pendix D.1 in their paper. They found that using line-search
is computationally expensive and non-trivial to implement
for deep-learning problems. They address this issue by
approximating the Hessian in (4) with a positive-definite
matrix. This ensures that S is always positive-definite. How-
ever, such approximations are difficult to come up with for
general cases. E.g., for the gamma case, there is no such
straight-forward approximation in update (6) to ensure posi-
tivity of α and β. It is also possible to use an unconstrained
transformation (e.g., a Cholesky factor). This approach uses
automatic-differentiation (Auto-Diff), which can be much
slower than explicit gradient forms (see the discussion in
Section 4). Handling constraints within the Bayesian learn-
ing rule is an open issue which limits its applications.

In this paper, we focus on positive-definite constraints and
show that, in many cases, such constraints can be naturally
handled by adding an additional term to the Bayesian learn-
ing rule. We show that, for this to happen, the approximation
needs to follow a specific parameterization. We will now
describe the modification in the next section, and later give
its derivation using Riemannian gradient methods.

3. Improved Bayesian Learning Rule
We will give a new rule to handle the positive-definite con-
straints. Our idea is to partition the parameter into blocks

so that each constraint is isolated in an individual block.

Assumption 1 [Mutually-Exclusive Constraints] : We
assume parameter λ = {λ[1], . . . ,λ[m]} can be partitioned
intom blocks with mutually-exclusive constraints Ω = Ω1×
· · ·×Ωm, where square bracket [i] denotes the i-th block and
each block λ[i] is either unconstrained or positive-definite.

For example, consider multivariate Gaussian approxima-
tions with the two blocks: one block containing the mean µ
and another containing the full precision S. This satisfies the
above assumption because the first block is unconstrained
and the second block is positive definite. In d-dimensional
diagonal Gaussian cases, we consider 2d blocks: one block
containing the mean µi and one block containing the pre-
cision si for each dimension i, where each si is positive.
Other examples such as gammas and inverse Gaussians can
be partitioned to two blocks, where each block is positive.

Assumption 2 [Block Coordinate Parameterization] : A
parameterization satisfied Assumption 1 is block coordinate
(BC) if the FIM is block-diagonal according to the block
structure of the parameterization.

For Gaussians, using the mean and the covariance/precision
as two blocks is a BC parameterization (see Appendix E),
while the natural parameterization is not (Malagò & Pistone,
2015). For EFs, we could use the Crouzeix identity (Nielsen,
2019) to identify a BC parameterization.

Assumption 3 [Block Natural Parameterization for EF]
: For q(z|λ) and each block λ[i], there exist function φi and
hi such that q(z|λ) can be re-expressed as a minimal EF
distribution given that the rest of blocks λ[−i] are known.

q(z|λ) ≡ hi
(
z,λ[−i]

)
exp

[〈
φi

(
z,λ[−i]

)
,λ[i]

〉
−A(λ)

]
Lin et al. (2019a) originally use Assumption 3 to define a
multilinear EF. We illustrate this assumption on the Gaus-
sian distribution which can be written as the following expo-
nential form, where A(µ,S) = 1

2

[
µTSµ− log |S/(2π)|

]
is the log-partition function.

q(z|µ,S) = exp
(
− 1

2zTSz + zTSµ−A(µ,S)
)

Considering two blocks with µ and S respectively, we can
express this distribution as follows, where the first equation
is for µ while the second equation is for S:

q(z|µ,S) = exp(− 1
2zTSz)︸ ︷︷ ︸

h1(z,S)

exp
(
〈 Sz︸︷︷︸
φ1(z,S)

,µ〉 −A(µ,S)
)

= 1︸︷︷︸
h2(z,µ)

exp
(
〈− 1

2zzT + µzT︸ ︷︷ ︸
φ2(z,µ)

,S〉 −A(µ,S)
)

We define the block-coordinate natural (BCN) parameteri-
zation for an EF distribution as the parameterization which
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satisfies Assumptions from 1 to 3. Therefore, Gaussian
distribution with µ and S can be expressed in a BCN param-
eterization λ = {λ[1],λ[2]}, where λ[1] = µ and λ[2] = S.
Let λai denote the a-th entry of the i-th block parameter
λ[i], where ai is a local index for block i. ĝci is the c-th
entry of natural gradient ĝ[i] with respect to λ[i].

