
Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Appendices
In the appendices, we will use the index notation and the Einstein summation notation introduced in Section 5.2.

A. A counter-example for Song et al. (2018)
We show that the update suggested by Song et al. (2018) does not stay in the constraint set while ours does.

Let’s consider the following univariate Gaussian distribution under a BC parameterization λ = {µ, σ}, where σ denotes the
standard deviation16. The constraint is Ω1 = R and Ω2 = S1

++. ĝ(1) and ĝ(2) are natural gradients for µ and σ, respectively.

q(z|λ) = exp

{
− 1

2

(
z − µ
σ

)2

− 1
2 log(2π)− log(σ)

}

Recall that the Christoffel symbols of the second kind can be computed as Γcab = F cdΓd,ab where Γd,ab is the Christoffel
symbols of the first kind and F cd is the entry of the inverse the FIM, F−1, at position (c, d).

Under this parameterization, the FIM and the Christoffel symbols of the second kind are given below, where the Christoffel
symbols of the first kind are computed by using Eq. (17). The computation of the Christoffel symbols can be difficult since
the parameterization is not a BCN parameterization.

Fab =

[
1
σ2 0
0 2

σ2

]
, Γ1

ab =

[
0 − 1

σ
− 1
σ 0

]
, Γ2

ab =

[
1

2σ 0
0 − 1

σ

]
The update suggested by Song et al. (2018) is

µ← µ− tĝ(1) − tĝ(1) − t× t
2

Γ1
abĝ

(a)ĝ(b) = µ− tĝ(1) +
t2

2

(
2ĝ(1)ĝ(2)

σ

)

σ ← σ − tĝ(2) − tĝ(2) − t× t
2

Γ2
abĝ

(a)ĝ(b) = σ − tĝ(2) +
t2

2

(
2(ĝ(2))2 − (ĝ(1))2

2σ

)

Clearly, the updated σ does not always satisfy the positivity constraint S1
++.

As shown in Eq. (16), our rule can be used in not only a BCN parameterization but also a BC parameterization. Since
every block contains only a scalar, we use global indexes such as λ(i) = λai , ĝ(i) = ĝ[i] and Γi,ii = Γai,bici for notation
simplicity. Note that Γ1

11 = 0 is the entry at the upper-left corner of Γ1
ab and Γ2

22 = − 1
σ is the entry at the lower-right

corner of Γ2
ab. In our update (see Eq. (16)), we can see the update automatically satisfies the constraint as shown below.

λ(1)︷︸︸︷
µ ←

λ(1)︷︸︸︷
µ − t

2

2
Γ1

11ĝ
(1)ĝ(1) = µ− tĝ(1)

σ︸︷︷︸
λ(2)

← σ︸︷︷︸
λ(2)

− t
2

2
Γ2

22ĝ
(2)ĝ(2) = σ − tĝ(2) +

t2

2

(
(ĝ(2))2

σ

)
=

1

2σ︸︷︷︸
>0

[
σ2︸︷︷︸
>0

+
(
σ − tĝ(2)

)2

︸ ︷︷ ︸
≥0

]

As we discuss at Section 5.3 of the main text, only the block-wise Christoffel symbol Γi,ii for each block i is required,
which becomes essential for multivariate Gaussians and mixture of Gaussians.

16 It is also used as an unconstrained parameterization of Gaussian distributions for BBVI. Technically, this parameterization has
a positivity constraint, which is often ignored in practice. In multivariate cases, the Cholesky factor is used as an unconstrained
parameterization, where the positivity constraint in the diagonal elements is often ignored.
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Let’s consider another BC parameterization λ = {µ, v} for the Gaussian distribution, where v = σ2 denotes the variance.
Note that we consider the parameterization for univariate Gaussian. For multivariate Gaussian, see Appendix E.4. The
underlying constraint is Ω = R× S1

++. ĝ(1) and ĝ(2) are natural gradients for µ and v, respectively.

q(z|λ) = exp

{
− 1

2

(z − µ)2

v
− 1

2 log(2π)− 1
2 log(v)

}
Under this parameterization, the FIM and the Christoffel symbols of the second kind are given below, where the Christoffel
symbols of the first kind are computed by using Eq. (17). The computation of the Christoffel symbols can be difficult since
the parameterization is not a BCN parameterization.

Fab =

[
1
v 0
0 1

2v2

]
, Γ1

ab =

[
0 − 1

2v
− 1

2v 0

]
, Γ2

ab =

[
1 0
0 − 1

v

]
The update suggested by Song et al. (2018) is

µ← µ− tĝ(1) − t2

2
Γ1

abĝ
(a)ĝ(b) = µ− tĝ(1) +

t2

2

(
ĝ(1)ĝ(2)

v

)

v ← v − tĝ(2) − t2

2
Γ2

abĝ
(a)ĝ(b) = v − tĝ(2) +

t2

2

(
(ĝ(2))2

v
− (ĝ(1))2

)

Obviously, the above updated v does not always satisfy the positivity constraint.

Similarly, we use global indexes such as λ(i) = λai , ĝ(i) = ĝ[i] and Γi,ii = Γai,bici for notation simplicity since every block
contains only a scalar. Note that Γ1

11 = 0 is the entry at the upper-left corner of Γ1
ab and Γ2

22 = − 1
v is the entry at the

lower-right corner of Γ2
ab. In our update (see Eq. (16)), we can see the update automatically satisfies the constraint as

shown below.

µ← µ− tĝ(1) − t2

2
Γ1

11ĝ
(1)ĝ(1) = µ− tĝ(1)

v ← v − tĝ(2) − t2

2
Γ2

22ĝ
(2)ĝ(2) = v − tĝ(2) +

t2

2

(
(ĝ(2))2

v

)
=

1

2v︸︷︷︸
>0

[
v2︸︷︷︸
>0

+
(
v − tĝ(2)

)2

︸ ︷︷ ︸
≥0

]

B. Riemannian Optimization
B.1. Proof of Lemma 1

Let’s consider a parameterization λ := {λ[1], . . . ,λ[m]} with m blocks for a statistical manifold with metric F. We first
define a BC parameterization λ for a general metric F.

Definition 1 Block Coordinate Parameterization: A parameterization is block coordinate (BC) if the metric F under this
parameterization is block-diagonal according to the block structure of the parameterization.

Recall that we use the following block notation: Γciaibi ĝ
ai ĝbi :=

∑
a∈[i]

∑
b∈[i] Γ

(ci)
abĝ

aĝb where [i] denotes the index set
of block i, (ci) is the corresponding global index of ci, and a and b are global indexes.

Now, we prove Lemma 1.

Proof: By the definition of a Riemannian gradient ĝ, we have

ĝai =
∑
b

F (ai)bgb =
∑
b∈[i]

F (ai)bgb +
∑
b 6∈[i]

F (ai)b︸ ︷︷ ︸
0

gb =
∑
b∈[i]

F (ai)bgb = F aibigbi ,

where in the second step, F (ai)b = 0 for any b 6∈ [i] (see (18) for visualization) since the parameterization is BC, and we use
the definition of the block summation notation in the last step.
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Similarly, we have

Γciaibi =
∑
d

F (ci)dΓd,(ai)(bi) =
∑
d∈[i]

F (ci)dΓd,(ai)(bi) +
∑
d6∈[i]

F (ci)d︸ ︷︷ ︸
0

Γd,(ai)(bi) =
∑
d∈[i]

F (ci)dΓd,(ai)(bi) = F cidiΓdi,aibi

�

B.2. NGD is a First-order Approximation of R(t)

Now, we assume parameterization λ = {λ[1], . . . ,λ[m]} is a BC parameterization with m blocks. Recall that we define the
curve R(t) as R(t) := {R[1](t), . . . ,R[m](t)}, where R[i](t) is the solution of following ODE for block i.

Ṙ ci(0) = −F ciaigai ; R ci(0) = λci

R̈ ci(t) = −Γciaibi(t)Ṙ
ai(t)Ṙ bi(t)

where R ci(0), Ṙ ci(0), R̈ ci(t) respectively denote the c-th entry of R[i](0), Ṙ
[i]

(0), and R̈
[i]

(t); Γciaibi(t) :=

Γciaibi

∣∣λ[−i]=R[−i](0)

λ[i]=R[i](t)
.

Recall that F ciai is the entry of (F[i])−1 at position (c, a), where F[i] is the i-th block of F. Note that F and ĝ are computed
at λ = R(0). Since λ is a BC parameterization, by Lemma 1, we have F ciaigai = ĝci .

Therefore, when F is the FIM, the first-order approximation of R(t) at t0 = 0 is also a NGD update as shown below.

λci ← Rci(t0) + Ṙci(t0)(t− t0)

= λci − tĝci

C. Summary of Approximations Considered in This Work
Recall that we give Assumption 1-3 for exponential family distributions in Section 3. We also extend Assumption 1-3 to
exponential family mixtures as shown in Appendix I.

In Appendix H, F, G, E, J, K, we show that Assumption 1-3 are satisfied and the additional term for each approxima-
tion is simplified. In the corresponding appendix, we also show how to compute natural gradients with the (implicit)
reparameterization trick for each approximation listed in Table 2.

D. Exponential Family (EF) Approximation
D.1. Christoffel Symbols

We first show how to simplify the Christoffel symbols of the first kind. The FIM and the corresponding Christoffel symbols
of the first kind are defined as follows.

Fab := −Eq(z|λ) [∂a∂b log q(z|λ)] ; Γd,ab := 1
2 [∂aFbd + ∂bFad − ∂dFab]

where we denote ∂a = ∂λa for notation simplicity.

Since ∂aFbd = −Eq(z|λ) [∂b∂d log q(z|λ)∂a log q(z|λ)] − Eq(z|λ) [∂a∂b∂d log q(z|λ)], the Christoffel symbols of the first
kind induced by the FIM can be computed as follows , where λ can be any parameterization.

Γd,ab = 1
2

[
Eq(z|λ) [∂a∂b log q(z|λ)∂d log q(z|λ)]− Eq(z|λ) [∂b∂d log q(z|λ)∂a log q(z|λ)]

− Eq(z|λ) [∂a∂d log q(z|λ)∂b log q(z|λ)]− Eq(z|λ) [∂a∂b∂d log q(z|λ)]
]

(17)

Note that Eq 17 is also applied to a general distribution beyond exponential family. However, the Christoffel symbol is not
easy to compute due to extra integrations in Eq 17 and the FIM can be singular in general. The Christoffel symbol could be
easy to compute for an exponential family distribution under a BCN parameterization since we compute the symbol via
differentiation without the extra integrations. Moreover, the FIM is always positive-definite under a BCN parameterization.
Theorem 3 show this.

