Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Appendices

In the appendices, we will use the index notation and the Einstein summation notation introduced in Section 5.2.

A. A counter-example for Song et al. (2018)

We show that the update suggested by Song et al. (2018) does not stay in the constraint set while ours does.

Let’s consider the following univariate Gaussian distribution under a BC parameterization A = {u, o}, where o denotes the
standard deviation'®. The constraint is ; = R and Q, = Si_ 4 g“) and {](2) are natural gradients for p and o, respectively.

g

q(2[A) = exp {5 (Z — M>2 — 5 log(27) — log(a)}

Recall that the Christoffel symbols of the second kind can be computed as I'’,, = FCdFd’ab where I'g 1, is the Christoffel
symbols of the first kind and F°? is the entry of the inverse the FIM, F ", at position (c, d).

Under this parameterization, the FIM and the Christoffel symbols of the second kind are given below, where the Christoffel
symbols of the first kind are computed by using Eq. (17). The computation of the Christoffel symbols can be difficult since
the parameterization is not a BCN parameterization.
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The update suggested by Song et al. (2018) is
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Clearly, the updated o does not always satisfy the positivity constraint Si_ 4

As shown in Eq. (16), our rule can be used in not only a BCN parameterization but also a BC parameterization. Since

every block contains only a scalar, we use global indexes such as A0 = yai g(” = gm and I'; ;; = Iy, p,¢, for notation

simplicity. Note that I'! ;; = 0 is the entry at the upper-left corner of I'* ,, and ', = —1 is the entry at the lower-right

corner of I'? . In our update (see Eq. (16)), we can see the update automatically satisfies the constraint as shown below.
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As we discuss at Section 5.3 of the main text, only the block-wise Christoffel symbol I'; ;; for each block ¢ is required,
which becomes essential for multivariate Gaussians and mixture of Gaussians.

16 1t is also used as an unconstrained parameterization of Gaussian distributions for BBVI. Technically, this parameterization has
a positivity constraint, which is often ignored in practice. In multivariate cases, the Cholesky factor is used as an unconstrained
parameterization, where the positivity constraint in the diagonal elements is often ignored.
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Let’s consider another BC parameterization A = {y, v} for the Gaussian distribution, where v = o2 denotes the variance.
Note that we consider the parameterization for univariate Gaussian. For multivariate Gaussian, see Appendix E.4. The
underlying constraint is 2 = R x Sﬁr 4 g“) and g@) are natural gradients for p and v, respectively.

(o) = e { -3 Fiogtom) — b1og(o)}

Under this parameterization, the FIM and the Christoffel symbols of the second kind are given below, where the Christoftel
symbols of the first kind are computed by using Eq. (17). The computation of the Christoffel symbols can be difficult since
the parameterization is not a BCN parameterization.
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The update suggested by Song et al. (2018) is

. t2 (@) ) t2 g(l)g(2)
p =gt = ST g g = -ty ( .

R t2 (@) ) t2 g(?) 2 )
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Obviously, the above updated v does not always satisfy the positivity constraint.

Similarly, we use global indexes such as A(*) = X\, g(i) = gm and I'; ;; = Iy, 1, for notation simplicity since every block
contains only a scalar. Note that I'';; = 0 is the entry at the upper-left corner of I'* ,, and rz,, = f% is the entry at the
lower-right corner of I'?_,. In our update (see Eq. (16)), we can see the update automatically satisfies the constraint as
shown below.
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B. Riemannian Optimization
B.1. Proof of Lemma 1

Let’s consider a parameterization A := {)\m, . ,)\[m]} with m blocks for a statistical manifold with metric F. We first
define a BC parameterization A for a general metric F'.

Definition 1 Block Coordinate Parameterization.: A parameterization is block coordinate (BC) if the metric ¥ under this
parameterization is block-diagonal according to the block structure of the parameterization.

Recall that we use the following block notation: '} guigh = 2ael] 2obeli F(cﬁbé"gb where [i] denotes the index set
of block i, (¢;) is the corresponding global index of ¢;, and a and b are global indexes.

Now, we prove Lemma 1.

Proof: By the definition of a Riemannian gradient g, we have

g“ = ZF(ai)be = Z Fladbg, 4N pladb g, — Z Flabg, = paibig,
b beli] beli] O beli]

where in the second step, F'(%1)® = ( for any b ¢ [i] (see (18) for visualization) since the parameterization is BC, and we use
the definition of the block summation notation in the last step.
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Similarly, we have

J _ ci)d _ ci)d ci)d _ ci)d _ peid;
T b = F Ty e = D F gy + D E ) Ta e = Y, Faan ) = FTa, .
deli]

d deli] agli] 0
O
B.2. NGD is a First-order Approximation of R(t)
Now, we assume parameterization A = {)\[1], NN )\[m}} is a BC parameterization with m blocks. Recall that we define the

curve R(¢) as R(t) := {RM(2),...,R™(£)}, where R (¢) is the solution of following ODE for block i.

R%(0) = —F“%g,, ; R(0) =\
Rei(t)=-T%, ()R (t)R"(t)

where R ¢ (0), R(0), R (t) respectively denote the c-th entry of RI7(0), R (0), and i (t); TG, (1) =
)\[’i]:R[’i’](O)
Alil = Rl (1)

Ci
a; bri

Recall that F<i% is the entry of (F[))~1 at position (¢, a), where F[! is the i-th block of F. Note that F and § are computed

AC;

at A = R(0). Since A is a BC parameterization, by Lemma 1, we have F%%g, = .
Therefore, when F is the FIM, the first-order approximation of R(¢) at ty = 0 is also a NGD update as shown below.

A% 4= R (tg) + R (to)(t — to)
_ )\ci _ tgcl

C. Summary of Approximations Considered in This Work

Recall that we give Assumption 1-3 for exponential family distributions in Section 3. We also extend Assumption 1-3 to
exponential family mixtures as shown in Appendix I.

In Appendix H, F, G, E, J, K, we show that Assumption 1-3 are satisfied and the additional term for each approxima-
tion is simplified. In the corresponding appendix, we also show how to compute natural gradients with the (implicit)
reparameterization trick for each approximation listed in Table 2.

D. Exponential Family (EF) Approximation
D.1. Christoffel Symbols

We first show how to simplify the Christoffel symbols of the first kind. The FIM and the corresponding Christoffel symbols
of the first kind are defined as follows.

Foy = —Eyn [020510g q(2[N)] 5 Taap := 3 [0aFoa + O Faq — 0aFub)
where we denote d, = 0y« for notation simplicity.
Since 0y Fyg = —Ey(.)n) (004 10g (2| X) 0 log q(z|A)] — Eyn) [0a0b0a log (2| )], the Christoffel symbols of the first
kind induced by the FIM can be computed as follows , where A can be any parameterization.
Laab = 5 |Egizn) [0a0b log q(2|X)Dalog q(2|N)] — Eqiai) [0 10g (2| A) D log g(2|N)]
— Eyzp) [020alog q(z[A) 0y log q(z| )] — Eq(.)n) [0a050410g q(z|N)] } (17)

Note that Eq 17 is also applied to a general distribution beyond exponential family. However, the Christoffel symbol is not
easy to compute due to extra integrations in Eq 17 and the FIM can be singular in general. The Christoffel symbol could be
easy to compute for an exponential family distribution under a BCN parameterization since we compute the symbol via
differentiation without the extra integrations. Moreover, the FIM is always positive-definite under a BCN parameterization.
Theorem 3 show this.