We now present the rule (see Section 5 for a derivation).
Under a BCN parameterization λ, our rule for block i takes
the following form with an extra term shown in red:

λci ← λci − tĝci− t
2

2

∑
ai

∑
bi

Γciaibi ĝ
ai ĝbi , (7)

where each summation is to sum over all entries of the
i-th block, Γciaibi := 1

2∂mci∂λai∂λbiA(λ), and mci is
the c-th entry of the BC expectation parameter m[i] :=

Eq
[
φi
(
z,λ[−i])] = ∂λ[i]A(λ).

The modification involves computation of the third-order
term of the log-partition function2 A(λ). In the following
Section 3.1 and 3.2, we discuss two examples where this
computation is simplified and can be carried out like the
original rule with minimal computational increase.

Table 2 in Appendix C lists more examples satisfying As-
sumption 1-3, where our rule can be applied and simplified.

3.1. Example: Online Newton using Gaussian
Approximation

The original rule for Gaussian approximations gives the up-
date (4)-(5), where the natural parameterization of Gaussian
is used. We consider the parameterization µ and S, in which
the improved rule takes the form (a detailed simplification
is in Appendix E) with an extra non-zero term shown in red:

µ← µ− tS−1Eq
[
∇z ¯̀(z)

]
+0 (8)

S← (1− t)S + tEq
[
∇2
z
¯̀(z)

]
+
t2

2
ĜS−1Ĝ, (9)

where Ĝ := S− Eq
[
∇2
z
¯̀(z)

]
. The extra term ensures that

the positive definite constraint is satisfied due to Theorem 1.

Theorem 1 The updated S in (9) is positive definite if the
initial S is positive-definite.

The proof of Theorem 1 can be found in Appendix E.1.

Although (8)-(9) appear similar to (4)-(5), there is one dif-
ference – the old S is used as a preconditioner to update µ.
Note that (8)-(9) becomes a natural-gradient descent (NGD)
update if we ignore the additional term. Though natural gra-

2 We assume A(λ) is (jointly) C3-smooth. Note that A(λ) is
block-wisely C3-smooth as shown in Johansen (1979). Approxi-
mations considered in this paper satisfy this assumption.

dient3 is invariant to parameterization, NGD update depends
on parameterization as shown by the difference. However,
we expect the difference to make a small change in practice.

Like Khan & Rue (2020), an online Newton method can
be obtained by approximating the expectations at µ, e.g.,
Eq
[
∇z ¯̀(z)

]
≈ ∇µ ¯̀(µ) and Eq

[
∇2
z
¯̀(z)

]
≈ ∇2

µ
¯̀(µ). In

this case, the algorithm converges to a local minimal of
the loss ¯̀(z). A key point is that, unlike Newton’s method
where the preconditioner may not be positive-definite for
nonconvex functions, S is guaranteed to be positive definite.

When applied to factorized Gaussians, these updates give an
improved version of the Variational Online Gauss-Newton
(VOGN) algorithm in Osawa et al. (2019). It is shown in
Figure 1 where the differences in our algorithm are shown
in red. Our algorithm uses the reparameterization trick to
avoid computing ∇2

z
¯̀(z) in (9). A derivation is given in

Appendix E.3. Our algorithm fixes an implementation issue
in VOGN without comprising its performance and speed,
where our update only stores a mini-batch gradient while
VOGN has to store all individual gradients in a mini-batch.

3.2. Example: Gamma Approximation

Let’s consider gamma cases. We use a BCN parameteri-
zation λ = {λ[1], λ[2]} (see Appendix F for detail), where
λ[1] = α and λ[2] = β

α . The constraint is Ω = S1
++ × S1

++.
Since each block contains a scalar, we use global indexes
as λ(i) = λ[i] and ĝ(i) = ĝ[i]. Moreover, we use Γi ii to
denote Γciaibi . Let Ga(·) be the gamma function. Under
this parameterization, a gamma distribution is expressed as:

q(z|λ) =
1

z
exp

(
λ(1) log z − zλ(1)λ(2) −A(λ)

)
,

where A(λ) = log Ga(λ(1))− λ(1)
(
log λ(1) + log λ(2)

)
.