17We do not compute the additional term in MOG since λw ∈ RK−1 is unconstrained.
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Table 2. Summary of the Proposed Updates Induced by Our Rule in Various Approximations

Approximation Parameterization (λ) Constraints Additional Term

Inverse Gaussian (Appendix H) λ(1) = β2 λ(1) ∈ S1
++

t2

2

(
3

4λ(1)

) (
ĝ(1)

)2

λ(2) = α λ(2) ∈ S1
++

t2

2

(
1
λ(2)

) (
ĝ(2)

)2

Gamma (Appendix F) λ(1) = α λ(1) ∈ S1
++ − t

2

2

∂2

λ(1)
ψ(λ(1))+ 1

(λ(1))
2

2
(
∂
λ(1)

ψ(λ(1))− 1

λ(1)

) (ĝ(1)
)2

λ(2) = β
α λ(2) ∈ S1

++
t2

2

(
1
λ(2)

) (
ĝ(2)

)2

Exponential (Appendix G) λ(1) = λ λ(1) ∈ S1
++

t2

2

(
1
λ(1)

) (
ĝ(1)

)2

Multivariate Gaussian (Appendix E) λ[1] = µ λ[1] ∈ Rd 0

λ[2] = Σ−1 λ[2] ∈ Sd×d++
t2

2 ĝ
[2]
(
λ[2]
)−1

ĝ[2]

Mixture of Gaussians (Appendix J) {λ[1]
c }Kc=1 = {µc}Kc=1 λ[1]

c ∈ Rd 0

{λ[2]
c }Kc=1 = {Σ−1

c }Kc=1 λ[2]
c ∈ Sd×d++

t2

2 ĝ
[2]
c

(
λ[2]
c

)−1

ĝ[2]
c

λw = {log(πc/(1−
∑K−1
k=1 πk))}K−1

c=1 λw ∈ RK−1 017

Skew Gaussian (Appendix K) λ[1] =

[
µ
α

]
λ[1] ∈ R2d 0

λ[2] = Σ−1 λ[2] ∈ Sd×d++
t2

2 ĝ
[2]
(
λ[2]
)−1

ĝ[2]

D.2. Proof of Theorem 3

In this case, q(z|λ) is an EF distribution. Since λ is a BCN parameterization, given that λ[−i] is known, q(z|λ) is a
one-parameter EF distribution as

q(z|λ) = hi(z,λ
[−i]) exp

[
〈φi(z,λ

[−i]),λ[i]〉 −A(λ)
]

Therefore, we have the following identities given λ[−i] is known.

∂ai∂bi log q(z|λ) = −∂ai∂biA(λ); Eq(z|λ) [∂ai log q(z|λ)] = 0

where ∂ai = ∂λai for notation simplicity.

Using the above identities, we have

Eq(z|λ) [∂ai∂bi log q(z|λ)∂di log q(z|λ)] = −∂ai∂biA(λ)Eq(z|λ) [∂di log q(z|λ)]︸ ︷︷ ︸
0

= 0

Therefore, by Eq. (17), Γdi,aibi can be computed as follows

Γdi,aibi = − 1
2Eq(z|λ) [∂ai∂bi∂di log q(z|λ)] = 1

2∂ai∂bi∂diA(λ)

Let m[i] = Eq(z|λ) [φi(z)] denote the block coordinate expectation (BCE) parameter. We have

0 = Eq(z|λ) [∂ai log q(z|λ)] = mai − ∂aiA(λ)

where mai denotes the a-th element of m[i].

Therefore, we know that mai = ∂aiA(λ)

Recall that the i-th block of F denoted by F[i], can be computed as

Faibi = −Eq(z|λ) [∂bi∂ai log q(z|λ)] = ∂bi∂aiA(λ) = ∂bi [∂aiA(λ)] = ∂λbimai
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where ∂bi = ∂λbi is for notation simplicity.

Recall that λ is a BC parameterization with n blocks and F is block diagonal as shown below.

F =

F[1] . . . 0
...

. . .
...

0 . . . F[n]

 (18)

Recall that F ab denotes the element of F−1 with global index (a, b) and F aibi denotes the element of
(
F[i]
)−1

with local
index (a, b) in block i.

If F[i] is positive definite everywhere, we have

F aibi = ∂maiλ
bi

Note that F[i] is positive definite everywhere when q(z|λ[i],λ[−i]) is a one-parameter minimal EF distribution given λ[−i]

is known (See Theorem 1 of Lin et al. (2019a)).

By Lemma 1, Riemannian gradient ĝai can be computed as

ĝai = F aibigbi =
[
∂maiλ

bi
]

[∂λbiL] = ∂maiL

where gbi = ∂λbiL is a Euclidean gradient.

E. Example: Gaussian Approximation
We consider the following parameterization λ = {µ,S}, where µ is the mean and S is the precision. The open-set constraint
is Ω1 = Rd and Ω2 = Sd×d++ . Under this parameterization, the distribution can be expressed as below.

q(z|λ) = exp
(
− 1

2zTSz + zTSµ−A(λ)
)

where A(λ) = 1
2

[
µTSµ− log |S/(2π)|

]
Lemma 2 The Fisher information matrix under this parameterization is block diagonal with two blocks

F =

[
Fµ 0
0︸︷︷︸

FµS

FS

]
,

where FµS = −Eq(z)
[
∂vec(S)∂µ log q(z|µ,S)

]
and FS = −Eq(z)

[
∂2

vec(S) log q(z|µ,S)
]
.

Therefore, λ = {µ,S} is a BC parameterization.

Proof: We denote the i-th element of µ using µi. Similarly, we denote the element of S at position (j, k) using Sjk.
We prove this statement by showing cross terms in the Fisher information matrix denoted by FµS are all zeros. To show
FµS = 0, it is equivalent to show −Eq(z|λ)

[
∂Sjk∂µi log q(z|λ)

]
= 0 each µi and Sjk.

Notice that Eq(z|λ) [z] = µ. We can obtain the above expression since

Eq(z|λ)

[
∂Sjk∂µi log q(z|λ)

]
= Eq(z|λ)

[
∂Sjk

(
zTSei − eTi Sµ

)]
= Eq(z|λ)

[(
zT Ijkei − eTi Ijkµ

)]
= Eq(z|λ)

[(
eTi Ijk (z− µ)

)]
= eTi Ijk Eq(z|λ) [z− µ]︸ ︷︷ ︸

0

= 0
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where ei denotes an one-hot vector where all entries are zeros except the i-th entry with value 1, and Ijk denotes an one-hot
matrix where all entries are zeros except the entry at position (j, k) with value 1.

The above expression also implies that Eq(z|λ)

[
∂S∂µi log q(z|λ)

]
= 0. �

Now, we show that λ = {µ,Σ} is also a BC parameterization. Note that

−Eq(z|λ)

[
∂Σjk∂µi log q(z|λ)

]
= −Eq(z|λ)

[
Tr
{

(∂ΣjkS)∂S∂µi log q(z|λ)
}]

= −Tr
{

(∂ΣjkS)Eq(z|λ)

[
∂S∂µi log q(z|λ)

]︸ ︷︷ ︸
0

}
= 0.

Since FµΣ = −Eq(z|λ)

[
∂vec(Σ)∂µ log q(z|λ)

]
and −Eq(z|λ)

[
∂Σjk∂µi log q(z|λ)

]
= 0 from above expression for any i, j,

and k, we have FµΣ = 0. Therefore, λ = {µ,Σ} is also a BC parameterization since the cross terms of FIM under this
new parameterization denoted by FµΣ are zeros.

We denote the Christoffel symbols of the first kind and the second kind for µ as Γa1,b1c1 and Γa1 b1c1 , respectively.

Lemma 3 All entries of Γa1b1c1 are zeros.

Proof: We will prove this by showing that all entries of Γa1,b1c1 are zeros. For notation simplicity, we use Γa,bc to denote
Γa1,b1c1 in the proof. Let µa denote the a-th element of µ. The following expression holds for any valid a, b, and c.

Γa,bc = 1
2Eq(z|λ)

[
∂µb∂µc∂µaA(λ)

]
= 0

We can obtain the above expression since

Eq(z|λ)

[
∂µb∂µc∂µaA(λ)

]
= Eq(z|λ)

[
∂µb∂µc

(
eTa Sµ

)]
= Eq(z|λ)

[
∂µb

(
eTa Sec

)]
= 0

where in the last step we use the fact that S, ea, and ec do not depend on µ. �

Similarly, we denote the Christoffel symbols of the second kind for vec(S) as Γa2 b2c2 . Note that S is now a matrix. It is
possible but tedious to directly compute the Christoffel symbol and element-wisely validate the expression of the additional
term for S. Below, we give an alternative approach to identify the additional term for S as shown in the proof of Lemma 4.

Recall that R[2](t) is the solution of the following ODE for block vec(S):

Ṙ a2(0) = −ĝa2 ; R a2(0) = Sa2

R̈ a2(t) = −Γa2b2c2(t)Ṙ b2(t)Ṙ c2(t),

where R a2(t) denotes the a-th element of R[2](t) and Sa2 denotes the a-th entry of vec(S).

Lemma 4 The additional term for S is Mat(Γa2b2c2 ĝ
b2 ĝc2) = −ĝ[2]S−1ĝ[2] where ĝa2 denotes the a-th element of

vec(ĝ[2]).

Proof: As discussed in Sec 5, R[i](t) is a (block coordinate) geodesic given λ[−i] is known. In this case, given that µ is
known, R[2](t) has the following closed-form expression (Pennec et al., 2006; Fletcher & Joshi, 2004; Minh & Murino,
2017).

Mat(R[2](t)) = UExp(tU−1ĝ[2]U−1)U

where U = S
1
2 denotes the matrix square root and Exp(X) := I +

∑∞
n=1

Xn

n! denotes the matrix exponential function.18

18The function is well-defined since the matrix series is absolutely convergent element-wisely.
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The additional term for S can be obtained as follows.

−Mat(Γa2 b2c2 ĝ
b2 ĝc2) = Mat(R̈

[2]
(0))

= Mat(∇2
tR

[2](t)
∣∣
t=0

)

= ∇2
tMat(R[2](t))

∣∣
t=0

= ∇2
t

(
UExp(U−1tĝ[2]U−1)U

)∣∣
t=0

= U∇2
t

(
Exp(U−1tĝ[2]U−1)

)∣∣
t=0

U

= U(U−1ĝ[2]U−1)(U−1ĝ[2]U−1)U

= U(U−1ĝ[2]S−1ĝ[2]U−1)U

= ĝ[2]S−1ĝ[2]

where we use the following expression to move from step 5 to step 6.

∇2
tExp(tX)

∣∣
t=0

= ∇2
t

(
I +

∞∑
n=1

(tX)
n

n!

)∣∣
t=0

= X2

�

Finally, by Lemma 3 and 4, the update induced by the proposed rule is

µc ← µc − tĝc1 − t× t
2

0︷ ︸︸ ︷
Γc1a1b1 ĝ

a1 ĝb1

sc ← sc − tĝc2 − t× t
2

Γc2a2b2 ĝ
a2 ĝb2

where sc is the c-th element of vec(S).

Therefore, we have

µ←
vec(µc)︷︸︸︷
µ −t

vec(ĝc1 )︷︸︸︷
ĝ[1]

S← S︸︷︷︸
Mat(sc)

−t ĝ[2]︸︷︷︸
Mat(ĝc2 )

+
t× t

2
ĝ[2]S−1ĝ[2]︸ ︷︷ ︸

−Mat(Γ
c2
a2b2

ĝa2 ĝb2 )

E.1. Proof of Theorem 1

Now, we give a proof of Theorem 1.