"We do not compute the additional term in MOG since A,, € R¥~! is unconstrained.
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Table 2. Summary of the Proposed Updates Induced by Our Rule in Various Approximations

Approximation Parameterization () Constraints | Additional Term
Inverse Gaussian (Appendix H) A = 2 A est % (5o57) (g(l))z

A =a A est, | 5 () (52)°
G i 1) — 1) ¢ sl _£ Bi(lw(k(l)ﬁ(“;y

amma (Appendix F) A =q A e sy, 5 2(8A<1)w<x<1>)3&>)

Ao = 8 A est, | 2 (L) (g(2>)2
Exponential (Appendix G) AL =) A est % (xi7) (g(l))
Multivariate Gaussian (Appendix E) Al = n A e Rd 0

A2 ot A e gixd | 2502 (Am)‘l gt
Mixture of Gaussians (Appendix J) {)\Ll]}le ={p K, )\[Cl] € R4 0

YA, = (1, M e st | £l (\) 7 gl

Aw = {log(re/(1 = Sr ' m)IES | A e REL | 07
Skew Gaussian (Appendix K) Al = Z A er2d |0

Al 5 A g gixd | 2502 (w)’l gt

D.2. Proof of Theorem 3

In this case, ¢(z|\) is an EF distribution. Since A is a BCN parameterization, given that A" is known, ¢(z|)) is a
one-parameter EF distribution as

a(z|A) = hi(z A ) exp [ (@ (2, A7), A) — AN

Therefore, we have the following identities given A= is known.

0a;0b; 10g q(2|A) = =04, 00, A(X); Ey(opn) [Oa; log q(z[A)] = 0
where 0,, = Jxa: for notation simplicity.
Using the above identities, we have

Eqop) [0a; Ob, 10g 4(2|A)da; 10g 4(2|N)] = =80, 06, A(X) Egizpy) 04, log g(2|A)] = 0

0

Therefore, by Eq. (17), I'g, a,5, can be computed as follows
Fdivaibi = 7%]}2(1(2\)\) [aaiabiadi log q(Z‘)\)] = %a(lzabzaqu()‘)

Let mp; = E,.\» [¢;(2)] denote the block coordinate expectation (BCE) parameter. We have
0 =Ey [0a, log q(z|A)] = ma, — 0o, A(X)
where m,,, denotes the a-th element of my;).
Therefore, we know that m,, = 04, A(X)
Recall that the ¢-th block of F denoted by FU, can be computed as
Fob; = —Eqa0) [0, 0, log q(2|N)] = O, 0a; A(X) = O, [0a, A(X)] = Db Mg,
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where 0y, = 0,s, is for notation simplicity.

Recall that A is a BC parameterization with n blocks and F is block diagonal as shown below.

F=|: - (18)

N -1
Recall that F%° denotes the element of F~* with global index (a,b) and F%:* denotes the element of (F[Z]) with local
index (a, b) in block i.

If Fl is positive definite everywhere, we have
Faibi — ama )\b

Note that F7 is positive definite everywhere when q(z|)\[i] , )\[_i]) is a one-parameter minimal EF distribution given A=l
is known (See Theorem 1 of Lin et al. (2019a)).

By Lemma 1, Riemannian gradient ¢“* can be computed as
Aa, Fal gy, = [amai )\bl] [a)\bi E} = 8mai£

where g, = Oy, £ is a Euclidean gradient.

E. Example: Gaussian Approximation

We consider the following parameterization A = {u, S}, where g is the mean and S is the precision. The open-set constraint
isQ; =R%and Qy = Siﬁ_d. Under this parameterization, the distribution can be expressed as below.

q(z|A) = exp ( — 1278z +2"Sp — A(A))
where A(X) = £ [p?'Sp — log [S/(2m)] ]

Lemma 2 The Fisher information matrix under this parameterization is block diagonal with two blocks

[F, ©
F= [ 0 Fs] ’
~~
F”S
where F;J,S = _E (2) [avec(S)a Iqu( |l'l’> )] andFg = — |:8\2/ec lqu( |I'L?S) .

Therefore, A = {1, S} is a BC parameterization.

Proof: We denote the i-th element of y using z¢. Similarly, we denote the element of S at position (j, k) using S7*.
We prove this statement by showing cross terms in the Fisher information matrix denoted by F 5 are all zeros. To show
F,s = 0, it is equivalent to show —E,(.|») [0s::9,,i log ¢(z|\)] = 0 each pi* and SI*.

Notice that E, .|y [z] = p. We can obtain the above expression since

E(I(Z|)\) [85’_]1€8u’i lOg q( ] q(2|,\) [asjk (ZTSQL' — eTS}L)}
[(z Ijrei —e; IJ’C“’)]

—Eq<z|A [(e L (z — n))]
Ejon[z—p] =0

0

=€, I]k
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where e; denotes an one-hot vector where all entries are zeros except the ¢-th entry with value 1, and I;;; denotes an one-hot
matrix where all entries are zeros except the entry at position (j, k) with value 1.

The above expression also implies that E,(.|») [0s9,: log ¢(z|A)] = 0. O

Now, we show that A = {u, X} is also a BC parameterization. Note that

—Eq:n [8ij8w log q(z|)\)] =—E,;n [Tr{(axjk S)050,,: log q(z|)\)}] = 7Tr{(azjk S)Ey:n) [6‘58Hi log q(z|)\)] } =0.
0

Since F» = —E,;)0 [&,ec(g)au log q(z|)\)] and =\ [5‘2jk 0y log q(z\)\)] = 0 from above expression for any i, 7,
and k, we have F ;5 = 0. Therefore, A = {p, X} is also a BC parameterization since the cross terms of FIM under this
new parameterization denoted by F,»; are zeros.

We denote the Christoffel symbols of the first kind and the second kind for gt as I'y, p, ¢, and I'*", _ , respectively.

Lemma 3 All entries of Fa}jlcl are zeros.

Proof: We will prove this by showing that all entries of I, 1, ., are zeros. For notation simplicity, we use I, 3. to denote
T4, by ¢, in the proof. Let u® denote the a-th element of p. The following expression holds for any valid a, b, and c.

Fa,,bc = %]Eq(z\/\) [aubaucau“A(A)] =0
We can obtain the above expression since
Eyei3) [0400pe 0o AN)] = Eqapy) [0, 0 (€ S)] = Egeiny [0, (e See)] =0

where in the last step we use the fact that S, e,, and e, do not depend on g. |

Similarly, we denote the Christoffel symbols of the second kind for vec(S) as I'**, . Note that S is now a matrix. It is
possible but tedious to directly compute the Christoffel symbol and element-wisely validate the expression of the additional
term for S. Below, we give an alternative approach to identify the additional term for S as shown in the proof of Lemma 4.

Recall that R/ (¢) is the solution of the following ODE for block vec(S):

R®(0) =—§"; R*(0) =S5
R (t) = =T, ()R (R (1),

where R “2(t) denotes the a-th element of R[?/(¢) and S92 denotes the a-th entry of vec(S).

Lemma 4 The additional term for S is Mat(T%__3%2°?) = —gl487 1 where §% denotes the a-th element of

bz C2

vec(§?).

Proof: As discussed in Sec 5, Rl(¢) is a (block coordinate) geodesic given A7 is known. In this case, given that g is
known, R2] (t) has the following closed-form expression (Pennec et al., 2006; Fletcher & Joshi, 2004; Minh & Murino,
2017).

Mat(RI?(t)) = UExp(tU'gPlu—YHU

X n

—— denotes the matrix exponential function.'®

1
where U = S2 denotes the matrix square root and Exp(X) := T+ >,

'8The function is well-defined since the matrix series is absolutely convergent element-wisely.
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The additional term for S can be obtained as follows.

“Mat(?, . §7§°) = Mat(R” (0))

= Mat(ViRP(t)],_,)
= ViMat(RP(1))],_,

= v} (UBp(U g U U )|

—UV? (Exp(U_th[Q]U_1)> U
— U(U—lg[Q]U—l)(U—lg[Q]U—l)U
_ 4dg-1402

where we use the following expression to move from step 5 to step 6.