Let ψ(·) be the digamma function. We can compute the
third derivatives (see Appendix F for a derivation) as:

Γ1
11 =

1
λ(1)×λ(1) + ∂2

λ(1)ψ(λ(1))

2
(
− 1
λ(1) + ∂λ(1)ψ(λ(1))

) , Γ2
22 = − 1

λ(2)

The proposed rule in this case is

λ(i) ← λ(i) − tĝ(i)− t
2

2

(
Γi ii

)
ĝ(i) × ĝ(i), i = 1, 2 (10)

where each ĝ(i) is a natural gradient computed via the im-
plicit re-parameterization trick as shown in Appendix F.2.

Theorem 2 The updated λ(i) in (10) is positive if the initial
λ(i) is positive.

The proof of Theorem 2 can be found in Appendix F.1.

3It is a representation of an abstract (parameterization-free)
tangent vector in a Riemannian manifold under a parameterization.
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3.3. Extension to EF Mixtures

Our learning rule can be extended to mixture approxima-
tions, such as finite mixture of Gaussians (MOG) (shown
in Appendix J) and skew Gaussian approximations (given
in Appendix K) using the joint FIM – the FIM of the joint
distribution of a mixture – as suggested by Lin et al. (2019a).
By extending the definition of the BCN parameterization
to the joint distribution, our rule can be easily applied to
mixture cases (see Appendix I for detail). For example,
our update for MOG approximation can be found at (27) in
Appendix J, where our rule handles the positive-definite con-
straints in MOG. Our update can be viewed as an improved
version of the ensemble of Newton methods proposed by
Lin et al. (2019a). We also discuss why it is non-trivial to
extend VOGN to MOG cases in Appendix J.1.

4. Related Works
In d-dim Gaussian cases, we can use unconstrained trans-
formations (e.g., a Cholesky factor). However, the natural-
gradient computation becomes complicated. Eq (2) gives
O(d6) for direct computation. Salimbeni et al. (2018) pro-
pose an indirect approach via two additional vector-Jacobian
products (VJPs), which could give O(d4). For some param-
eterizations, their approach gives an implicit O(d3) update,
where Auto-Diff is needed to track non-zero terms in the
additional Jacobians and to simplify the VJPs. Contrarily,
our method gives a simple and explicit O(d3) update and
builds a direct connection to Newton’s method. In practice,
our iterative update is 20 times faster than theirs in CPU
time from d = 101 to d = 104 if both use Auto-Diff. Our
approach is also easily extended to EFs and mixture cases.

Our work is closely related to the method of Tran et al.
(2019). They propose a method based on a retraction map
in Gaussian cases, which is a special case of ours (see Ap-
pendix E.4). However, their retraction map does not directly
generalize to other distributions, while ours does. They do
not provide a justification or derivation of the map. We fix
this gap by deriving the map from first principles, justifying
its use, and obtaining an Adam-like update by choosing a
proper parametrization for Gaussian cases (see Appendix
E). Moreover, in Tran et al. (2019), the retraction map and
Riemannian gradients used in neural network cases are not
derived from the same Riemannian metric. In our work, a re-
traction map induced by the proposed rule and Riemannian
gradients are naturally derived from the same metric.

Song et al. (2018) give a similar update in non-Bayesian
contexts, but the update does not always satisfy the con-
straints for univariate Gaussians (see Appendix A). Their
update is neither simple nor efficient for multivariate cases
such as multivariate Gaussians and MOGs (see Section 5.3).

Hosseini & Sra (2015) use a similar approach to ours but for

parameter estimation of Gaussian mixtures. They propose
a transformation for each Gaussian component so that the
mean and the covariance together can be re-parameterized
as an augmented positive-definite matrix with an extra con-
straint.4 They show that a local minimum of the negative
log-likelihood of a mixture automatically satisfies the extra
constraint. Thus, they can employ Riemannian-gradient
descent with a retraction map to update the augmented
positive-definite matrix, where the extra constraint can be
safely ignored. It is unclear if this approach generalizes to
variational inference settings since MOG approximations
require the extra constraint is satisfied at each iteration to
generate samples, and thus the constraint cannot be omitted.
Moreover, it is unclear whether Riemannian gradients and
the retraction are derived from the same metric for the mix-
ture since they are only designed for positive-definite matrix
manifolds instead of MOGs. In this work, we derive them
from the joint Fisher metric for MOGs in a principled way.