Proof: First note that Ĝ = S− Eq
[
∇2
z
¯̀(z)

]
is a symmetric matrix. Let L be the Cholesky of the current S = LLT . We

can simplify the right hand side of (9) as follows:

(1− t)S + tEq
[
∇2
z
¯̀(z)

]
+
t2

2
ĜS−1Ĝ = S− tĜ +

t2

2
ĜS−1Ĝ = 1

2

(
S +

(
L− tĜL−T

)(
LT − tL−1Ĝ

))
= 1

2

(
S + UTU

)
,

where U := LT − tL−1Ĝ. Since the current S is positive-definite, and UTU is positive semi-definite, we know that the
update for S is positive-definite. �

E.2. Natural Gradients and the Reparameterization Trick

Since λ = {µ,S} is a BCN parameterization of a exponential family distribution, gradients w.r.t. BC expectation parameters
are natural gradients for BC natural parameters as shown in Theorem 3.
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Given that S is known, the BC expectation parameter is m[1] = Eq(z) [Sz] = Sµ. In this case, we know that ∂µL = S∂m[1]
L.

Therefore, the natural gradient w.r.t. µ is ĝ[1] = ∂m[1]
L = S−1∂µL = Σ∂µL.

Likewise, given that µ is known, the BC expectation parameter is m[2] = Eq(z)
[
− 1

2zzT + µzT
]

= 1
2

(
µµT − S−1

)
.

Therefore, the natural gradient w.r.t. S is ĝ[2] = ∂m[2]
L = −2∂S−1L = −2∂ΣL.

Recall that L(λ) = Eq(z|λ) [`(D, z)− log p(z) + log q(z|λ)], by the Gaussian identities (Opper & Archambeau, 2009;
Särkkä, 2013) (see Lin et al. (2019b) for a derivation of these identities), we have

∂µL(λ) = ∂µ
[
Eq(z|λ) [ `(D, z)− log p(z)]− 1

2 log |2πeΣ|
]

= ∂µ [Eq(z|λ) [ `(D, z)− log p(z)]]

= Eq(z|λ) [∇z [`(D, z)− log p(z)]] (19)

∂ΣL(λ) = ∂Σ

[
Eq(z|λ) [ `(D, z)− log p(z)]− 1

2 log |2πeΣ|
]

= ∂Σ [Eq(z|λ) [ `(D, z)− log p(z)]]− 1
2Σ−1

= 1
2Eq(z|λ)

[
Σ−1(z− µ)∇Tz [`(D, z)− log p(z)]

]
− 1

2Σ−1 (20)

= 1
2Eq(z|λ)

[
∇2
z [`(D, z)− log p(z)]

]
− 1

2Σ−1 (21)

where (19) is also known as the reparameterization trick for the mean, (20) is also known as the reparameterization trick for
the covariance, and we call (21) the Hessian trick.

Using Monte Carlo approximation, we have

∂µL ≈ ∇z [`(D, z)− log p(z)]

∂ΣL ≈
1

4

[
S̄ + S̄

T
]
− 1

2Σ−1 referred to as “-rep”

∂ΣL ≈ 1
2

[
∇2
z [`(D, z)− log p(z)]

]
− 1

2Σ−1 referred to as “-hess”

where S̄ := Σ−1(z− µ)∇Tz [`(D, z)− log p(z)] and z ∼ q(z|λ) = N (z|µ,Σ).

E.3. Adam-like Update

We consider to solve the following problem, where we use a diagonal Gaussian approximation q(z|µ, s) = N (z|µ, s) and
s = σ−2.

min
µ,s
L(µ, s) = Eq(z|µ,s)

[(
N∑
i=1

`i(z)

)
− logN (z|0, λ−1I) + log q(z|µ, s)

]

Note that

∂µL(µ, s) :=

N∑
i=1

∂µEq(z|µ,s) [`i(z)] + λµ

∂σ2L(µ, s) :=

N∑
i=1

∂σ2Eq(z|µ,s) [`i(z)] + 1
2λ−

1
2s

where ∂µEq(z|µ,s) [`i(z)] and ∂σ2Eq(z|µ,s) [`i(z)] can be computed by the reparameterization trick with MC approximations
where z ∼ N (z|µ, s).

∂µEq(z|µ,s) [`i(z)] = Eq(z|µ,s) [∇z`i(z)] ≈ ∇z`i(z)

∂σ2Eq(z|µ,s) [`i(z)] = 1
2Eq(z|µ,s) [s� (z− µ)�∇z`i(z)] ≈ 1

2 [s� (z− µ)]�∇z`i(z)

The natural gradients can be computed as follows.

ĝ
[1]
k = σ2

k

(
∂µL(µ, s)

∣∣
µ=µk,s=sk

)
ĝ

[2]
k = −2∂σ2L(µ, s)

∣∣
µ=µk,s=sk
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The update induced by our rule with exponential decaying step-sizes and the natural momentum (Khan et al., 2018) shown
in blue is given as follows.

µk+1 = µk − t1ĝ
[1]
k + t2σ

2
k � σ−2

k−1 �
(
µk − µk−1

)
σ−2
k+1 = σ−2

k − t3ĝ
[2]
k +

t23
2
ĝ

[2]
k � σ

2
k � ĝ

[2]
k

where t1 = t(1− r1)
1−rk2
1−rk1

, t2 = r1
1−rk2
1−rk1

1−rk−1
1

1−rk−1
2

, and t3 = (1− r2).

Recall that s = σ−2. The proposed update can be expressed as

µk+1 = µk − t(1− r1)
1− rk2
1− rk1

ŝ−1
k � gk + r1

1− rk2
1− rk1

1− rk−1
1

1− rk−1
2

ŝ−1
k � ŝk−1 �

(
µk − µk−1

)
ŝk+1 = ŝk + (1− r2)hk +

(1− r2)2

2
hk � ŝ−1

k � hk

sk+1 = N ŝk+1

where gk := 1
N

∑N
i=1 ∂µEq(z|µ,s) [`i(z)]

∣∣
µ=µk,s=sk

+ λ
Nµk and hk := 2

N

∑N
i=1 ∂σ2Eq(z|µ,s) [`i(z)]

∣∣
µ=µk,s=sk

+ λ
N − ŝk.

Let’s define mk :=
1−rk−1

1

t(1−rk−1
2 )

ŝk−1 �
(
µk−1 − µk

)
. We can further simplify the above update as shown below.

µk+1 = µk − t(1− r1)
1− rk2
1− rk1

ŝ−1
k � gk + tr1

1− rk2
1− rk1

ŝ−1
k �

(
1− rk−1

1

t(1− rk−1
2 )

ŝk−1 �
(
µk − µk−1

))

= µk − t
1− rk2
1− rk1

ŝ−1
k � [(1− r1)gk + r1mk]

mk+1 =
1− rk1
t(1− rk2 )

ŝk �
(
µk − µk+1

)
=

1− rk1
t(1− rk2 )

t
1− rk2
1− rk1

[(1− r1)gk + r1mk]

= (1− r1)gk + r1mk

ŝk+1 = ŝk + (1− r2)hk +
(1− r2)2

2
hk � ŝ−1

k � hk

= 1
2

[
ŝk + (ŝk + (1− r2)hk)� ŝ−1

k � (ŝk + (1− r2)hk)
]

sk+1 = N ŝk+1

where z ∼ q(z|µk, sk), gk ≈ ∇z`i(z) + λ
Nµk, and hk ≈ [(N ŝk)� (z− µ)]�∇z`i(z) + λ

N − ŝk.

E.4. Tran et al. (2019) is a special case of our update

In the Gaussian case, Tran et al. (2019) consider the following update by using parameterization λ = {µ,Σ}, where Σ is
the covariance matrix.

µ← µ− tΣ(∂µL) (22)

Σ← Σ− tĝ[2] +
t× t

2
ĝ[2]Σ−1ĝ[2] = Ret(Σ,−tĝ[2]). (23)

where the natural gradient19 for Σ is ĝ[2] := 2Σ(∂ΣL)Σ and the retraction map is Ret(Σ,b) := Σ + b + 1
2bΣ−1b.

However, Tran et al. (2019) do not justify the use of the retraction map, which is just one of retraction maps developed for
positive definite matrices. In this section, we show that how to derive this update from our rule.

19There is a typo in Algorithm 2 of Tran et al. (2019). The natural gradient for Σ should be 2Σ(∂ΣL)Σ instead of Σ(∂ΣL)Σ.
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As shown in Eq. (16), our rule can be used under not only a BCN parameterization but also a BC parameterization. Now, we
show that our rule can recover the above update using the parameterization λ = {µ,Σ}. Recall that this parameterization is
a BC parameterization. It only requires us to show that natural gradients and the additional terms are described in Eq. (23).

Given that Σ is known, µ is the natural parameter and the expectation parameter is m[1] = Eq(z)
[
Σ−1z

]
= Σ−1µ as

shown in Appendix E.2. Therefore, the natural gradient w.r.t. µ is ĝ[1] = ∂m[1]
L = Σ∂µL.

Now, we show that the natural gradients w.r.t. Σ is

ĝ[2] = 2Σ(∂ΣL)Σ

A proof using matrix calculus is provided below. See Malagò & Pistone (2015) for alternative proofs. By matrix calculus,
we have

− Eq(z) [∂Σij∂Σ [log q(z|µ,Σ)]]

=Eq(z)
[
∂Σij∂Σ

[
1
2 (z− µ)TΣ−1(z− µ) + 1

2 log |Σ/(2π)|
]]

= 1
2Eq(z)

[
∂Σij

[
−Σ−1(z− µ)(z− µ)TΣ−1 + Σ−1

]]
= 1

2Eq(z)
[
−∂Σij

[
Σ−1

]
(z− µ)(z− µ)TΣ−1 −Σ−1(z− µ)(z− µ)T∂Σij

[
Σ−1

]
+ ∂Σij

[
Σ−1

]]
= 1

2Eq(z)
[
−∂Σij

[
Σ−1

]
(z− µ)(z− µ)TΣ−1 −Σ−1(z− µ)(z− µ)T∂Σij

[
Σ−1

]
+ ∂Σij

[
Σ−1

]]
=− 1

2∂Σij
[
Σ−1

]
Eq(z)

[
(z− µ)(z− µ)T

]︸ ︷︷ ︸
Σ

Σ−1 − 1
2Σ−1 Eq(z)

[
(z− µ)(z− µ)T

]︸ ︷︷ ︸
Σ

∂Σij
[
Σ−1

]
+ 1

2∂Σij
[
Σ−1

]
= 1

2

[
−∂Σij

[
Σ−1

]
I− I∂Σij

[
Σ−1

]
+ ∂Σij

[
Σ−1

]]
=− 1

2∂Σij
[
Σ−1

]
Therefore, the block matrix of the FIM related to Σ is FΣ := −Eq(z)

[
∂2

vec(Σ) [log q(z|µ,Σ)]
]

= − 1
2∂vec(Σ)

[
vec(Σ−1)

]
due to the above expression. Note that F−1

Σ = −2∂vec(Σ−1) [vec(Σ)].