ViExp(tX)|,_, = V} (1 +> ( n,) ) o = X2
n=1 ’

Finally, by Lemma 3 and 4, the update induced by the proposed rule is

0
L txte™
Bt =19 — =T, 9"
txt
s¢ «— §¢ — thQ o 5 1—\(:22b2§]a2gb2
where s is the c-th element of vec(S).
Therefore, we have
vee(u®) vec(g“)
= ~
pe T -t gl
txt
S« 8 -t g¥ +-- gH¥sgh
~~ ~—~ 2 ———
Mat(s€¢) Mat(ACQ co  pag Aba
g°) —Mat(I'Z,,,9 °9°)

E.1. Proof of Theorem 1

Now, we give a proof of Theorem 1.

Proof: First note that G = S — E, [ng (z)] is a symmetric matrix. Let L be the Cholesky of the current S = LL”. We
can simplify the right hand side of (9) as follows:

o

2 . 2
2

(1—1t)S +tE,[V2(2)] + gGS*lé =S-tG+ -GS 'G= (S + (L - tGL’T> (LT - tL’lé‘r)) = %(S + UTU>,

where U := LT — tL 7' G. Since the current S is positive-definite, and Uluis positive semi-definite, we know that the
update for S is positive-definite. O
E.2. Natural Gradients and the Reparameterization Trick

Since A = {, S} is a BCN parameterization of a exponential family distribution, gradients w.r.t. BC expectation parameters
are natural gradients for BC natural parameters as shown in Theorem 3.
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Given that S is known, the BC expectation parameter is my;) = [E,(.) [Sz] = Sp. In this case, we know that 9, L = SO, L.
Therefore, the natural gradient w.r.t. g is 9[1] = Oy £ = s—lauc =30,L.

Likewise, given that g is known, the BC expectation parameter is myg = E,..) [—3zz7 + pz”| = 1 (up” —S71).
Therefore, the natural gradient w.r.t. S is g = Oy £ = —205-1L = =205L.

Recall that L(X) = E,. ) [¢(D,z) — logp(z) + log ¢(z|A)], by the Gaussian identities (Opper & Archambeau, 2009;
Sarkki, 2013) (see Lin et al. (2019b) for a derivation of these identities), we have

LX) = 8y [Eqin) [ £(D, 2) — logp(z)] — 3 log [2meX|]
= Oy [Eqizn) [U(D, 2) — log p(z)]]
= E,¢n [V2 [U(D, 2) — log p(z)]] (19)
OsL(A) = 0x [Eq(zm [£(D,z) —logp(z)] — log \27T62H
= 05 [y [ (D, 2) —log p(z)]] — 357
= 3By [E7H (2 — w) VL (D, 2) —logp(z)]] — 3277 (20)
= 3By [V2 D, 2) —logp(z)]] — 557 @1)

where (19) is also known as the reparameterization trick for the mean, (20) is also known as the reparameterization trick for
the covariance, and we call (21) the Hessian trick.

Using Monte Carlo approximation, we have
0L~V [l(D,z) —logp(z)]
17~ -
OnL ~ 1 [S + ST} - %2_1 referred to as “-rep”
OsL~ 3 [V2[UD,z) —logp(z)]] — 427! referred to as “-hess”
where S := X7z — pu) VT [((D,z) — logp(z)] and z ~ ¢(z|\) = N (z|p, 2).
E.3. Adam-like Update

We consider to solve the following problem, where we use a diagonal Gaussian approximation q(z|u,s) = N (z|u, s) and
s=o0"2

N
min‘c(u7s) = Eq(zm,s) [(Z E’L(Z)> - IOgN(Z‘Oa /\_11) + 10gq(Z|[,L,S)
i=1

Wy

Note that

) = Z Oy (zipns) [i(2)] + A

052 L8 Z 0o Eoeips) [li(2)] + 31 — §s

where 0, Ey ... [li(2)] and Op2Ey (.. [¢i(2)] can be computed by the reparameterization trick with MC approximations
where z ~ N (z|p, s).

22

OuEq(eins) [li(2)] = Eqrapps) [V24i(2)] Ai(z)
052 By(es) [i(2)] = 3B q(eipne) [5 © (2 — ) © V. li(2)] = % [ © (z— )] © V., Li(z)

The natural gradients can be computed as follows.

3 = ot (9L (.9)]
g = —20,2L(p, )|

H:ﬂk75:5k>

K=k, ,S=Sk
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The update induced by our rule with exponential decaying step-sizes and the natural momentum (Khan et al., 2018) shown
in blue is given as follows.

(1]

Bii1 = By, — @), + 120} © .2, ® (s — 14—1)

2
_ _ A[2] . t3 .2 A[2
Uk—i2-1 :Ukz—t39£c]+§3g£€]®‘7%®ggc]

1—rk 1—rk 1—pk—t
where ¢ = (1 —rl)l_r?,tg =T 72 . i r,and t3 = (1 — rq).

Recall that s = o 2. The proposed update can be expressed as

1—rk 1L—rk1—pbt
M ZHk—t(l—Tl)ﬁ k leﬁ‘rll kﬁsk ®Sk—1®(uk—ﬂk—1)
1—r .
Sk41=8r + (1 —r2)hy + %hk ©8;' ©hy
Sk+1 = N8kt
N N .
where gy, := § 32,01 OByt (@) |, oy + Nttrand by = F 550 0By [G(2)] |, oo, R — Sk

k—1
Let’s define my, := %ék_l ® (,u,,ﬁ_1 — uk). We can further simplify the above update as shown below.
-

{1 - 1) r§_1® PPl FoS PO i ks S o ( )
= — —r)—= T —§_ —
Hpq1 = My 1 1k 8k 1Tk ok k t(l—rffl) k=1 O My — M1
1—rk _
=py, — t—8. O [(1 = r1)gy, + rimy]
1—rk
1
L s )
m = ———=3§ -
k+1 t(l—r’g) k MK — P41
1—r’f 1—7"’2C
=L 4= 2(1—-r)g, +rm
t(l_ré;) ].—'f"f [( 1)gk 1 k]
=(1-r1)g, +rimyg
a a (1—1ry)? a—1
Sk+1:Sk+(1—7’2)hk+7hk®Sk ® hy

2
L8+ 8+ (1 —ro)hy) ©8; " © (8 + (1 — r2)hy)]
Sk+1 = N8k11

where z ~ q(z|py,, sk), 8, ~ V:4i(z) + Ay, and hy, ~ [(N8) © (z — p)] © V.4i(z) + % — 8.

E.4. Tran et al. (2019) is a special case of our update

In the Gaussian case, Tran et al. (2019) consider the following update by using parameterization A = {p, 3}, where X is
the covariance matrix.

W= p—t3(0, /3) (22)
Sex g 5 Lgls-142 — Rey(s, —1g?). (23)

where the natural gradient'® for 3 is g1? := 23(95£) % and the retraction map is Ret(2,b) := £ + b + %bE_lb.

However, Tran et al. (2019) do not justify the use of the retraction map, which is just one of retraction maps developed for
positive definite matrices. In this section, we show that how to derive this update from our rule.

There is a typo in Algorithm 2 of Tran et al. (2019). The natural gradient for X should be 23 (9s £) X instead of Z(9s L)%



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

As shown in Eq. (16), our rule can be used under not only a BCN parameterization but also a BC parameterization. Now, we
show that our rule can recover the above update using the parameterization A = {, 3}. Recall that this parameterization is
a BC parameterization. It only requires us to show that natural gradients and the additional terms are described in Eq. (23).

Given that 3 is known, g is the natural parameter and the expectation parameter is mp) = Eq.) [2_1z] ="'y as
shown in Appendix E.2. Therefore, the natural gradient w.r.t. g is g[” = Oy £ =20,L.