5. Derivation of the Improved Rule
5.1. Gradient Descent

We first review gradient descent in Euclidean spaces and
generalize it to Riemannian manifolds, where we derive our
rule. Recall that we want to minimize (1) in terms of λ as:

min
λ∈Ω

Eq(z|λ)[`(D, z)] + DKL[q(z|λ) ‖ p(z)] ≡ L(λ).

If Ω = Rd is a Euclidean space,5 we can solve the mini-
mization problem using gradient descent (GD) as:

GD : λ← λ− tg

where g = ∂λL(λ) denotes a Euclidean gradient and t > 0
is a scalar step-size. We can view the update as a line (the
shortest curve) L(t) in the Euclidean space Rd as t varies.
Given a starting point λ and a Euclidean direction −g, the
line is a differentiable map L(t) so that the following ordi-
nary differential equation6 (ODE) is satisfied.

L̇(0) = −g ; L(0) = λ; L̈(t) = 0 (11)

where L̇(x) := dL(t)
dt

∣∣
t=x

, L̈(x) := d2L(t)
dt2

∣∣
t=x

. The solu-
tion of the ODE is L(t) = λ− tg, which is the GD update.

5.2. Exact Riemannian Gradient Descent (RGD)

Unfortunately, Ω usually is not a Euclidean space but a
Riemannian manifold with a metric. A metric is used to
characterize distances in a manifold. A useful metric for
statistical manifolds is the FIM (Fisher, 1922; Rao, 1945).

4The parameterization violates Assumption 1 since the positive-
definite constraint of the augmented matrix and the extra constraint
can not be partitioned into two blocks.

5In this paper, it always uses a Cartesian coordinate system.
6It is also known as an initial value problem.
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Table 1. Table of Index Notation

λ[i] i-th block parameter of parameterization λ.
λai a-th entry of block parameter λ[i].

λa, λ(a) a-th entry of parameterization λ.
ga a-th entry of Euclidean gradient g.

ĝa, ĝ(a) a-th entry of Riemannian/natural gradient ĝ.
Fab entry of F with global index (a, b).
F ab entry of F−1 with global index (a, b).
Γcab entry with global index (c, a, b).
F aibi entry with local index (a, b) in block i.
Γciaibi entry with local index (c, a, b) in block i.

Now, we generalize gradient descent in a manifold. First, we
introduce the index convention and the Einstein summation
notation used in Riemannian geometry. The notation is
summarized in Table 1. We denote a Euclidean gradient g
using a subscript. A Riemannian gradient ĝ is denoted by a
superscript. A metric7 is used to characterize inner products
and arc length in a manifold. Given a metric F, let Fab
denote the element of F at position (a, b) and F ca denote
the element of F−1 at position (c, a). We use the Einstein
notation to omit summation symbols such as F caFab :=∑
a F

caFab . Therefore, we have F caFab = Icb, where
Icb is the element of an identity matrix at position (c, b).
A Riemannian gradient is defined as ĝc = F caga, where
ga is the a-th element of a Euclidean gradient g. When
F is the FIM, a Riemannian gradient becomes a natural
gradient. If the metric F is positive-definite for all8 λ ∈
Ω, an approximation family q(z|λ) induces a Riemannian
manifold denoted by (Ω,F) where λ is a coordinate system.

Like GD, RGD can be derived from a geodesic,9 which
is a generalization of the “shortest” curve10 to a manifold.
Given a starting point λ ∈ Ω and a Riemannian direction
−ĝ = −F−1g, a geodesic is a differentiable map L(t) so
that the following geodesic ODE11 is satisfied.

L̇c(0) = −F caga ; Lc(0) = λc (12)

L̈c(t) = −Γcab(t)L̇
a(t)L̇b(t) (13)

where Lc(t) is the c-th element of L(t), L̇c(x) :=
dLc(t)
dt

∣∣
t=x

, L̈c(x) := d2Lc(t)
dt2

∣∣
t=x

, Γcab(t) := Γcab
∣∣
λ=L(t)

.
Γcab is the Christoffel symbol of the 2nd kind defined by

Γcab := F cdΓd,ab ; Γd,ab := 1
2 [∂aFbd + ∂bFad − ∂dFab]

where ∂a := ∂λa is for notation simplicity and Γd,ab is
the Christoffel symbol of the 1st kind. L̈ characterizes the

7A metric is well-defined if it is positive definite everywhere.
8Such assumption is valid for minimal EF.
9The geodesic induces an exponential map used in exact RGD.