Note that ĝ[2] is the natural gradient for Σ. Since λ = {µ,Σ} is a BC parameterization, by Lemma 1, the natural gradient
w.r.t. vec(Σ) is

vec(ĝ[2]) := F−1
Σ vec(∂ΣL)

= −2∂vec(Σ−1) [vec(Σ)] vec(∂ΣL)

= −2∂vec(Σ−1) [vec(Σ)] ∂vec(Σ)L
= −2∂vec(Σ−1)L
= −2vec(∂Σ−1L)

where we obtain the fourth step using the chain rule.

Therefore, we have ĝ[2] = −2∂Σ−1L. By matrix calculus, we have

∂Σ−1L = −Σ(∂ΣL)Σ

Finally, we have

ĝ[2] = 2Σ(∂ΣL)Σ

Now, we show that the additional term for µ is 0 under parameterization λ = {µ,Σ}. Since λ is a BC parameterization, by
Lemma 3, all entries of Γa1b1c1 for µ are zeros. Therefore, the additional term for µ is 0.

We denote the Christoffel symbol of the second kind for vec(Σ) as Γa2 b2c2 . Now, we show that the additional term for Σ is
t×t
2 ĝ

[2]Σ−1ĝ[2]. It is equivalent to show Mat(Γa2b2c2 ĝ
b2 ĝc2) = −ĝ[2]Σ−1ĝ[2].
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Recall that the natural gradient for S = Σ−1 is G = −2∂ΣL. Under parameterization λ̄ = {µ,S}, R̄
[2]

(t) has the
following closed-form expression, which is used in the proof of Lemma 4.

Mat(R̄
[2]

(t)) = UExp(tU−1GU−1)U

where U = S
1
2 and Exp(X) := I +

∑∞
n=1

Xn

n! .

Note that Σ = S−1. Therefore, under parameterization λ = {µ,Σ}, we have

Σnew︷ ︸︸ ︷
Mat(R[2](t)) =

[ Snew︷ ︸︸ ︷
Mat(R̄

[2]
(t))

]−1

= (UExp(tU−1GU−1)U)−1

= U−1Exp(−tU−1GU−1)U−1

= Σ1/2Exp(−tΣ1/2GΣ1/2)Σ1/2

= Σ1/2Exp(tΣ1/2(2∂ΣL)Σ1/2)Σ1/2

= Σ1/2Exp(tΣ−1/2 [2Σ(∂ΣL)Σ]︸ ︷︷ ︸
ĝ[2]

Σ−1/2)Σ1/2

= Σ1/2Exp(tΣ−1/2ĝ[2]Σ−1/2)Σ1/2,

where we use the identity (Exp(tU−1GU−1))−1 = Exp(−tU−1GU−1).

Note that a geodesic is invariant under parameterization. Alternatively, we can obtain the above equation by using the fact
that R[2](t) is a geodesic of Gaussian distribution with a constant mean.

Using a similar proof as shown in Lemma 4, the additional term for Σ is

Mat(Γa2b2c2 ĝ
b2 ĝc2) = −ĝ[2]Σ−1ĝ[2]

where Γa2b2c2 is the Christoffel symbol of the second kind for vec(Σ) and ĝa2 denotes the a-th element of vec(ĝ[2]).

F. Example: Gamma Approximation
We consider the gamma distribution under the parameterization λ = {λ[1], λ[2]}, where λ[1] = α and λ[2] = β

α .

Since every block contains only a scalar, we use global indexes such as λ(i) = λ[i] , λ(i) = λai and Γi,ii = Γai,bici for
notation simplicity. The open-set constraint is Ω1 = S1

++ and Ω2 = S1
++. Under this parameterization, we can express the

distribution as below.

q(z|λ) = z−1 exp
(
λ(1) log z − zλ(1)λ(2) −A(λ)

)
where A(λ) = log Ga(λ(1))− λ(1)

(
log λ(1) + log λ(2)

)
and Ga(·) is the gamma function.

Lemma 5 The Fisher information matrix is diagonal under this parameterization. It implies that this parameterization is a
BC parameterization.

Proof: Notice that Eq(z|λ) [z] = 1
λ(2) . The Fisher information matrix is diagonal as shown below.

F = −Eq(z|λ)

[
∂2
λ log q(z|λ)

]
= −Eq(z|λ)

[
−∂2

λ(1)A(λ)
(
−z + 1

λ(2)

)(
−z + 1

λ(2)

)
−∂2

λ(2)A(λ)

]
= Eq(z|λ)

[
∂2
λ(1)A(λ) 0

0 ∂2
λ(2)A(λ)

]
=

[
∂λ(1)ψ(λ(1))− 1

λ(1) 0

0 λ(1)

(λ(2))
2

]
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where ψ(·) denotes the digamma function. �

Lemma 6 λ is a BCN parameterization.

Proof: By Lemma 5, we know that λ is a BC parameterization. Now, we show that λ = {λ(1), λ(2)} is a BCN
parameterization. Clearly, each λ(i) ∈ S1

++ has all degrees of freedom.

The gamma distribution which can be written as following exponential form:

q(z|λ(1), λ(2)) = z−1 exp
(
λ(1) log z − zλ(1)λ(2) −A(λ)

)
Considering two blocks with λ(1) and λ(2) respectively, we can express this distribution in the following two ways where
the first equation is for the λ(1) block while the second equation is for the λ(2) block:

q(z|λ(1), λ(2)) = z−1︸︷︷︸
h1(z,λ(2))

exp
(
〈log z − zλ(2)︸ ︷︷ ︸

φ1(z,λ(2))

, λ(1)〉 −A(λ)
)

= z−1 exp(λ(1) log z)︸ ︷︷ ︸
h2(z,λ(1))

exp
(
〈 −zλ(1)︸ ︷︷ ︸
φ2(z,λ(1))

, λ(2)〉 −A(λ)
)

Therefore, by the definition of BCN, we know that λ is a BCN parameterization.

�

Using this BCN parameterization, the Christoffel symbols can be readily computed as below.

Γ1,11 = 1
2∂

3
λ(1)A(λ) = 1

2

(
∂2
λ(1)ψ(λ(1)) +

1(
λ(1)

)2 ) , Γ2,22 = 1
2∂

3
λ(2)A(λ) = − λ(1)(

λ(2)
)3

Γ1
11 =

Γ1,11

F11
=

∂2
λ(1)ψ(λ(1)) + 1

(λ(1))
2

2
(
∂λ(1)ψ(λ(1))− 1

λ(1)

) , Γ2
22 =

Γ2,22

F22
= − 1

λ(2)

F.1. Proof of Theorem 2

We first prove the following lemma.

Lemma 7 Γ1
11 < − 1

λ(1) when λ(1) > 0.

Proof: By Eq 1.4 at Batir (2005) and the last inequality at page 13 of Koumandos (2008), we have the following inequalities
when λ(1) > 0.

∂λ(1)ψ(λ(1))− 1

λ(1)
>

1

2
(
λ(1)

)2 > 0 Batir (2005) (24)

∂2
λ(1)ψ(λ(1)) <

1(
λ(1)

)2 − 2∂λ(1)ψ(λ(1))

λ(1)
Koumandos (2008) (25)

By (25), we have

∂2
λ(1)ψ(λ(1)) +

1(
λ(1)

)2 < 2(
λ(1)

)2 − 2∂λ(1)ψ(λ(1))

λ(1)
=

2

λ(1)

(
1

λ(1)
− ∂λ(1)ψ(λ(1))

)
Since ∂λ(1)ψ(λ(1))− 1

λ(1) > 0, we have

2Γ1
11 =

∂2
λ(1)ψ(λ(1)) + 1

(λ(1))
2

∂λ(1)ψ(λ(1))− 1
λ(1)

< − 2

λ(1)

which shows Γ1
11 < − 1

λ(1) . �

Now, We give a proof for Theorem 2.
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Proof: The proposed update for λ(1) with step-size t is given below.

λ(1) ← λ(1) − tĝ(1) − t2

2

(
Γ1

11

) (
ĝ(1)

)2

> λ(1) − tĝ(1) +
t2

2

(
1

λ(1)

)(
ĝ(1)

)2

=
1

2λ(1)

[
2
(
λ(1)

)2

− 2tĝ(1)λ(1) +
(
tĝ(1)

)2
]

=
1

2λ(1)︸ ︷︷ ︸
>0

(λ(1)
)2

︸ ︷︷ ︸
>0

+
(
λ(1) − tĝ(1)

)2

︸ ︷︷ ︸
≥0


where in the second step we use the inequality Γ1

11 < − 1
λ(1) shown in Lemma 7 since the current/old λ(1) > 0.

Similarly, we can show the update for λ(2) also satisfies the constraint.

λ(2) ← λ(2) − tĝ(2) +
t2

2

(
1

λ(2)

)(
ĝ(2)

)2

=
1

2λ(2)︸ ︷︷ ︸
>0

(λ(2)
)2

︸ ︷︷ ︸
>0

+
(
λ(2) − tĝ(2)

)2

︸ ︷︷ ︸
≥0


It is obvious to see that the proposed update satisfies the underlying constraint. �

F.2. Natural Gradients

Recall that ĝ are the natural-gradients, which can be computed as shown below.

ĝ(1) =
∂λ(1)L

∂λ(1)ψ(λ(1))− 1
λ(1)

, ĝ(2) =

(
λ(2)

)2
λ(1)

∂λ(2)L

Recall that λ(1) = α and λ(2) = β
α . Using the chain rule, we know that

∂λ(1)L = ∂αL+
β

α
∂βL, ∂λ(2)L = α∂βL

∂αL and ∂βL can be computed by the implicit reparameterization trick (Salimans & Knowles, 2013; Figurnov et al., 2018).

G. Example: Exponential Approximation
In this case, there is only one block with a scalar. We use global indexes such as λ(1) = λ[1] and Γ1,11 = Γa1,b1c1 for
notation simplicity. We consider an exponential distribution under the natural parameterization λ = λ(1) with the open-set
constraint Ω = S1

++:

q(z|λ) = exp
(
−λ(1)z −A(λ)

)
where A(λ) = − log λ(1). The FIM is a scalar F11 = 1

(λ(1))
2 . It is obvious that λ is a BCN parameterization. the Christoffel

symbols can be readily computed as below.

Γ1,11 = 1
2∂

3
λ(1)A(λ) = − 1(

λ(1)
)3 , Γ1

11 =
Γ1,11

F11
= − 1

λ(1)
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The proposed natural-gradient update with step-size t is

λ(1) = λ(1) − tĝ(1) +
t2

2

(
1

λ(1)

)(
ĝ(1)

)2

where ĝ(1) is the natural-gradient. Note that ĝ(1) is the natural-gradient, which can be computed as shown below.

ĝ(1) =
(
λ(1)

)2

∂λ(1)L.

where ∂λ(1)L can be computed by the implicit reparameterization trick as ∂λ(1)L ≈ [∂λz] [∂zb(z)]. where z ∼ q(z|λ(1))
and b(z) := ¯̀(z) + log q(z|λ(1))

Lemma 8 The proposed update satisfies the underlying constraint.

Proof: The proposed natural-gradient update with step-size t is given below.