Now, we show that the natural gradients w.r.t. 3 is
§¥ =23(0:L)T

A proof using matrix calculus is provided below. See Malago & Pistone (2015) for alternative proofs. By matrix calculus,
we have

Eq(2) [Oxii Os [log q(z|p, 2)]]
=E,) (05105 [3(z — p)"S 7 (z — p) + $log |Z/(27)]]]
=1E ) [Osi [-2 Tz -p)(z— )=+ 2]

Ey) [<0si [T (z—pw)(z— )" =27z — p)(z— p) 0gu (271 4+ 0gu [Z71]]
= Eq(z (<05 [E7 z-w)(z-p)'S =27z - p)(z— ) dgu [B71] + 05 [271]]
505 [B7 By [(2— p)(z — )" 7 = 537 By (2 — p) (2 — )7 ] s [B77] + 500 [B7]
> >
=3 [~0su [T 1 -10ss [B77] + Og [B7]]

= — %82”’ [2_1]

Therefore, the block matrix of the FIM related to 2 is Fx; := —E,() |07, (x) log ¢(zlp, E)]} = —20vec(m) [vec(=71)]

Vv

due to the above expression. Note that F5,' = —20yec(z-1) [Vec(X)].

Note that gm is the natural gradient for 3. Since A = {u, X} is a BC parameterization, by Lemma 1, the natural gradient
w.r.t. vec(X) is

Vec(g[2]) = Fy'vec(9sL)
—20yec(s-1) [Vec(E)] vec(9s L)
—20yec(sn-1) [Vee(E)] Ovec(n) £
= —20yec(z-1)L
= —2vec(Os-1L)

where we obtain the fourth step using the chain rule.

Therefore, we have Q[Q] = —20x-1 L. By matrix calculus, we have
Os-1L=-3(0sL)X
Finally, we have

§¥ =23(0:L)2

Now, we show that the additional term for g is O under parameterization A = {u, 3}. Since A is a BC parameterization, by

Lemma 3, all entries of '} . for p are zeros. Therefore, the additional term for g is 0.

We denote the Christoffel symbol of the second kind for vec(X) as ' byey NOW, we show that the additional term for 3 is
txt 5316l Ytis equivalent to show Mat(I®  §>§°) = —gm gl

bacad
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Recall that the natural gradient for S = X! is G = —209x L. Under parameterization X = {pu, S}, RrZ (t) has the
following closed-form expression, which is used in the proof of Lemma 4.

Mat(R? (1)) = UExp(tU*GU YU

1 n
where U = S2 and Exp(X) :=1+ > 7, %
Note that ¥ = S~ . Therefore, under parameterization A = {u, ¥}, we have
e Shew
5 (2]
Mat(R®(t)) = [ Mat(R™(t)) ]
= (UExp(tU'GU HU) !
= U 'Exp(—tU'GU HU !
= SV 2Exp(—t2V/2GRY?)nt/?
= SV 2Exp(t2Y/2 (205 L) 2V 2 1/2
= 2V 2Exp(t2~ V2 2205 L)% /2 n1/2
—_——

5121

-1

— 231/2E)<p(tz:71/2g[2}2371/2)231/27
where we use the identity (Exp(tU 'GU™!))~! = Exp(—tU 'GU ™).

Note that a geodesic is invariant under parameterization. Alternatively, we can obtain the above equation by using the fact
that R[?/(#) is a geodesic of Gaussian distribution with a constant mean.

Using a similar proof as shown in Lemma 4, the additional term for X is

Mat(I% . §"§%) = —gP'=~'g?

where I'“} s the Christoffel symbol of the second kind for vec(X) and g** denotes the a-th element of vec(§?).

F. Example: Gamma Approximation
We consider the gamma distribution under the parameterization A = {A\'l, A2}, where Al = v and A2 = 2.

Since every block contains only a scalar, we use global indexes such as A = £\l \@) = yai gpd Iiii = Da, bye, for
notation simplicity. The open-set constraint is {2y = S}r L and Qp = Si . Under this parameterization, we can express the
distribution as below.

q(z|A) = 27 texp (/\(1) log z — zAMA®) A()\))
where A(X) = log Ga(A) — A (log AV + log A?)) and Ga(-) is the gamma function.

Lemma 5 The Fisher information matrix is diagonal under this parameterization. It implies that this parameterization is a
BC parameterization.

Proof: Notice that E ) [2] = )\(12) . The Fisher information matrix is diagonal as shown below.

F= _Eq(z\)\) I:ai IOg q(Z|A)]

—02, AN (—z+ i)
_ D) el
Fate {(—Z +5t5)  —Re AN

8%, A(N) 0
_ A1)
— Eq(z|)\) |: 0 8§(2)A(A)
(A - 1y 0
= 0 A(l)
CO
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where 1(-) denotes the digamma function. O

Lemma 6 X is a BCN parameterization.

Proof: By Lemma 5, we know that X is a BC parameterization. Now, we show that A = {A() A2} is a BCN
parameterization. Clearly, each \(¥) € Si . has all degrees of freedom.

The gamma distribution which can be written as following exponential form:
gz A N2y = 27 Lexp ()\(1) log z — 2 AR — A(z\))

Considering two blocks with A(*) and \(?) respectively, we can express this distribution in the following two ways where
the first equation is for the A(!) block while the second equation is for the A block:

g ADA2) = 271 exp <<1ogz — 2@ \My A()\))
~—~ ————

ha(2,A) $1(2,2®)
-1 (1) (1) y(2)
- A ( oM @y _a(x )
2z texp(APlogz)exp (( -z ) —A(X)
ha(z,A(1) $2(2,2(D)

Therefore, by the definition of BCN, we know that A is a BCN parameterization.

]
Using this BCN parameterization, the Christoffel symbols can be readily computed as below.
193 1(n2 1) 1 143 AW
I = 3050 AA) = 5(8A<1>¢()\ )+ 2) v T = 5050 AN) = - 3
AD) (A@)
2 Oy 1
't — Tin KW + (o)* re. _ Pooe 1
U 20,0y (\) — o) 27 Fy A2
F.1. Proof of Theorem 2

We first prove the following lemma.

Lemma7 I'' | < —<f5 when AV > 0.

Proof: By Eq 1.4 at Batir (2005) and the last inequality at page 13 of Koumandos (2008), we have the following inequalities
when A(V) > 0.

1 1
Oy — > = i
A p(A) NGO > 2()\(1))2 >0 Batir (2005) (24)
1 205w (A1)
2 (1) _ A
Ko v(A) < (/\(1)>2 e Koumandos (2008) (25)
By (25), we have
1 2 20, p(AD) 2 1
20\ -2 = (—=-9 AL
Al >1/)( )+ ()\(1))2 < ()\(1))2 A m \ M A(l)w( )
Since 9,1y (AMD) — st > 0, we have
1
SO L
= < _
1 wv() — 3y AW
which shows 'l }; < —ﬁ. g

Now, We give a proof for Theorem 2.
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Proof: The proposed update for A(!) with step-size ¢ is given below.
W AD _ g _ 1y (40
XD X0 =150 — 2 (1) (3)

2 2
W _ LN o
S A g +2(m)(g)

_ ﬁ [2 (MU)Q g 4 (tgu))z}

i |00 ()’

>0 >0 >0

where in the second step we use the inequality I'!;; < —ﬁ shown in Lemma 7 since the current/old A(Y) > 0.

Similarly, we can show the update for A(?) also satisfies the constraint.

2 (1 2
@ 2@ _ 1 C (LY (@
A®) A g +2()\(2)><g )

- 2,\1(2) (’\(2))2+ (’\(2) - tg(2)>2
L —_ —

>0 >0 >0

It is obvious to see that the proposed update satisfies the underlying constraint.

F.2. Natural Gradients

Recall that g are the natural-gradients, which can be computed as shown below.

(1) _ oL ~(2) _ ()‘(2))2

(D) — ol PYCY

a;\(z) E
Recall that \(V) = o and A\(®) = g Using the chain rule, we know that

3)\(1)£ = 0, L+ §3ﬁ£7 (%\(2)[: = Ozagﬁ

0oL and 0gL can be computed by the implicit reparameterization trick (Salimans & Knowles, 2013; Figurnov et al., 2018).