10Due to the Euler-Lagrange equation, a geodesic is a stationary
curve. However, a geodesic may not be the shortest curve.

11The domain of L(t) is R for a complete manifold.

curvature of a geodesic since a manifold is not flat in general.
In Euclidean cases, the metric F = I is a constant identity
matrix and (13) vanishes since Γd,ab and Γcab are zeros,
which implies Euclidean spaces are flat. Therefore, we
recover the GD update in (11) since ĝ = I−1g = g.

Given any parameterization with the FIM, we can compute
Γd,ab by using Eq (17) in Appendix D.1, which involves ex-
tra integrations. We will show that a BCN parameterization
can get rid of the integrations (see Theorem 3).

5.3. Our Rule as an Inexact RGD Update

However, it is hard to exactly solve the geodesic ODE. Inex-
act RGD is derived by approximating the geodesic.12 Recall
that the original rule is a natural gradient descent (NGD) up-
date. NGD can be derived by the first-order approximation
of the geodesic L(t) at t0 = 0 with the FIM.

NGD : λ← L(t0) + L̇(t0)(t− t0) = λ− tĝ

Unfortunately, this approximation is only well-defined in
a small neighborhood at t0 with radius t. For a stochastic
NGD update, the step-size t is very small, which often result
in slow convergence. Our learning rule addresses this issue,
which is indeed a new inexact RGD update. Moreover, our
update can use a bigger step-size and often converges faster
than NGD without introducing significant computational
overhead in useful cases such as gamma, Gaussian, MOG.

Consider cases when λ = {λ[1], . . . ,λ[m]} has m
blocks. We can express a Riemannian gradient as ĝ =
{ĝ[1], . . . , ĝ[m]}. We use the block summation notation
to omit the summation signs in (7) as Γciaibi ĝ

ai ĝbi :=∑
ai

∑
bi

Γciaibi ĝ
ai ĝbi . By the global index notation, we

have Γciaibi ĝ
ai ĝbi =

∑
a∈[i]

∑
b∈[i] Γ

(ci)
abĝ

aĝb, where [i] is
the index set for block i, (ci) is the corresponding global
index of local index ci, and a and b are global indexes.

We can extend the definition of a BC parameterization to any
Riemannian metric F. Given a metric F, we have Lemma 1
for any block i (see Appendix B.1 for a proof) :

Lemma 1 When λ is a BC parameterization of metric F,
we have ĝai = F aibigbi and Γciaibi = F cidiΓdi,aibi .

Given a manifold equipped with metric F and a BC pa-
rameterization λ, consider the solution of the block-wise
(geodesic) ODE13 denoted by R[i](t) for block i:

Ṙ ci(0) = −F ciaigai ; R ci(0) = λci (14)

R̈ ci(t) = −Γciaibi(t)Ṙ
ai(t)Ṙ bi(t) (15)

12A retraction map can be derived by approximating the
geodesic. An exact RGD update is invariant under parameteri-
zation while inexact RGD updates including NGD often are not.

13R[i](t) is easier to solve compared to L(t). Note that (14) is
the minimum requirement of a retraction map (Absil et al., 2009).
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where R ci(0), Ṙ ci(0), R̈ ci(t) respectively denote the

c-th entry of R[i](0), Ṙ
[i]

(0), and R̈
[i]

(t); Γciaibi(t) :=

Γciaibi

∣∣λ[−i]=R[−i](0)

λ[i]=R[i](t)
.

We use q̂(z|λ[i]) to denote q(z|λ) when λ[j] = R[j](0) is
known for each block j except the i-th block. F ciai is the
entry of (F[i])−1 at position (c, a), where F[i] is the sub-
block matrix of F for λ[i]. In fact, F[i] is the induced metric
for q̂(z|λ[i]), and R[i](t) is a geodesic for q̂(z|λ[i]) under
BC parameterization λ. Moreover, if λ is a BCN parameter-
ization and F is the FIM, we have Faibi = ∂λai∂λbiA(λ).