λ(1) ← λ(1) − tĝ(1) +
t2

2

(
1

λ(1)

)(
ĝ(1)

)2

=
1

2λ(1)

[
2
(
λ(1)

)2

− 2tĝ(1)λ(1) +
(
tĝ(1)

)2
]

=
1

2λ(1)

[(
λ(1)

)2

+
(
λ(1) − tĝ(1)

)2
]

It is obvious to see that the proposed update satisfies the underlying constraint. �

G.1. Implicit reparameterization gradient

Now, we discuss how to compute the gradients w.r.t. λ using the implicit reparameterization trick. To use the implicit
reparameterization trick, we have to compute the following term.

∂λz = −∂λQ(z|λ)

q(z|λ)
= −∂λ (1− exp(−λz))

λ exp(−λz)
= − z exp(−λz)

λ exp(−λz)
= − z

λ

where Q(z|λ) is the C.D.F. of q(z|λ).

H. Example: Inverse Gaussian Approximation
We consider the following distribution.

q(z|α, β) =

√
1

2πz3
exp

(
−zαβ

2

2
− α

2z
+

logα

2
+ αβ

)
where { 1

β , α} is a BC parameterization.

We consider a BCN parameterization λ = {λ[1], λ[2]}, where λ[1] = β2 and λ[2] = α and the open-set constraint is
Ω1 = S1

++ and Ω2 = S1
++. Since every block contains only a scalar, we use global indexes such as λ(i) = λ[i] and

Γi,ii = Γai,bici for notation simplicity. Under this parameterization, we can re-express the distribution as

q(z|λ) =

√
1

2πz3
exp

(
−z

2
λ(1)λ(2) − λ(2)

2z
−A(λ)

)
where A(λ) = − log λ(2)

2 − λ(2)
√
λ(1).

Lemma 9 The FIM is (block) diagonal under this parameterization.
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Proof: Notice that Eq(z|λ) [z] = 1√
λ(1)

. The FIM is (block) diagonal as shown below.

F = −Eq(z|λ)

[
∂2
λ log q(z|λ)

]
= −Eq(z|λ)

 −∂2
λ(1)A(λ) 1

2

(
−z + 1√

λ(1)

)
1
2

(
−z + 1√

λ(1)

)
−∂2

λ(2)A(λ)


= Eq(z|λ)

[
∂2
λ(1)A(λ) 0

0 ∂2
λ(2)A(λ)

]
=

[
1
4

(
λ(1)

)−3/2
λ(2) 0

0 1
2

(
λ(2)

)−2

]
�

It is easy to show that λ is a BCN parameterization since λ satisfies Assumption 1 to 3.

Due to the BCN parameterization, the Christoffel symbols can be readily computed as below.

Γ1,11 = 1
2∂

3
λ(1)A(λ) = − 3

16

(
λ(1)

)−5/2

λ(2) , Γ2,22 = 1
2∂

3
λ(2)A(λ) = −1

2

(
λ(2)

)−3

Γ1
11 =

Γ1,11

F11
= − 3

4λ(1)
, Γ2

22 =
Γ2,22

F22
= − 1

λ(2)

The proposed natural-gradient update with step-size t is

λ(1) ← λ(1) − tĝ(1)+
t2

2

(
3

4λ(1)

)(
ĝ(1)

)2

λ(2) ← λ(2) − tĝ(2)+
t2

2

(
1

λ(2)

)(
ĝ(2)

)2

Lemma 10 The update above satisfies the underlying constraint.

Proof: The proposed natural-gradient update with step-size t is given below.

λ(1) ← λ(1) − tĝ(1) +
t2

2

(
3

4λ(1)

)(
ĝ(1)

)2

=
1

4λ(1)

[
4
(
λ(1)

)2

− 4tĝ(1)λ(1) +
3

2

(
tĝ(1)

)2
]

=
1

4λ(1)

(2λ(1) − tĝ(1)
)2

︸ ︷︷ ︸
Term I

+
1

2

(
tĝ(1)

)2

︸ ︷︷ ︸
Term II


λ(2) ← λ(2) − tĝ(2) +

t2

2

(
1

λ(2)

)(
ĝ(2)

)2

=
1

2λ(2)

[
2
(
λ(2)

)2

− 2tĝ(2)λ(2) +
(
tĝ(2)

)2
]

=
1

2λ(2)

[(
λ(2)

)2

+
(
λ(2) − tĝ(2)

)2
]

Note that Term I and Term II cannot be both zero at the same time when λ(1) > 0. A similar argument can be made for the
update about λ(2). Therefore, the proposed update satisfies the underlying constraint. �

Recall that ĝ are the natural-gradients, which can be computed as shown below.

ĝ(1) =
4

λ(2)

(
λ(1)

)3/2

∂λ(1)L, ĝ(2) = 2
(
λ(2)

)2

∂λ(2)L
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Using the chain rule, we know that

∂λ(1)L =
1

2β
∂βL, ∂λ(2)L = ∂αL

∂αL and ∂βL can be computed by the implicit reparameterization trick (Salimans & Knowles, 2013; Figurnov et al., 2018)
as ∂ηL ≈ [∂ηz] [∇zb(z)], where η = {α, β}, z ∼ q(z|α, β) and b(z) := ¯̀(z) + log q(z|α, β)

H.1. Implicit reparameterization gradient

Now, we discuss how to compute the gradients w.r.t. α and β using the implicit reparameterization trick. To use the implicit
reparameterization trick, we have to compute the following term.

∂ηz = −∂ηQ(z|η)

q(z|η)

= −
∂η
[
Φ(
√

α
z (zβ − 1)) + exp(2αβ)Φ(−

√
α
z (zβ + 1))

]√
1

2πz3 exp
(
− zαβ2

2 − α
2z + logα

2 + αβ
)

where η = {α, β}, Q(z|η) is the C.D.F. of the inverse Gaussian distribution, and Φ(x) =
∫ x
−∞N (t|0, 1)dt is the C.D.F. of

the standard Gaussian distribution. We use the following fact to simplify the above expression.

δ(z, α, β) :=
exp(2αβ)Φ(−

√
α
z (zβ + 1))

N (
√

α
z (zβ − 1) |0, 1)

=
Φ(−

√
α
z (zβ + 1))

N (−
√

α
z (zβ + 1) |0, 1)

where δ(z, α, β) is known as the Mills ratio of Gaussian distribution. Using this fact, we can get the simplified expressions
as follows.

∂αz =
z

α
− 2βz3/2α−1/2δ(z, α, β)

∂βz = −2z3/2α1/2δ(z, α, β)

where we compute log(δ(z, α, β)) for numerical stability since the logarithm of Gaussian cumulative distribution function
can be computed by using existing libraries, such as the scipy.special.log ndtr() function.

In fact, we have closed-form expressions of gradients of the entropy term as shown below.

Eq(z|η) [− log q(z|η)] = 1
2 [− logα− 3 (log β + exp(2αβ)E1(2αβ)) + 1 + log(2π)]

∂αEq(z|η) [− log q(z|η)] =
1

α
− 3β exp(2αβ)E1(2αβ)

∂βEq(z|η) [− log q(z|η)] = −3α exp(2αβ)E1(2αβ)

where E1(x) :=
∫∞
x

e−t

t dt is the exponential integral. It is not numerical stable to compute the product exp(x)E1(x) when
x > 100. In this case, we can use the asymptotic expansion (see Eq 3 at Tseng & Lee (1998)) for the exponential integral to
approximate the product as shown below.

exp(x)E1(x) ≈ 1

x

[
1 +

N∑
n=1

(−1)nn!

xn

]
when x > 100,

where N is an integer such as N ≤ x < N + 1.

I. Mixture of Exponential Family Distributions
Let’s consider the following mixture of exponential family distributions q(z) =

∫
q(z,w)dw. The joint distribution

q(z,w|λ) = q(w|λw)q(z|w,λz) is known as the conditional exponential family (CEF) defined by Lin et al. (2019a).

q(w|λw) := hw(w) exp [〈φw(w),λw〉 −Aw(λw)]

q(z|w,λz) := hz(w, z) exp [〈φz(w, z),λz〉 −Az(λz,w)]
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where λ = {λz,λw}.

We will use the joint Fisher information matrix(FIM) suggested by Lin et al. (2019a) as the metric F to derive our improved
learning rule for mixture approximations.

I.1. The Joint Fisher Information Matrix and the Christoffel Symbol

Lin et al. (2019a) propose to use the FIM of the joint distribution q(w, z|λ) , where they refer this FIM as the joint FIM.
The joint FIM and the corresponding Christoffel symbol of the first kind are defined as follows.

Fab := −Eq(w,z|λ) [∂a∂b log q(w, z|λ)]

Γd,ab := 1
2 [∂aFbd + ∂bFad − ∂dFab]

where we denote ∂a = ∂λa for notation simplicity.

Like the exponential family cases as shown in Eq. (17), the Christoffel symbol of the first kind can be computed as

Γd,ab = 1
2

[
Eq(w,z|λ) [∂a∂b log q(w, z|λ)∂d log q(w, z|λ)]− Eq(w,z|λ) [∂b∂d log q(w, z|λ)∂a log q(w, z|λ)]

− Eq(w,z|λ) [∂a∂d log q(w, z|λ)∂b log q(w, z|λ)]− Eq(w,z|λ) [∂a∂b∂d log q(w, z|λ)]
]

(26)

I.2. The BCN Parameterization

Now, we show that how to simplify the computation of the Christoffel symbol by extending the BCN parameterization for
this kind of mixtures.

To this end, we first assume that λ can be partitioned with (m+ n) blocks to satisfy Assumption 1 in the main text.

λ = {λ[1]
z , . . . ,λ

[m]
z︸ ︷︷ ︸

λz

,λ[m+1]
w , . . . ,λ[m+n]

w︸ ︷︷ ︸
λw

}

Then, we extend the definition of BC parameterization to the conditional exponential family, which is similar to Assumption
2 in the main text and a concrete example of Definition 1 in Appendix B.1.

Assumption 2 [Block Coordinate Parameterization] : A parameterization satisfied Assumption 1 is block coordinate
(BC) if the joint FIM under this parameterization is block-diagonal according to the block structure of the parameterization.

Lin et al. (2019a) show that, for any parameterization λ = {λz,λw}, the joint FIM has the following two blocks: Fz for
block λz and Fw for block λw as given below.

F =

[
Fz 0
0 Fw

]

Assumption 2 implies that Fw and Fz are both block-diagonal according to the block structure of λw and λz , respectively.
The block diagonal structure is given below if λ = {λ[1]

z , . . . ,λ
[m]
z ,λ[m+1]

w , . . . ,λ[m+n]
w } is a BC parameterization.

F =



Fz︷ ︸︸ ︷F[1]
z . . . 0
...

. . .
...

0 . . . F[m]
z

 0

0

F[m+1]
w . . . 0

...
. . .

...
0 . . . F[m+n]

w


︸ ︷︷ ︸

Fw





Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Assumption 3 [Block Natural Parameterization for the Conditional Exponential-Family] : For a conditional
exponential-family distribution q(w, z|λ) = q(w|λw)q(z|w,λz), a parameterization λ = {λz,λw} has the following
properties.

• λw is a BCN parameterization of the exponential family distribution q(w|λw) as defined in the main text.