G. Example: Exponential Approximation

In this case, there is only one block with a scalar. We use global indexes such as 2D = A\l ang I'ii1 =T4, bye, for
notation simplicity. We consider an exponential distribution under the natural parameterization A = A\(!) with the open-set

: ol .
constraint 2 = S , :

q(z|\) = exp (—)\(l)z - A()\))

where A(\) = —log A('). The FIM is a scalar F}; = W It is obvious that A is a BCN parameterization. the Christoffel
symbols can be readily computed as below.
1 r 1
_ 1493 _ 1 _ L1l
Py = 53/\“)/1(/\) = (/\(1))3 o Iy = Fi YE)



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

The proposed natural-gradient update with step-size t is

t2
AD =\ g4

> (5m) 0

where g“) is the natural-gradient. Note that f](l) is the natural-gradient, which can be computed as shown below.
L 2
g = (/\(1)) A L.

where 0, 1) £ can be computed by the implicit reparameterization trick as 9y £ = [0xz] [0.b(z)]. where z ~ q(z]AMW)
and b(z) = £(z) + log q(z|]A())

Lemma 8 The proposed update satisfies the underlying constraint.

Proof: The proposed natural-gradient update with step-size t is given below.

2 2
M 1) _ LY
A=A tg + 5 <)\(1)> (g )

_ 1 [2 (MU)Q Carga( 4 (tgu)ﬂ

22(1)
1 2 2
- € 1 _ 41))
22D [(A )+ (-1 ]
It is obvious to see that the proposed update satisfies the underlying constraint. ([

G.1. Implicit reparameterization gradient

Now, we discuss how to compute the gradients w.r.t. A using the implicit reparameterization trick. To use the implicit
reparameterization trick, we have to compute the following term.

9rr — QN . (I —exp(=Az))  zexp(=Az) 2
AT q(z]\) dexp(—Az)  dexp(—XAz) A
where Q(z|\) is the C.D.F. of ¢(z|\).
H. Example: Inverse Gaussian Approximation
We consider the following distribution.
B zaB?> o loga
q(z|la, B) = 553 OXP < 5 % + 5 + aﬁ)

where {%, a} is a BC parameterization.
We consider a BCN parameterization A = {\, A2}, where A} = 2 and A[?l = o and the open-set constraint is

Q1 = S}, and Q» = S! . Since every block contains only a scalar, we use global indexes such as A = Al and
T'i.4s = T'a, b,c, for notation simplicity. Under this parameterization, we can re-express the distribution as

1 z A2
01N = gazz e (520N - G - A

where A(A) = *w — 2@V,

Lemma 9 The FIM is (block) diagonal under this parameterization.



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Proof: Notice that E ) [2] = The FIM is (block) diagonal as shown below.

\//\1(71).
F = —E,.» [03 log q(z|A)]

BAN) (et ot)
3 (‘Z + \/ﬁ) —03 AN

8/2\(1)14()\) 0
0 BuAN

Loy ]

= —Esup

=K,

0 5 (@)

It is easy to show that X\ is a BCN parameterization since \ satisfies Assumption 1 to 3.

Due to the BCN parameterization, the Christoffel symbols can be readily computed as below.

3 —5/2 1 -3
i = %8/3\(”‘4()‘) ~ 16 (/\(1)) 2@, o090 = %6§(2>A()\) -3 ()‘(2)>
oo Py 03 2. _ oo 1
N T SO 27 M@

The proposed natural-gradient update with step-size ¢ is

t2( 3 2
W AW g0 (3N (0
AL AW _¢g +2<4)\(1))<g )

/1 2)) 2
(2) 2) _ 4@ 5(2)
A A tg +2 </\(2>> (g )

Lemma 10 The update above satisfies the underlying constraint.

Proof: The proposed natural-gradient update with step-size t is given below.

2/ 3 2
W O _ a0 E (D
A = A0 gy 4 (4)\(1))<g )

= ﬁ {4 (/\(1))2 _ 4t§(1))\(1) + % (tg(l))2:|

1 2 1 2
_ 1 _ 41)) ,( A<1))
AN (” tg) +5\1

Term I Term II

2/ 1 2
@ @ _pp@ L E (LY (@
AT ST T <)\(2)>(g )
_ 1! 2@(2))2_21‘42)“2)4r (th))z
T 2@ g g

= 2;(2) [()\(2))2 N (/\(2> - tg@))z}

Note that Term I and Term II cannot be both zero at the same time when A(Y) > 0. A similar argument can be made for the
update about \(?). Therefore, the proposed update satisfies the underlying constraint. (]

Recall that g are the natural-gradients, which can be computed as shown below.

. 4 3/2 ) 2
g(l) = W (/\(1)> L, 9(2) =2 ()‘(2)> he L
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Using the chain rule, we know that
1
3/\<1)E == %35/.:, 6/\(2)£ = 80¢£

0o L and 9 L can be computed by the implicit reparameterization trick (Salimans & Knowles, 2013; Figurnov et al., 2018)
as OpL ~ [0pz] [V.b(2)], where = {a, B}, z ~ q(z|c, B) and b(z) := £(2) + log q(z|a, B)

H.1. Implicit reparameterization gradient

Now, we discuss how to compute the gradients w.r.t. o and 3 using the implicit reparameterization trick. To use the implicit
reparameterization trick, we have to compute the following term.

9,Q(zIn)
q(z|n)
Oy [®(\/Z (28— 1)) + exp(2aB)®(—/Z (28 + 1))]

Vo on (=357 - g+ 252 1 ap)

where 7 = {«, 8}, Q(z|n) is the C.D.F. of the inverse Gaussian distribution, and ®(z) = [*__ A/(|0, 1)dt is the C.D.F. of
the standard Gaussian distribution. We use the following fact to simplify the above expression.
0.0, 5) e CPEADRCVTEHEY) BT (B D)
o N(/Z (z8-1)[0,1) N(=y/Z (z8+1)]0,1)
where 6(z, a, 3) is known as the Mills ratio of Gaussian distribution. Using this fact, we can get the simplified expressions
as follows.

Oz = —

Onz = Z 2523/2071/26(2, a, f)
e
Oz = 7223/2041/25(2, a, f)

where we compute log(d(z, cr, 8)) for numerical stability since the logarithm of Gaussian cumulative distribution function
can be computed by using existing libraries, such as the scipy.special.log_ndtr() function.

In fact, we have closed-form expressions of gradients of the entropy term as shown below.
Eqein) [—logq(zn)] = 5 [~ log a — 3 (log 8 + exp(2a8) E1(2a8)) + 1 + log(2m)]
Ou iy [~ 08 a(elm)] = - — 3 exp(205) By (20)
sz [—log q(z|n)] = —3a exp(208) Ex (2a5)

where E (z) == [° et:dt is the exponential integral. It is not numerical stable to compute the product exp(x) E; (z) when
x > 100. In this case, we can use the asymptotic expansion (see Eq 3 at Tseng & Lee (1998)) for the exponential integral to
approximate the product as shown below.

1_’_%(—1)”71!1 when z > 100
xn ’

n=1

8

exp(x)Er () ~

where NV is an integer suchas N < x < N + 1.

I. Mixture of Exponential Family Distributions

Let’s consider the following mixture of exponential family distributions ¢(z) = [ ¢(z, w)dw. The joint distribution
q(z, wA) = q(w|A\y)q(z|w, A,) is known as the conditional exponential family (CEF) defined by Lin et al. (2019a).

Q(W|’\w) := hy (W) exp [<¢w (W), Aw) — Aw(’\w)]
q(z|w, ;) := h,(w,z)exp [(p,(W,2z),A,) — A, (A, W)]
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where A = {\., A\, }.

We will use the joint Fisher information matrix(FIM) suggested by Lin et al. (2019a) as the metric F to derive our improved
learning rule for mixture approximations.

L.1. The Joint Fisher Information Matrix and the Christoffel Symbol

Lin et al. (2019a) propose to use the FIM of the joint distribution ¢(w, z|A) , where they refer this FIM as the joint FIM.
The joint FIM and the corresponding Christoffel symbol of the first kind are defined as follows.