We define a curve R(t) := {R[1](t), . . . ,R[m](t)}. By
Lemma 1, we can show that the first-order approximation
of R(t) at t0 = 0 induces NGD if F is the FIM and λ is a
BC parameterization. Appendix B.2 shows this in detail.

We propose to use the second-order approximation14 of R(t)
at t0 = 0 as below, where λ is a BC parameterization.

Our : λci ← Rci(t0) + Ṙci(t0)(t− t0)+ 1
2 R̈

ci(t0)(t− t0)2

= λci − tĝci− t
2

2
Γciaibi ĝ

ai ĝbi (16)

where Γciaibi is computed at t0 = 0, ĝci = F ciaigai , and ci
denotes the c-th element of the i-th block. Our rule works
for both a BCN parameterization and a BC parameterization.

Song et al. (2018) suggest using the second-order approxi-
mation of L(t) at t0 = 0, which has to compute the whole
Christoffel symbol Γ

(ci)
ab. However, their proposal does

not guarantee the update stays in the constraint set even
in univariate Gaussian cases (see Appendix A). Moreover,
it is inefficient to compute the whole Christoffel symbol
since all cross terms between any two blocks are needed
in Γ

(ci)
abĝ

aĝb. When a parameterization has m blocks,
Γciaibi ĝ

ai ĝbi 6= Γ
(ci)
abĝ

aĝb since the hidden summations
are taken over entries only in block i on the left while the
summations are taken over entries in all m blocks on the
right. This is the key difference between our method and
their method. In our method, only the block-wise Γciaibi is
computed, which makes our method efficient in many cases
such as multivariate Gaussians and MOGs. Moreover, a
BCN parameterization can further simplify the computation
of our rule due to Theorem 3 (see Appendix D for a proof).

Theorem 3 Under a BCN parameterization of EF with the
FIM, natural gradients and the Christoffel symbol for each
block i can be simplified as

ĝai = ∂maiL(λ) ; Γdi,aibi = 1
2∂λai∂λbi∂λdiA(λ)

14Our approximation allows us to use a bigger step-size than
NGD. In many cases, the underlying parameterization constraints
are satisfied regardless of the choice of the step-size and therefore,
a line search for the constraint satisfaction is no longer required.

where λai is the a-th entry of λ[i]; mai is the a-
th entry of the BC expectation parameter15 m[i] :=

Eq
[
φi
(
z,λ[−i])] = ∂λ[i]A(λ).

Since A(λ) is C3-smooth for block λ[i] (Johansen, 1979),
we have ∂λai∂λbi∂λdiA(λ) = ∂λdi∂λai∂λbiA(λ). Thus,
by Theorem 3, we have Γci aibi = 1

2∂mci∂λai∂λbiA(λ).

A similar theorem for EF mixtures is in Appendix I.

To sum up, our rule is an instance of RGD with a retraction
(see footnote 12,13) derived from a metric. The convergence
of our rule could be obtained by existing analyses such as
Bonnabel (2013) if the retraction satisfies certain properties.

6. Numerical Results
Our implementation: github.com/yorkerlin/iBayesLRule

6.1. Results on Synthetic Examples

To validate our rule, we visualize our approximations
in 2-dimensional toy examples, where we use the re-
parametrization trick suggested by Lin et al. (2019a;b) (see
(20) in Appendix E for full Gaussian and (28) in Appendix
J for mixture of Gaussians (MOG)) to compute gradients.
Due to the trick, ∇2

z
¯̀(z) is not needed. See Figure 5-6 in

Appendix L for more visualization examples such as the ba-
nana distribution (Haario et al., 2001) and a BNN example
taken from Au et al. (2020). We then compare our method
to baseline methods in a higher dimensional example.

We first visualize Gaussian approximations with full covari-
ance structures for the Bayesian Logistic regression example
taken from Murphy (2013) (N = 60, d = 2). Figure 2(a)
shows posterior approximations obtained from various meth-
ods. From the figure, our approximation matches the exact
variational Gaussian approximation. For skew-Gaussian
approximations (Lin et al., 2019a) and mean-field Gaussian
approximations, see Figure 6 in Appendix L.