• λz is a parameterization of q(z|w,λz), where there exist function φzi and hzi for each block λ[i]
z such that conditioning

on w, q(z|w,λz) can be re-expressed as a minimal conditional exponential family distribution (see Lin et al. (2019a)
for the definition of the minimality) given that the rest of blocks λ[−i]

z are known.

q(z|w,λz) ≡ hzi(w, z,λ
[−i]
z ) exp

[
〈φzi(w, z,λ

[−i]
z ),λ[i]

z 〉 −Az(λz,w)
]

We say λ = {λz,λw} is a BCN parameterization for the mixture if it satisfies Assumption 1 to 3.

Many mixture approximations studied in Lin et al. (2019a) have a BCN parameterization. For concrete examples, see
Appendix J and K.

I.3. Our Learning Rule for Mixture Approximations

Now, we are ready to discuss the learning rule for mixture approximations. Under a BC parameterization λ = {λz,λw},
our learning rule remains the same as shown below.

λci ← λci − tĝci− t
2

2
Γciaibi ĝ

ai ĝbi

where block i can be either a block of λw or λz .

First, note that the sub-block matrix Fw of the joint FIM is indeed the FIM of q(w|λw). Furthermore, q(w|λw) is an
exponential family distribution. If λ = {λz,λw} is a BCN parameterization, it is easy to see that the computation of the
Christoffel symbol for λw is exactly the same as the exponential family cases as discussed in Appendix D.

Furthermore, we can simplify the Christoffel symbol for λz due to the following Theorem.

Theorem 4 If λ is a BCN parameterization of a conditional exponential family (CEF) with the joint FIM, natural gradient
and the Christoffel symbol of the first kind for block λ[i]

z can be simplified as

ĝai = ∂mzai
L ; Γdi,aibi = 1

2Eq(w|λw)

[
∂λzai ∂λzbi ∂λzdiAz(λz,w)

]
where λaiz is the a-th element of λ[i]

z ; mzai
denotes the a-th element of the block coordinate expectation parameter

mz[i] = Eq(w,z|λ)

[
φzi(w, z,λ

[−i]
z )

]
= Eq(w|λw)

[
∂
λ
[i]
z
Az(λz,w)

]
.

I.4. Proof of Theorem 4

Proof: We assume λz = {λ[1]
z , · · · ,λ

[m]
z } is partitioned with m blocks.

Since λ is a BCN parameterization, conditioning on w and given λ[−i]
z and λw are known, we can re-express q(z|w,λz) as

q(z|w,λz) = hzi(z,w,λ
[−i]
z ) exp

[
〈φzi(z,w,λ

[−i]
z ),λ[i]

z 〉 −Az(λz,w)
]

where q(z|w,λz) is also a one-parameter EF distribution conditioning on λ[−i]
z and w. Similarly, we have the following

results.

∂ai∂bi log q(z|w,λz) = −∂ai∂biAz(λz,w)

Eq(z|w,λz) [∂ai log q(z|w,λz)] = 0
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where ∂ai = ∂λaiz is for notation simplicity. Using the above identities, we have

Eq(z,w|λ) [∂ai∂bi log q(z,w|λ)∂di log q(z,w|λ)] = Eq(z,w|λ) [∂ai∂bi log q(z|w,λz)∂di log q(z|w,λz)]
= Eq(w|λw) [Eq(z|w,λz) [∂ai∂bi log q(z|w,λz)∂di log q(z|w,λz)]]

= −Eq(w|λw)

[
∂ai∂biAz(λz,w)Eq(z|w,λz) [∂di log q(z|w,λz)]︸ ︷︷ ︸

0

]
= 0

Therefore, by Eq. (26), we can simplify the Christoffel symbol for λ[i]
z as follows.

Γdi,aibi =− 1
2Eq(z,w|λ) [∂ai∂bi∂di log q(z,w|λ)]

=− 1
2Eq(w|λw) [∂ai∂bi∂di log q(z|w,λz)]

= 1
2Eq(w|λw) [∂ai∂bi∂diAz(λz,w)]

where we use di to denote the d-th entry of block λ[i]
z .

Likewise, let mz[i] = Eq(z,w|λ)

[
φzi(z,w,λ

[−i]
z )

]
denote the block coordinate expectation parameter. We have

0 = Eq(w|λw)

[
Eq(z|w,λz) [∂ai log q(z|w,λz)]︸ ︷︷ ︸

0

]
= mzai

− Eq(w|λw) [∂aiAz(λz,w)]

where mzai
denotes the a-th element of mz[i] .

Therefore, we know that mzai
= Eq(w|λw) [∂aiAz(λz,w)].

Recall that the sub-block of the joint FIM for λ[i]
z denoted by F[i]

z can be computed as

Faibi = −Eq(z,w|λ) [∂bi∂ai log q(z,w|λ)]

= −Eq(z,w|λ) [∂bi∂ai log q(z|w,λz)]
= −Eq(z,w|λ) [−∂bi∂aiAz(λz,w)]

= Eq(w|λw) [∂bi∂aiAz(λz,w)]

= ∂biEq(w|λw) [∂aiAz(λz,w)]

= ∂bimzai

where we use the fact that λw does not depend on λbiz ∈ λz and ∂bi = ∂
λ
bi
z

to move from the fourth step to the fifth step.

Recall that when λ is a BC parameterization, the joint FIM F is block-diagonal as shown below.

F =



Fz︷ ︸︸ ︷F[1]
z . . . 0
...

. . .
...

0 . . . F[m]
z

 0

0

F[m+1]
w . . . 0

...
. . .

...
0 . . . F[m+n]

w


︸ ︷︷ ︸

Fw


If F[i]

z is positive definite everywhere, we have

F aibi = ∂mzai
λbiz
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The above assumption is true if given that λ[−i]
z and λw are known, q(w, z|λ) is a one-parameter minimal CEF distribution

(See Theorem 2 of Lin et al. (2019a)).

The above result implies that we can compute natural gradients as follows.

ĝai = F aibigbi =
[
∂mzai

λbiz

] [
∂
λ
bi
z
L
]

= ∂mzai
L

where gbi = ∂
λ
bi
z
L.

�

If we can interchange the differentiations and the integration, we can show, by Theorem 4, we have Γci aibi =
1
2∂mzci

∂λzai ∂λzbi Eq(w|λw) [Az(λz,w)] since Az(λz,w) is C3-smooth w.r.t. λ[i]
z .

J. Example: Finite Mixture of Gaussians Approximation
We consider a K-mixture of Gaussians under this parameterization λ = {{µc,Sc}Kc=1,λw}

q(z|π, {µc,Sc}Kc=1) =

K∑
c=1

πcN (z|µc,Sc)

where πc is the mixing weight so that
∑K
c=1 πc = 1 , Sc = Σ−1

c , λw = {log(πc/πK)}K−1
c=1 and πK = 1−

∑K−1
c=1 πc. The

constraints are λw ∈ RK−1, µc ∈ Rd, and Sc ∈ Sd×d++ .

Under this parameterization, the joint distribution can be expressed as below.

q(z, w|λ) = q(w|λw)q(z|w, {µc,Sc}Kc=1)

q(w|λw) = exp(

K−1∑
c=1

I(w = c)λwc −Aw(λw))

q(z|w, {µc,Sc}Kc=1) = exp
( K∑
c=1

I(w = c)
[
− 1

2zTScz + zTScµc
]
−Az({µc,Sc}Kc=1, w)

)
where B(µc,Sc) = 1

2

[
µTc Scµc − log |Sc/(2π)|

]
, Az({µc,Sc}Kc=1, w) =

∑K
c=1 I(w = c)B(µc,Sc), λwc = log( πcπK ),

Aw(λw) = log(1 +
∑K−1
c=1 exp(λwc)).

Lemma 11 The joint FIM is block diagonal under this parameterization.

F =



[
Fµ1

0
0 FS1

]
· · · 0 0

...
. . .

...
...

0 · · ·
[
FµK 0

0 FSK

]
0

0 · · · 0 Fw


Therefore, this parameterization is a BC parameterization.

Proof: We will prove this lemma by showing that all cross terms are zeros.

Case 1: First, we will show that cross terms (shown in red) between λw and λz := {µc,Sc}Kc=1 are zeros.

Let’s denote λiw be an element of λw and λjz be an element of λz . By the definition, each cross term in this case is defined
as belows.

− Eq(z,w|λ)

[
∂λiw∂λjz log q(z, w|λ)

]
= −Eq(z,w|λ)

[
∂λiw∂λjz

(
log q(w|λw) + log q(z|w,λz

)]
= 0
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Case 2: Next, we will show that cross terms between (shown in blue) any two Gaussian components are zeros.

Let’s denote λia be an element of {µa,Sa} and λjb be an element of {µb,Sb}, where a 6= b.

By the definition, each cross term in this case is defined as belows.

− Eq(z,w|λ)

[
∂λia∂λjb

log q(z, w|λ)
]

=− Eq(z,w|λ)

[
∂λia∂λjb

(
log q(z|w, {µc,Sc}Kc=1

)]
=− Eq(z,w|λ)

[
I(w = b)∂λia

(
∂λjb

[
− 1

2zTSbz + zTSbµb −B(µb,Sb)
] )

︸ ︷︷ ︸
u(z,µb,Σb)

]
= 0

It is obvious that the above expression is 0 since ∂λiau(z,µb,Σb) = 0 when a 6= b.

Case 3: Finally, we will show that for each component a, cross terms (shown in green) between µa and Sa are zeros.

Let’s denote µia be the i-th element of µa and Sjka be the element of Sa at position (j, k). Furthermore, ei denotes an
one-hot vector where all entries are zeros except the i-th entry with value 1, and Ijk denotes an one-hot matrix where all
entries are zeros except the entry at position (j, k) with value 1. By the definition, the cross term is defined as belows.

− Eq(z,w|λ)

[
∂µia∂Sjka log q(z, w|λ)

]
=− Eq(z,w|λ)

[
∂µia∂Sjka

(
log q(z|w, {µc,Sc}Kc=1

)]
=− Eq(z,w|λ)

[
∂µia∂Sjka

(
I(w = a)

[
− 1

2zTSaz + zTSaµa −B(µa,Sa)
] )]

=− Eq(z,w|λ)

[
I(w = a)

[
eTi Ijkz− eTi Ijkµa

]]
=− Eq(z,w|λ)

[
I(w = a)eTi Ijkz

]
+ Eq(z,w|λ)

[
I(w = a)eTi Ijkµa

]
=− πaeTi Ijkµa + πae

T
i Ijkµa = 0

where we use the following fact in the last step.

Eq(z,w|λ) [I(w = a)z] = πaµa

Eq(z,w|λ) [I(w = a)] = πa

�

Lemma 12 The parameterization λ = {{µc,Sc}Kc=1,λw} is a BCN parameterization.

Proof: Clearly, this parameterization satisfies Assumption 1 described in the main text. By Lemma 11, we know that this
parameterization is a BC parameterization. Now, we will show that this parameterization also satisfies Assumption 3 in
Appendix I.2.

First note that λw has only one block and it is the natural parameterization of exponential family distribution q(w|λw),
which implies that λw is a BCN parameterization for q(w|λw).