Fab = _]Eq(w,z|/\) [aaab log q(w7 Z|A)]
Laab := 5 [0aFod + OpFaq — OaFus)

where we denote 9, = 0y« for notation simplicity.
Like the exponential family cases as shown in Eq. (17), the Christoffel symbol of the first kind can be computed as
Fd,ab == % ]Eq(w,z\)\) [8(1,8}) log Q(Wa Z|A)8d log q(Wa Z‘)‘)] - Eq(mz\)\) [abad log Q(W7 Z|A)a(l IOg Q(Wv Z|A)}

— Eyw,21n) [0a04 log q(w, 2| X)0p log q(w, 2| X)] — Ey 210 [0a0604 l0g q(w, 2| X)) (26)

1.2. The BCN Parameterization

Now, we show that how to simplify the computation of the Christoffel symbol by extending the BCN parameterization for
this kind of mixtures.

To this end, we first assume that A can be partitioned with (m + n) blocks to satisfy Assumption 1 in the main text.

A=Al Al Amt) N [menly

)\z Aw

Then, we extend the definition of BC parameterization to the conditional exponential family, which is similar to Assumption
2 in the main text and a concrete example of Definition 1 in Appendix B.1.

Assumption 2 [Block Coordinate Parameterization] : A parameterization satisfied Assumption 1 is block coordinate
(BC) if the joint FIM under this parameterization is block-diagonal according to the block structure of the parameterization.

Lin et al. (2019a) show that, for any parameterization A = {\., A, }, the joint FIM has the following two blocks: F, for
block A, and F,, for block A, as given below.

F,. 0
F= [ 0 Fw]
Assumption 2 implies that F', and F', are both block-diagonal according to the block structure of A,, and A, respectively.
The block diagonal structure is given below if A = {AN, . Alm XImH+1 - xIm+ny 56 BC parameterization.
_ F. -
Fl! 0
. : 0
0 Fim
e Fi 0
0 I
0 ... Fmn
L Fur -
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Assumption 3 [Block Natural Parameterization for the Conditional Exponential-Family] :  For a conditional
exponential-family distribution q(w,z|\) = q(w|Ay)q(z|w, A,), a parameterization X = {\,, A\, } has the following
properties.

e A\, is a BCN parameterization of the exponential family distribution ¢(W|\,,) as defined in the main text.

e )\, is a parameterization of q(z|w, X ), where there exist function ¢, and h, for each block Ag] such that conditioning
onw, q(z|w, X,) can be re-expressed as a minimal conditional exponential family distribution (see Lin et al. (2019a)
for the definition of the minimality) given that the rest of blocks )\[;z] are known.

q(z|w,X.) = R, (w2, AU exp [(, (w, 2, A7), AL — AL (AL, w)]

z

We say A = {\,, Ay } is a BCN parameterization for the mixture if it satisfies Assumption 1 to 3.

Many mixture approximations studied in Lin et al. (2019a) have a BCN parameterization. For concrete examples, see
Appendix J and K.

L.3. Our Learning Rule for Mixture Approximations

Now, we are ready to discuss the learning rule for mixture approximations. Under a BC parameterization A = {\., A},
our learning rule remains the same as shown below.

e e
)\ci « )\ci o tﬁ“’*;F‘"" qu,gb,,

a;b;-

where block 7 can be either a block of A, or A,.

First, note that the sub-block matrix F,, of the joint FIM is indeed the FIM of g(w|\,,). Furthermore, ¢(w|A,,) is an
exponential family distribution. If A = {A,, A,, } is a BCN parameterization, it is easy to see that the computation of the
Christoffel symbol for A, is exactly the same as the exponential family cases as discussed in Appendix D.

Furthermore, we can simplify the Christoffel symbol for A, due to the following Theorem.

Theorem 4 If X is a BCN parameterization of a conditional exponential family (CEF) with the joint FIM, natural gradient
and the Christoffel symbol of the first kind for block /\[Zl] can be simplified as

9" = 0Om., L5 Taiab = 5Eqquin,) [3&% Ox 1, 0 g, Az(Az, W)

where \% is the a-th element of )\[Zi] ; M, denotes the a-th element of the block coordinate expectation parameter
m =By |0, (W,Z’)\[;i])} = Eqwir) {%g]AZ()\z,W)}-

L.4. Proof of Theorem 4
Proof: We assume A, = {A ... A"} is partitioned with m blocks.

Since A is a BCN parameterization, conditioning on w and given )\Ei] and A, are known, we can re-express ¢(z|w, A, ) as
q(z|w,A,) = h, (z,w,)\[z_i])exp [(qi)zi (z,w,)\[z_i]),)\[zi]> —A, (A, w)

where ¢(z|w, A,) is also a one-parameter EF distribution conditioning on )\L_i] and w. Similarly, we have the following
results.

0q,0p, log q(z|w, ;) = =0,
EQ(ZWH)\z) [aai IOg Q(Z|W7 Az)] =0

Op, Az (A, W)

i
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where 0, = 0,a: is for notation simplicity. Using the above identities, we have
Eqzwin) [8ai8bi log Q(Z’ W|)‘)8di log q(z, WP‘)] = Eq(zwn) [8% O, log q(z|w, )‘Z)adi log q(Z|W, )‘Z)]
= Eq(w\kw) [EQ(ZIWJ\Z) [aai abi log Q(Z W, )‘Z)adz log Q(Z‘Wv AZ)]]
= 7Ef1(w|*w) 8% abi A, ()‘Zv W) Eq(z\'w,/\z) [adz log q(z|w, )‘Z)] ]

0

Therefore, by Eq. (26), we can simplify the Christoffel symbol for )\[Zi] as follows.

Laiab; = — %]Eq(z,w\)\) [0a, Op, D4, log q(z, W|A)]
= %]Eq(wp\w) [8%01,10(11, log q(Z'W7 Az)]
=3B o) 00,05, 00, A- (A, w)]

where we use d; to denote the d-th entry of block )\[Zi].
Likewise, let m., = Ey(. w5 [(bZi (z,w, )\[z_i]) denote the block coordinate expectation parameter. We have

0 = Eqwir.) [EQ(Z\MAJ [0, log q(z|w, ’\Z)]} =Mz, — Equla,) [Oa; Az (A2, W)
0

where m,, denotes the a-th element of m;, .

Therefore, we know that m., = Eyus,) [0a, Az (Az, W)].
Recall that the sub-block of the joint FIM for )\[Zi] denoted by F[zi] can be computed as

Fub, = —Eqzwin [0, 0a, log q(z, w|A)]
= —Eyzun) [0b;0a, log q(z|w, A,)]
= —Eiwin [~06,0a, Az ( Az, W)
= Eqwing) (0600, Az( Az, W)]
= Ob,Eq(uwir,) [0a; Az(Az, W)]

= ab, mza .

where we use the fact that A, does not depend on )\l;i € X;and O, = a/\bi to move from the fourth step to the fifth step.

Recall that when A is a BC parameterization, the joint FIM F is block-diagonal as shown below.

FU 0
: ; 0
p_|LoO Flm]
- Fimtll o
0 :
0 Flmtn)
I F., |

It F[Zi] is positive definite everywhere, we have
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The above assumption is true if given that )\[ 7 and A, are known, q(w, z|\) is a one-parameter minimal CEF distribution
(See Theorem 2 of Lin et al. (2019a)).

The above result implies that we can compute natural gradients as follows.
§o = Faibig, — [amza )\Zi] [aﬂ L] = Op. L

where g5, = 0,», L.

If we can interchange the differentiations and the integration, we can show, by Theorem 4, we have I'“ ab; =
20m.. Ox_a, Iy, Eqtuina) [As (X2, w)] since A, (X., w) is C3-smooth w.r.t. Al .