In the second example, we approximate the beta-binomial
model (Salimans & Knowles, 2013) (N = 20, d = 2) by
MOG. The exact posterior is skewed. From Figure 2(b),
we see that the approximation matches the exact posterior
better and better as we increase the number of mixtures.

In the third example, we approximate a correlated Laplace
distribution exp(−¯̀(z)) = Lap(z1|0, 1)Lap(z2|z1, 1) by
using MOG, where Lap(z2|z1, 1) = 1

2 exp(−|z2 − z1|).
The distribution is non-smooth and ∇2

z
¯̀(z) does not ex-

ist. However, we can use the re-parametrization trick since
∇z ¯̀(z) exists almost surely. From Figure 2(c), we see that
our method gives smooth approximations of the target.

15Instead of using m[i], we use m[i] to emphasize that Euclidean
gradient for m[i] is equivalent to natural gradient for λ[i].

https://github.com/yorkerlin/iBayesLRule
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Figure 2. Visualization of posterior approximations on 2-D toy examples. Figure 2(a) shows the Gaussian approximation to fit a Bayesian
logistic model, where our approximation matches the exact variational Gaussian approximation. Figure 2(b) shows MOG approximation
fit to a beta-binomial model in a 2-D problem. The number indicates the number of mixture components. By increasing the number
of components, we get better results. Figure 2(c) shows MOG approximation fit to a correlated 2-D Laplace distribution. The number
indicates the number of mixtures. We get smooth approximations of the non-smooth distribution. Figure 2(d) shows MOG approximation
fit to a double banana distribution. The number indicates the number of mixtures, where we only show the last 8 MOG approximations.
The complete MOG approximations can be found in Appendix L. As the number of components increases, we get better results.
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Figure 3. Comparison results on a 20-D mixture of Student’s t distributions with 10 components by MOG approximations. The leftmost
figure shows the performance of each method, where our method outperforms existing methods. The first 9 dimensions obtained by our
method are shown in the figure where MOG approximation fits the marginals well. We also test a 300-D mixture problem in Appendix L.

In the fourth example, we approximate the double banana
distribution constructed by Detommaso et al. (2018). The
true distribution has two modes and is skewed. As shown
in Figure 2(d), our MOG approximation approximates the
target better and better when we increase the number of
mixtures. For a complete plot using the approximation with
various components, see Figure 5(b) in Appendix L.

Finally, we conduct a comparison study on approximations
for a mixture of Student’s t distributions exp(−¯̀(z)) =
1
C

∑C
k=1 T (z|uk,Vk, α) with degrees of freedom α = 2,

where z ∈ Rd. We generate each entry of location vector uk
uniformly in an interval (−s, s). Each shape matrix Vk is
taken a form of Vk = AT

kAk + Id, where each entry of the
d× d matrix Ak is independently drawn from a Gaussian
distribution with mean 0 and standard deviation 0.1d. We
approximate the posterior distribution by MOG with K
components and use the importance sampling technique to
compute gradients as suggested by Lin et al. (2019a) so that
the number of Monte Carlo (MC) gradient evaluations is
independent of the number of components K. We compare

our method to existing methods, where the BayesLRule for
MOG is proposed by Lin et al. (2019a).

We consider a case with K = 25, C = 10, d = 20, s = 20.
For simplicity, we fix the mixing weight to be 1

K and only
update each Gaussian component with the precision Sc and
the mean µc during training. We use 10 MC samples to
compute gradients, where gradients are computed using ei-
ther the re-parametrization trick (referred to as “-rep”) as
shown in (28) in Appendix J or the Hessian trick (referred
to as “-hess”) as shown in (29) in Appendix J . Note that
BayesLRule with either the re-parametrization trick or the
Hessian trick does not stay in the constraint set. We use the
same initialization and tune the step size by grid search for
each method . The leftmost plot of Figure 3 shows the per-
formance. We clearly see that our methods converge fastest,
when we use the maximum mean discrepancy (MMD) to
measure the difference between an approximation and the
ground-truth. The remaining plots of Figure 3 show the first
9 marginal distributions of the true distribution and our ap-
proximations with two kinds of gradient estimation, where
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Figure 4. Results on real-world datasets showing the performances of our method (iBayesLRule) highlighted in red compared to BBVI,
BayesLRule with a line search, and VOGN. Figure 4(a) and 4(b) show the performances using Gaussian approximations with full
covariance structure to fit a Bayesian linear regression and a Bayesian logistic regression, respectively, where our method converges faster
than BayesLRule and BBVI and gives a more accurate approximation than VOGN. Figure 4(c) shows the performances using Gamma
approximations to fit a Gamma factor model, where our method converges faster. Figure 4(d) shows the performances of methods in a
Bayesian MLP network with diagonal Gaussian approximations, where our method performs comparably to VOGN.