Note that given the rest blocks are known and conditioning on w, q(z|w,λz) can be re-expressed as follows in terms of
block µk.

q(z|w,λz) = exp
( K∑
c=1

I(w = c)
[
− 1

2zTScz + zTScµc
]
−Az({µc,Sc}Kc=1, w)

)
= exp

(∑
c 6=k

[
I(w = c)

[
− 1

2zTScz + zTScµc
]]

+ I(w = k)
[
− 1

2zTSkz
] )

︸ ︷︷ ︸
hzk1

(w,z,λ
[−k1]
z )

exp
(
〈 I(w = k)Skz︸ ︷︷ ︸
φzk1

(w,z,λ
[−k1]
z )

, µk︸︷︷︸
λ
k1
z

〉 −Az({µc,Sc}Kc=1, w)
)



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Similarly, for block Sk, q(z|w,λz) can be re-expressed as follows

q(z|w,λz)

= exp
(∑
c 6=k

[
I(w = c)

[
− 1

2zTScz + zTScµc
]] )

︸ ︷︷ ︸
hzk2

(w,z,λ
[−k2]
z )

exp
(
〈I(w = k)

[
− 1

2zzT + µkz
T
]︸ ︷︷ ︸

φzk2
(w,z,λ

[−k2]
z )

, Sk︸︷︷︸
λ
k2
z

〉 −Az({µc,Sc}Kc=1, w)
)

Since this parameterization satisfies Assumption 1 to 3, this parameterization is a BCN parameterization. �

We denote the Christoffel symbols of the first kind and the second kind for µk as Γak1 ,bk1ck1 and Γ
ak1
bk1ck1

respectively.

Lemma 13 For each component k, all entries of Γ
ak1
bk1ck1

for µk are zeros.

Proof: The proof is very similar to the proof of Lemma 3. We will prove this by showing that all entries of Γak1 ,bk1ck1 are
zeros. For notation simplicity, we use Γa,bc to denote Γak1 ,bk1ck1 . Let µak denote the a-th element of µk.

The following expression holds for any valid a, b, and c.

Γa,bc = 1
2Eq(z,w|λ)

[
∂µbk∂µ

c
k
∂µakAz({µj ,Sj}

K
j=1, w)

]
= 1

2Eq(z,w|λ)

[
I(w = k)∂µbk∂µ

c
k
∂µakB(µk,Sk)

]
= 1

2Eq(z,w|λ)

[
I(w = k)∂µbk∂µ

c
k

(
eTa Skµk

)]
= 1

2Eq(z,w|λ)

[
I(w = k) ∂µbk

(
eTa Skec

)︸ ︷︷ ︸
0

]
= 0

where in the last step we use the fact that Sk, ea, and ec do not depend on µk.

�

Similarly, we denote the Christoffel symbols of the second kind for vec(Sk) as Γ
ak2
bk2ck2

.

Lemma 14 For each component k, the additional term for Sk is −ĝ[2]
k S−1

k ĝ
[2]
k

Proof: Recall that, in the Gaussian case N (µ̄, S̄), the additional term for S̄ is Mat(Γ̄a2b2c2 ĝ
b2 ĝc2) = ĝ[2]S̄

−1
ĝ[2], where

Γ̄a2b2c2 denotes the Christoffel symbols of the second kind for vec(S̄).

To prove the statement, we will show that the Christoffel symbols of the second kind for vec(Sk) is exactly the same as the
Gaussian case, when S̄ = Sk. In other words, when S̄ = Sk, we will show Γ

ak2
bk2ck2

= Γ̄a2 b2c2 .

We denote the Christoffel symbols of the second kind for vec(Sk) using Γ
ak2
bk2ck2

. By definition, the Christoffel symbols
of the second kind for vec(Sk) is defined as follows since λ is a BC parameterization.

Γ
ak2
bk2ck2

= F ak2dk2 Γdk2 ,bk2ck2

We will first show that Γdk2 ,bk2ck2 = πkΓ̄d2,b2c2 .

In the Gaussian case, by definition, we have

Γ̄d2,b2c2 = 1
2Eq(z|λ̄)

[
∂S̄b∂S̄c∂S̄dA(µ̄, S̄)

]
= −1

4
∂S̄b∂S̄c∂S̄d

(
log
∣∣S̄∣∣)

where A(µ̄, S̄) = 1
2

[
µ̄T S̄µ̄− log

∣∣S̄/(2π)
∣∣] is the log partition function of the Gaussian distribution and S̄d denotes the

d-th element of vec(S̄) in the Gaussian case.
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Therefore, we have the following result in the MOG case when Sk = S̄.

Γdk2 ,bk2ck2 = 1
2Eq(z,w|λ)

[
∂Sbk∂S

c
k
∂SdkAz({µj ,Sj}

K
j=1, w)

]
= 1

2Eq(z,w|λ)

[
I(w = k)∂Sbk∂S

c
k
∂SdkB(µk,Sk)

]
= 1

2Eq(z,w|λ)

[
I(w = k)∂Sbk∂S

c
k
∂Sdk

(
− 1

2 log |Sk/(2π)|
)]

= −πk
4
∂Sbk∂S

c
k
∂Sdk (log |Sk|)

= πkΓ̄d2,b2c2

where Sak denotes the a-th element of vec(Sk) and Eq(z,w|λ) [I(w = k)] = πk.

Let Fak2dk2 denote the element at position (a, d) of the sub-block matrix of the joint FIM for block vec(Sk) in the MOG
case. Similarly, when Sk = S̄, we can show that Fak2dk2 = πkF̄a2d2 , where F̄a2d2 denotes the element at position (a, d) of
the sub-block matrix of the FIM for block vec(S̄) in the Gaussian case.

Therefore, F ak2dk2 = π−1
k F̄ a2d2 when S̄ = Sk.

Finally, when S̄ = Sk, we obtain the desired result since

Γ
ak2
bk2ck2

= F ak2dk2 Γdk2 ,bk2ck2 =
(
π−1
k F̄ a2d2

) (
πkΓ̄d2,b2c2

)
= F̄ a2d2 Γ̄d2,b2c2 = Γ̄a2b2c2

where Γ̄a2b2c2 denotes the Christoffel symbols of the second kind for vec(S̄) in the Gaussian case.

�

J.1. Natural Gradients

Recall that L(λ) = Eq(z|λ) [`(D, z)− log p(z) + log q(z|λ)], where q(z|λ) =
∫
q(z, w|λ)dw.

Lin et al. (2019a) propose to use the importance sampling technique so that the number of Monte Carlo gradient evaluations
is independent of the number of mixing components K.

Note that λw is the natural parameter of exponential family distribution q(w|λw), we can obtain the natural gradient by
computing the gradient w.r.t. the mean parameter as shown by Lin et al. (2019a).

ĝw = ∂πL.

where πc := Eq(w) [I(w = c)], ∂πcL denotes the c-th element of ∂πL, and the gradient ∂πcL can be computed as below as
suggested by Lin et al. (2019a).

∂πcL = Eq(z)[(δc − δK)b(z)]

where b(z) := `(D, z)− log p(z) + log q(z|λ), and δc := N (z|µc,Sc)/
∑K
k=1 πkN (z|µk,Sk).

Recall that λw is unconstrained in this case, there is no need to compute the addition term for λw.

Now, we discuss how to compute the natural gradients {ĝ[1]
c , ĝ

[2]
c }Kc=1. Since {µc,Sc}Kc=1 are BCN parameters, we can

obtain the natural gradients by computing gradients w.r.t. its BC expectation parameter due to Theorem 4.

Given the rest of blocks are known, the BC expectation parameter for block µk is

mk1 = Eq(w,z) [I(w = k) (Skz)] = πkSkµk

In this case, we know that ∂µkL = πkSk∂mk1L. Therefore, the natural gradient w.r.t. µk is ĝ[1]
k = ∂mk1L =

π−1
k S−1

k ∂µkL = π−1
k Σk∂µkL, where the gradient ∂µkL can be computed as belows as suggested by Lin et al. (2019a).

∂µkL = Eq(z)[πkδk∇zb(z)]
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Likewise, given the rest of blocks are known, the BC expectation parameter for block Sk is

mk2 = Eq(w,z)
[
I(w = k)

(
− 1

2zzT + µkz
T
)]

=
πk
2

(
µkµ

T
k − S−1

k

)
Therefore, the natural gradient w.r.t. Sk is ĝ[2]

k = ∂mk2L = − 2
πk
∂S−1

k
f = − 2

πk
∂Σkf , where where the gradient ∂Σkf can

be computed as belows as suggested by Lin et al. (2019a).

∂ΣkL = 1
2Eq(z)

[
πkδk∇2

zb(z)
]

Alternatively, we can use the re-parametrization trick to compute the gradient as below.

∂ΣkL = 1
2Eq(z)

[
πkδkSk(z− µk)∇Tz b(z)

]
By Lemma 13 and 14, the proposed update induced by our rule is

log(πc/πK)← log(πc/πK)− tEq(z)[(δc − δK)b(z)]

µc ← µc − tS
−1
c Eq(z)[δc∇zb(z)]

Sc ← Sc − tĜc+
t2

2
Ĝc (Sc)

−1
Ĝc (27)

where we do not compute the additional term for λw since λw is unconstrained, δc := N (z|µc,Sc)/
∑K
k=1 πkN (z|µk,Sk),

b(z) := `(D, z)− log p(z) + log q(z|λ) and Ĝc can be computed as below.

Note that b(z) can be the logarithm of an unnormalized target function as such b(z) = ¯̀(z) + Constant + log q(z|λ).
Recall that `(D, z) − log p(z) = ¯̀(z) + Constant. Lin et al. (2019a) suggest using the Hessian trick to compute Ĝc as
shown in (29). We can also use the re-parameterization trick to compute Ĝc as shown in (28).

Ĝc = −Eq(z)
[
δcSc(z− µc)∇Tz b(z)

]
= −Eq(z)

[
δcSc(z− µc)∇Tz ¯̀(z)

]
− Eq(z)

[
δc∇2

z log q(z|λ)
]

(28)

= −Eq(z)
[
δc∇2

zb(z)
]

= −Eq(z)
[
δc∇2

z
¯̀(z)

]
− Eq(z)

[
δc∇2

z log q(z|λ)
]
. (29)

We use the MC approximation to compute Ĝc as below.

Ĝc ≈ −δc
( S̄c + S̄

T
c

2
+∇2

z log q(z|λ)
)

referred to as “-rep”

Ĝc ≈ −δc
(
∇2
z
¯̀(z) +∇2

z log q(z|λ)
)

referred to as “-hess”

where z ∼ q(z|λ), S̄c := Sc(z− µc)∇Tz ¯̀(z) and ∇2
z log q(z|λ) can be manually coded or computed by Auto-Diff.

Recall that when q(z|λ) is Gaussian, −Eq(z)
[
∇2
z log q(z|λ)

]
= Σ−1, which is positive definite. VOGN is proposed to

approximate Eq(z)
[
∇2
z
¯̀(z)

]
by a positive definite matrix when q(z|λ) is Gaussian. In MOG cases,−Eq(z)

[
∇2
z log q(z|λ)

]
is

no longer a positive definite matrix. VOGN does not guarantee that the update for Sc stays in the constraint set. Furthermore,
directly approximating −Ĝc by naively extending the idea of VOGN does not give a good posterior approximation. Unlike
VOGN, our update satisfies the constraint without the loss of the approximation accuracy for both Gaussian and MOG cases.