Zc,
Ci

J. Example: Finite Mixture of Gaussians Approximation

We consider a K-mixture of Gaussians under this parameterization A = {{g,, S} 1, A, }

q(z‘ﬂ'v{p’c’SC}c 1 Zﬂ-c “’Lc? )

where 7, is the mixing weight so that Ziil Te=1,8. =21 A, = {log(n./mr)}E  and e = 1 — Ef 11 .. The
constraints are A, € RE~1, n. € R% and S, € Siﬁd.

Under this parameterization, the joint distribution can be expressed as below.

q(z, w|A) = Q(w\Aw)fJ(ZIw {Ke,Sc}ely)

—1
q(w|Ay) = exp Z I(w =) Ay, — Aw(Aw))
c=1
K
a(zw, (1o, S HEL) = exp (Y T(w = ) [~ 327Sez + 27Somt.] — A- ({118}, w))
c=1

where B(u,,S.) = i [ TSCI’LC 10g|Sc/(27r)\], AZ({chSc}f:l’w) = Zf(:l I(w = ¢)B(perSe)s A, = log(:; )
Ap(Ay) = log(1+zc 1 eXp(/\wC)).

Lemma 11 The joint FIM is block diagonal under this parameterization.

IR, -
0 0
[ FSJ
F= 0 Fu 0
Fs,
I 0 .. 0 F, |

Therefore, this parameterization is a BC parameterization.

Proof: We will prove this lemma by showing that all cross terms are zeros.
Case 1: First, we will show that cross terms (shown in red) between A, and X, := {1, S.}X | are zeros.

Let’s denote /\iu be an element of \,, and /\JZ' be an element of \,. By the definition, each cross term in this case is defined
as belows.

— Eqyteun) [(’)/\3”8)\% log q(z,w|)\)} = —Ey¢upn [8%8)\2 (log g(w|Ay) + log q(z\w,)\z)} =0



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

Case 2: Next, we will show that cross terms between (shown in blue) any two Gaussian components are zeros.
Let’s denote A%, be an element of {y1,,S,} and X] be an element of {11, Sy}, where a # b.
By the definition, each cross term in this case is defined as belows.
- Eq(z,wp\) |:a)\za,\{) 1Og Q(Zv 'lU|A)i|
== Eyizuin) [5A35Ag (log q(zw, {s,. 80}5:1)}

=—Eyiuw) {]I(w = b)a,\z (aAi [—%ZTSZ,Z + zTSbub — By, Sb)] ) } =0

u(zmy, %)

It is obvious that the above expression is 0 since Oy u(z, py,, Xp) = 0 when a # b.
Case 3: Finally, we will show that for each component a, cross terms (shown in green) between g1, and S, are zeros.

Let’s denote /¢, be the i-th element of p, and S7* be the element of S, at position (j, k). Furthermore, e; denotes an
one-hot vector where all entries are zeros except the i-th entry with value 1, and I;;, denotes an one-hot matrix where all
entries are zeros except the entry at position (j, k) with value 1. By the definition, the cross term is defined as belows.

- Eq(z;w\)\) [a;tgasgk log q(Z7 1U|A)i|
= Eq(aw\)\) [augas(ﬂlk ( IOg q(Z|U}, {I“I‘cv SC}gil)i|
S [a% Dgv (H(w = a) [-127S,z + 2" S, p, — By, Sa)] )}
=—EyGupn [H(w =a) [e;?FIjkz — e;?FIjkuaH
= By [l(w = a)ef Lixz] + Equpy [I(w = a)ef Ligp,]
= - Wae;r]:jku'a + ﬂ-aelTI]'kp‘a =0
where we use the following fact in the last step.

By [l(w = a)z] = maps,
]Eq(z w|\) [ ( a)] = Tq

Lemma 12 The parameterization X = {{p., S.}X |, Ay} is @ BCN parameterization.

Proof: Clearly, this parameterization satisfies Assumption 1 described in the main text. By Lemma 11, we know that this
parameterization is a BC parameterization. Now, we will show that this parameterization also satisfies Assumption 3 in
Appendix [.2.

First note that A, has only one block and it is the natural parameterization of exponential family distribution g(w|A,,),
which implies that A,, is a BCN parameterization for g(w|\,,).

Note that given the rest blocks are known and conditioning on w, g(z|w, A,) can be re-expressed as follows in terms of
block ;.

K
q(z|lw, ;) = exp (Zﬂ(w =c)[-32"S.z+2"S.p.] — A.({n., Sc}gil,w)>
=exp (Z [[(w=c)[-1z"Scz+2"Scp ] + I(w = k) [~ 32" Skz] ) exp (( I(w = k)Syz ,&) —A.({p,,SHE,, w))

c#£k g
z ¢y, (wz A7) AT

—k
hay, (w2 A0
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Similarly, for block S, ¢(z|w, A.) can be re-expressed as follows

q(z|w, A;)
=exp (Z [(w=c)[-1z"Scz+2"Scp,]] ) exp ((]I(w =k) [-3zz" + pz" | ’Eﬁ,> A.({p,, S} X | w ))
i Gapy (w2 A"2) Az
hay, (w22 "2)
Since this parameterization satisfies Assumption 1 to 3, this parameterization is a BCN parameterization. (|
We denote the Christoffel symbols of the first kind and the second kind for 1), as I'o, 5, ¢, and I klbk . respectively.

Lemma 13 For each component k, all entries of T'** for p,, are zeros.

bk ('k
Proof:  The proof is very similar to the proof of Lemma 3. We will prove this by showing that all entries of I'q, 5, ¢, are
zeros. For notation simplicity, we use I, 3 to denote Fakl by Chy - Let pf denote the a-th element of g1,

The following expression holds for any valid a, b, and c.

1_\a,bc = q(z w|\) |:(9/ 8M aukA {l"’j’s }] 1, W )]
= a(z,w|\) []I(w—k: ba a B(,J’kask)i|
= 1Byt [ = k)3, Dyg (eFSumy) |

= %Eq<27wm [H(w = k)9, (el Ske.) } —0

~——
0

where in the last step we use the fact that Sy, e,, and e, do not depend on ;.

Similarly, we denote the Christoffel symbols of the second kind for vec(Sy) as r*

bk Ckz
Lemma 14 For each component k, the additional term for Sy, is —gf] S,;l QE]

Proof: Recall that, in the Gaussian case N (1, S), the additional term for S is Mat(f“izcngzg”) = §!187"g1?, where
f“%m denotes the Christoffel symbols of the second kind for vec(S).

To prove the statement, we will show that the Christoffel symbols of the second kind for vec(Sy) is exactly the same as the

Gaussian case, when S = Sy.. In other words, when S = Sy, we will show T'** bk P =T, .
2

By definition, the Christoffel symbols
of the second kind for vec(Sy,) is defined as follows since A is a BC parameterization.

We denote the Christoffel symbols of the second kind for vec(S},) using I'“*2

bkyCry

k2

— Fakydry
bkq Cho =r de2

bk2 Cko

We will first show that de2 Dy Chy = kad%chQ.

In the Gaussian case, by definition, we have
_ 1 - 1 =
Fdz,bgcg = §Eq(z|;\) [agvbagcagdA(/,L,S)] = —Zagbagcagd (log ’S|)

where A(2,S) = § [2"Six —log |S/(27)|] is the log partition function of the Gaussian distribution and 5% denotes the
d-th element of vec(S) in the Gaussian case.
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Therefore, we have the following result in the MOG case when Sy, = S.

Lary brpcrs = SB[ Oy 05 Osp A= ({15, 851y w)|
= 3Equin) [H(w = k)OgpOs; Oga B(pay, Sk)}
= %Eq(z,wm []I(w = k)as;;as,gasg (—% log |Sk/(277)‘>}
= — 05y 05; O (log S )
= kadz,bgcQ

where S denotes the a-th element of vec(Sy) and E, .\ [I(w = k)] = 7.