MOG closely matches the marginals. All 20 marginal distri-
butions are in Figure 7 in Appendix L. We also consider a
more difficult case with K = 60, C = 20, d = 300, s = 25.
Figure 8-12 in Appendix L show all 300 marginal distribu-
tions obtained by our method.

6.2. Results on Real Data

Now, we show results on real-world datasets. We consider
four models in our experiments. The first model is the
Bayesian linear regression, where we can obtain the exact
solution and the optimal negative ELBO denoted by L∗.
We present results for full Gaussian approximations on the
“Abalone” dataset (N = 4, 177, d = 8) with 3341 chosen
for training. We train the model with mini-batch size 168. In
Figure 4(a), we plot the difference of ELBO between the ex-
act and an approximation. We compare our method (referred
to as “iBayesLRule” ) to the black-box gradient method (re-
ferred to as “BBVI” ) using the Adam optimizer (Kingma &
Ba, 2015) and the original Bayesian learning rule (referred
to as “BayesLRule” ) with the re-parametrization trick (re-
ferred to as “-rep”) and the VOGN method. BBVI requires
us to use an unconstrained parametrization. BayesLRule
with the re-parametrization trick does not stay in the con-
straint set so a line search has to be used in BayesLRule. We
can see that our method converges faster than BayesLRule
and BBVI and is more accurate than VOGN.

Next, we consider the Bayesian logistic regression and
present results for full Gaussian approximations on the
“Ionosphere” dataset (N = 351, d = 34) with 175 cho-
sen for training. We train the model with mini-batch size
17. In Figure 4(b), we plot the test log-loss and com-
pare our method to BBVI and BayesLRule with the re-
parametrization trick (referred to as “-rep”). We also con-
sider the VOGN method proposed for Gaussian approxima-
tions. Note that BayesLRule using the re-parametrization
trick does not stay in the constraint set and a line search is

used. From the plot, we can see our method outperforms
BayesLRule and performs comparably to VOGN.

Then, we consider the Gamma factor model (Knowles, 2015;
Khan & Lin, 2017) using Gamma approximations on the
“CyTOF” dataset (N = 522, 656, d = 40) with 300,000
chosen for training, where gradients are computed using
the implicit re-parametrization trick (Figurnov et al., 2018)
(referred to as “-rep”). We train the model with mini-batch
size 39 and tune the step size for all methods. In Figure 4(c),
we plot the test log-loss and compare our to BayesLRule and
BBVI. BayesLRule uses a line search since the updates us-
ing the re-parametrization trick do not satisfy the constraint.
Our method outperforms BayesLRule and BBVI.

Finally, we consider a Bayesian MLP network with 2 hidden
layers, where we use 1000 units for each layer. We train
the network with diagonal Gaussian approximations on the
“CIFAR-10” dataset (N = 60, 000, d = 3× 32× 32) with
50,000 images for training and 10,000 images for valida-
tion. We train the model with mini-batch size 128 and com-
pare our Adam-like update (referred to as “iBayesLRule-
adam”) to VOGN. We use the same initialization and hyper-
parameters in both methods. In Figure 4(d), we plot the vali-
dation accuracy. Our method performs similarly to VOGN.

7. Discussion
We present an improved learning rule to handle positive-
definite parameterization constraints. We propose a BCN pa-
rameterization so that natural gradients and the extra terms
are easy to compute. Under this parameterization, the Fisher
matrix and the Christoffel symbols admit a closed-form via
differentiation without introducing extra integrations.

Our main focus is on the derivation of simple and efficient
updates that naturally handle positive-definite constraints.
We give examples where our updates have low iteration cost.
We hope to perform large-scale experiments in the future.
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