K. Example: Skew Gaussian Approximation
We consider the skew Gaussian approximation proposed by Lin et al. (2019a). The joint distribution is given below.

q(z, w|α,µ,Σ) = q(z|w,α,µ,Σ)N (w|0, 1)

q(z|w,α,µ,Σ) = N (z|µ+ |w|α,Σ)

= exp(
{

Tr
(
− 1

2Σ−1zzT
)

+ |w|αTΣ−1z + µTΣ−1z− 1
2 ((µ+ |w|α)TΣ−1(µ+ |w|α) + log |2πΣ|

}
)



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

We consider the parameterization λ = {
[
µ
α

]
,S}, where S = Σ−1, λ[1] =

[
µ
α

]
, and λ[2] = S. The open-set constraint is

λ ∈ R2d × Sd×d++ . Under this parameterization, the distribution q(z|w) can be re-expressed as below.

q(z|w,λ) = exp
{

Tr
(
− 1

2SzzT
)

+ zTS (Q(w))
T
λ[1] −Az(λ, w)

}
where Q(w) :=

[
Id
|w| Id

]
is a 2d-by-d matrix and Az(λ, w) = 1

2

[[
µT αT

]
Q(w)S (Q(w))

T

[
µ
α

]
− log |S/(2π)|

]
.

Lemma 15 The joint FIM is block diagonal with two blocks under this parameterization.

F =

[
F[1] 0

0 F[2]

]

Therefore, this parameterization is a BC parameterization.

Proof: We will prove this lemma by showing that all cross terms shown in red are zeros.

Let’s denote λa1 be the a-th element of λ[1] and Sbc be the element of S at position (b, c). Furthermore, ea denotes an
one-hot vector where all entries are zeros except the a-th entry with value 1, and Ibc denotes an one-hot matrix where all
entries are zeros except the entry at position (b, c) with value 1.

By definition, the cross term is defined as belows.

− Eq(z,w|λ) [∂λa1∂Sbc log q(z, w|λ)]

=− Eq(z,w|λ)

[
zT Ibc (Q(w))

T
ea −

(
λ[1]
)T

Q(w)Ibc (Q(w))
T

ea

]
=− Eq(w)

[
Eq(z|w,λ)

[
zT Ibc (Q(w))

T
ea −

(
λ[1]
)T

Q(w)Ibc (Q(w))
T

ea

]]
=− Eq(w)

[
Eq(z|w,λ)

[
zT Ibc (Q(w))

T
ea

]
−
(
λ[1]
)T

Q(w)Ibc (Q(w))
T

ea

]
=− Eq(w)

[(
λ[1]
)T

Q(w)Ibc (Q(w))
T

ea −
(
λ[1]
)T

Q(w)Ibc (Q(w))
T

ea

]
= 0

where we use the following expression in the last step.

Eq(z|w,λ) [z] = |w|α+ µ = (Q(w))
T
λ[1]

�

Note that another parameterization {µ,α,S} is not a BC parameterization since the joint FIM is not block-diagonal under
this parameterization.

Lemma 16 Parameterization λ is a BCN parameterization.

Proof: Clearly, this parameterization satisfies Assumption 1 described in the main text. By Lemma 15, we know that this
parameterization is a BC parameterization. Now, we will show that this parameterization also satisfies Assumption 3 in
Appendix I.2.

Note that given the rest blocks are known and conditioning on w, q(z|w,λ) can be re-expressed as follows in terms of block
λ[1].

q(z|w,λ) = exp
{

Tr
(
− 1

2SzzT
)

+ zTS (Q(w))
T
λ[1] −Az(λ, w)

}
= exp

{
Tr
(
− 1

2SzzT
)}︸ ︷︷ ︸

h1(w,z,λ[−1])

exp
[
〈 Q(w)Sz︸ ︷︷ ︸
φ1(w,z,λ[−1])

,λ[1]〉 −Az(λ, w)
]
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Similarly, for block S, q(z|w,λ) can be re-expressed as follows

q(z|w,λ) = 1︸︷︷︸
h2(w,z,λ[−2])

exp
[
〈− 1

2zzT + z
(
λ[1]
)T

Q(w)︸ ︷︷ ︸
φ2(w,z,λ[−2])

,S〉 −Az(λ, w)
]

Since this parameterization satisfies Assumption 1 to 3, this parameterization is a BCN parameterization. �

We denote the Christoffel symbols of the first kind and the second kind for λ[1] as Γa1,b1c1 and Γa1 b1c1 respectively.

Lemma 17 All entries of Γa1 b1c1 for λ[1] are zeros.

Proof: We will prove this by showing that all entries of Γa1b1c1 are zeros. Let λa1 denote the a-th element of λ[1].

The following expression holds for any valid a, b, and c.

Γa1,b1c1 = 1
2Eq(z,w|λ) [∂λb1∂λc1∂λa1Az(λ, w)]

= 1
2Eq(z,w|λ)

[
∂λb1∂λc1

(
(ea)

T
Q(w)S (Q(w))

T
λ[1]
)]

= 1
2Eq(z,w|λ)

[
∂λb1

(
eTaQ(w)S (Q(w))

T
ec

)]
= 0

where in the last step we use the fact that S , Q(w), ea, and ec do not depend on λ[1].

�

We denote the Christoffel symbols of the second kind for vec(S) as Γa2 b2c2 .

Lemma 18 The additional term for S is −ĝ[2]S−1ĝ[2]

Proof: Recall that, in the Gaussian case N (µ̄, S̄), the additional term for S̄ is Mat(Γ̄a2b2c2 ĝ
b2 ĝc2) = ĝ[2]S̄

−1
ĝ[2], where

Γ̄a2b2c2 denotes the Christoffel symbols of the second kind for vec(S̄).

To prove the statement, we will show that the Christoffel symbols of the second kind for vec(S) is exactly the same as the
Gaussian case, when S̄ = S.

We denote the Christoffel symbols of the second kind for vec(S) as Γa2b2c2 . By definition, the Christoffel symbols of the
second kind for vec(S) is defined as follows.

Γa2b2c2 = F a2d2Γd2,b2c2

We will show that Γa2,b2c2 = Γ̄a2,b2c2 .

In the Gaussian case, we have

Γ̄d2,b2c2 = −1

4
∂S̄b∂S̄c∂S̄d

(
log
∣∣S̄∣∣)

where A(µ̄, S̄) = 1
2

[
µ̄T S̄µ̄− log

∣∣S̄/(2π)
∣∣] is the log partition function of the Gaussian distribution and S̄a is the a-th

element of vec(S̄) in the Gaussian case.

Therefore, we have the following result when S̄ = S.

Γd2,b2c2 = 1
2Eq(z,w|λ) [∂Sb∂Sc∂SdAz(λ, w)] = −1

4
∂Sb∂Sc∂Sd log |S| = Γ̄d2,b2c2

where Sa denotes the a-th element of vec(S).

Let Fa2d2 denote the element at position (a, d) of the sub-block matrix of the joint FIM for vec(S). Similarly, we can
show that Fa2d2 = F̄a2d2 , where F̄a2d2 denotes the element at position (a, d) of the FIM for vec(S̄) in the Gaussian case.
Therefore, F a2d2 = F̄ a2d2 .
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Finally, when S̄ = S, we obtain the desired result since

Γa2b2c2 = F a2d2Γd2,b2c2 = F̄ a2d2 Γ̄d2,b2c2 = Γ̄a2b2c2

where Γ̄a2b2c2 denotes the Christoffel symbols of the second kind for vec(S̄) in the Gaussian case. �

Using these lemmas, the proposed update induced by our rule is[
µ
α

]
←
[
µ
α

]
− tĝ[1]

S← S− tĝ[2]+
t2

2
ĝ[2]S−1ĝ[2]

where ĝ[1] and ĝ[2] are natural gradients.

Similarly, it can be shown that the above update satisfies the underlying constraints.

K.1. Natural Gradients

Now, we discuss how to compute the natural gradients. Since the parameterization is a BCN parameterization, gradients
w.r.t. BC expectation parameters are natural gradients for BCN parameters due to Theorem 4.

Recall that λ[1] =

[
µ
α

]
. Let m[1] =

[
mµ

mα

]
denote the BC expectation parameter for λ[1]. Given S is known, the BC

expectation parameter is [
mµ

mα

]
= Eq(w,z) [Q(w)Sz]

= Eq(w)

[
Q(w)S (Q(w))

T
λ[1]
]

= Eq(w)

[[
S |w|S
|w|S w2S

] [
µ
α

]]
=

[
S cS
cS S

] [
µ
α

]
=

[
Sµ+ cSα
cSµ+ Sα

]
where c = Eq(w) [|w|] =

√
2
π .

Since S = Σ−1, we have the following expressions.

µ =
1

1− c2
Σ (mµ − cmα) , α =

1

1− c2
Σ (mα − cmµ)

By the chain rule, we have

∂mµL = Σ

(
1

1− c2
∂µL −

c

1− c2
∂αL

)
, ∂mαL = Σ

(
1

1− c2
∂αL −

c

1− c2
∂µL

)
Therefore, the natural gradient w.r.t. λ[1] =

[
µ
α

]
is ĝ[1] =

[
∂mµL
∂mαL

]
where the gradient ∂µL and ∂αL can be computed as

suggested by Lin et al. (2019a).

Likewise, the BC expectation parameter for block S is

m[2] = Eq(w,z)
[
− 1

2zzT + z
(
λ[1]
)T

Q(w)

]
= − 1

2S−1 + Eq(w)

[
1
2 (Q(w))

T
λ[1]

(
λ[1]
)T

Q(w)

]
Since λ[1] is known, Eq(w)

[
1
2 (Q(w))

T
λ[1]

(
λ[1]
)T

Q(w)

]
does not depend on S. Therefore, the natural gradient w.r.t. S

is ĝ[2] = ∂m[2]
L = −2∂S−1L = −2∂ΣL, where we compute the gradient ∂ΣL as suggested by Lin et al. (2019a).
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L. More Results
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Figure 5. The leftmost figure is MOG approximations for the banana distribution mentioned at Section 6.1, where the number indicates
the number of components used in the approximations. The middle figure is a complete version of MOG approximations for the double
banana distribution (the rightmost plot in Figure 2), where the number indicates the number of components used in the approximations.
The rightmost figure is MOG approximations for the posterior p(z|y = 1) of a BNN with a Gaussian prior p(z) = N (z|0, I) and a NN
likelihood p(y|z) = N (y|3z2

1(z2
1 − 1) + z2

2 , 0.5
2), where the number indicates the number of components used in the approximations.
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Figure 6. The leftmost plot is mean-field Gaussian approximations for the toy Bayesian logistic regression example considered at Section
6.1, where Vadam is proposed by Khan et al. (2018). The rightmost plot is a skew-Gaussian approximation with full covariance structure
for the same example.
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Figure 7. This is a complete version of the leftmost figure in Figure 2. The figure shows MOG approximation (with K = 25) to fit an
MOG model with 10 components in a 20 dimensional problem.
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Figure 8. This is the first 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 9. This is the second 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Figure 10. This is the third 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 11. This is the fourth 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 12. This is the last 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.