Let Fy,, a,, denote the element at position (a, d) of the sub-block matrix of the joint FIM for block vec(Sy,) in the MOG
case. Similarly, when S;, = S, we can show that Fay,dy, = 7, Fuyd,, where F,, 4, denotes the element at position (a, d) of

the sub-block matrix of the FIM for block vec(S) in the Gaussian case.
Therefore, %2 = 7,1 9292 when S = Sy,

Finally, when S = S;,, we obtain the desired result since

2

_ (_—1fasd = _ fasde T _ jas
iy Chy - (Wk e 2) (Trkrdz,b@) = F2%lg, pye, =T

— 0kydr
- F 20 de’gv baco

bk2 Ck2

where fa"l’)2c2 denotes the Christoffel symbols of the second kind for vec(S) in the Gaussian case.

J.1. Natural Gradients
Recall that L(A) = E, .5 [((D, z) — log p(z) + log q(z|\)], where ¢(z|X\) = [ ¢(z, w|\)dw.

Lin et al. (2019a) propose to use the importance sampling technique so that the number of Monte Carlo gradient evaluations
is independent of the number of mixing components K.

Note that A,, is the natural parameter of exponential family distribution g(w|A,,), we can obtain the natural gradient by
computing the gradient w.r.t. the mean parameter as shown by Lin et al. (2019a).

Gy = OxL.

where 7, 1= Ey.,) [I(w = ¢)], O, L denotes the c-th element of 0, L, and the gradient 0, L can be computed as below as
suggested by Lin et al. (2019a).

87TCE - Eq(Z)[((sC - 5K)b(z)]

where b(z) := (D, z) — log p(z) + log ¢(z|\), and 6, := N (z|pa,, Se)/ S, 7N (2| sy, Sk).

Recall that A\, is unconstrained in this case, there is no need to compute the addition term for \,,.

Now, we discuss how to compute the natural gradients {QE], Q?] K ,. Since {p,,S.}X | are BCN parameters, we can
obtain the natural gradients by computing gradients w.r.t. its BC expectation parameter due to Theorem 4.

Given the rest of blocks are known, the BC expectation parameter for block i, is
my,, = By, [(w = k) (Spz)] = meSkpy

In this case, we know that 0, L = WkSkc'?mk_l L. Therefore, the natural gradient w.r.t. g, is gL” = amk_l L =
wglsglaﬂkﬁ = 77,;12;68;% L, where the gradient 9,,, £ can be computed as belows as suggested by Lin et al. (2019a).

O £ = Ey() 1601V 2b(2)]
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Likewise, given the rest of blocks are known, the BC expectation parameter for block Sy is

Tk

my, = By [[(w = k) (—322" + mz")] = 5 (e —S;7)

Therefore, the natural gradient w.r.t. Sy, is gf] = Om, L= —%8551 f= —%k('hk f, where where the gradient Oy, f can

be computed as belows as suggested by Lin et al. (2019a).
Os, L = 3B, [mr0kV2b(z)]
Alternatively, we can use the re-parametrization trick to compute the gradient as below.

O5, L = 3B, [Tr0kSk(z — 1) VI b(z)]

By Lemma 13 and 14, the proposed update induced by our rule is

log(me/mr) < log(me/mic) — tEy)[(dc — 0k )b(2)]
I"LC «— I‘l’c - tsc_l]E‘Z(Z) [(chzb(Z)}

2
S, S, - th+%Gc (S.)"' G, @7)

where we do not compute the additional term for A,, since A, is unconstrained, . := N (z|u.., S¢)/ Zszl TN (2|, Sk),
b(z) := (D, z) — log p(z) + log q(z|\) and G can be computed as below.

Note that b(z) can be the logarithm of an unnormalized target function as such b(z) = £(z) + Constant + log q(z|\).

Recall that £(D, z) — log p(z) = £(z) + Constant. Lin et al. (2019a) suggest using the Hessian trick to compute G.. as
shown in (29). We can also use the re-parameterization trick to compute G, as shown in (28).

Ge = —Ey)[6:Sc(z — 1) VEIb(z)| = —Ey.) [0cSc(z — 1) VEL(z)] — Eye) [0V 1og q(z|A)] (28)
= —E,)[0.V2b(2)] = —E,)[6.V2(2)] — E,()[0.V2 1og q(z|\)]. (29)

We use the MC approximation to compute G, as below.

= . al
A S.+S
G.~ =6, (% + VZlog q(z|)\)> referred to as “-rep”

Q

G, ~ —4, (V? ((z) + V2 1log q(z|>\)> referred to as “-hess”
where z ~ q(z|\), S. := S.(z — p.)VT¥(z) and V? log q(z|\) can be manually coded or computed by Auto-Diff.

Recall that when ¢(z|A) is Gaussian, —E,(., [V2log ¢(z|A)] = =", which is positive definite. VOGN is proposed to
approximate E, ., [V2/(z)] by a positive definite matrix when g(z|A) is Gaussian. In MOG cases, —E,.) [V2 log ¢(z|A)] is
no longer a positive definite matrix. VOGN does not guarantee that the update for S, stays in the constraint set. Furthermore,
directly approximating -G, by naively extending the idea of VOGN does not give a good posterior approximation. Unlike
VOGN, our update satisfies the constraint without the loss of the approximation accuracy for both Gaussian and MOG cases.

K. Example: Skew Gaussian Approximation
We consider the skew Gaussian approximation proposed by Lin et al. (2019a). The joint distribution is given below.
q(z,wla, u, ) = q(z|w, o, p, )N (w0, 1)
q(Z|U}, o, W, 2) = N(Z|H’ + |w|a, 2)
= exp({Tr (—%E_lzzT) + lwaTE 2+ p'E 1z - H(pw+ lw|a)TE" (u + |w|a) + log 273 })
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We consider the parameterization A = { {g } ,S}, where S = sl = {g} ,and A?! = S. The open-set constraint is

A € R?4 x Siﬁd. Under this parameterization, the distribution ¢(z|w) can be re-expressed as below.

q(z|w, X) = exp {’I‘r (—3Szz") +2"S (Q(w))" A — 4, (A, w)}

where Q(w) := [|U’I|dIJ is a 2d-by-d matrix and A,(A,w) = 3 |:[/,LT a’] Q(w)S (Q(w))” {g] — log |S/(27r)|}

Lemma 15 The joint FIM is block diagonal with two blocks under this parameterization.

Fll o
=%y o)

Therefore, this parameterization is a BC parameterization.

Proof: We will prove this lemma by showing that all cross terms shown in red are zeros.

Let’s denote A% be the a-th element of Al and 5% be the element of S at position (b, ¢). Furthermore, e, denotes an
one-hot vector where all entries are zeros except the a-th entry with value 1, and I, denotes an one-hot matrix where all
entries are zeros except the entry at position (b, ¢) with value 1.

By definition, the cross term is defined as belows.
— Eyizupn) [Ora1 Ogve log q(z, w|A)]
T

— ey 275 @) e, — (A7) QUL (Q(u) e
r T

=~ By [Eacion 27T (@) e~ () QUulie (@) |
r T

=~ By By 27T (Q(w)) " ea] = (AY) Q)T (Q(uw))” ]

T

(A[”)T Q)L (Q(w))" eq — (Am) Q(w)T, (Q(w))” ea] —0

where we use the following expression in the last step.
T
Eq(z\w,)\) [Z] = ‘w| o+ ®= (Q('LU)) A[l]

]

Note that another parameterization { s, e, S} is not a BC parameterization since the joint FIM is not block-diagonal under
this parameterization.

Lemma 16 Parameterization A is a BCN parameterization.

Proof: Clearly, this parameterization satisfies Assumption 1 described in the main text. By Lemma 15, we know that this
parameterization is a BC parameterization. Now, we will show that this parameterization also satisfies Assumption 3 in
Appendix [.2.

Note that given the rest blocks are known and conditioning on w, ¢(z|w, A) can be re-expressed as follows in terms of block
Al

q(z|w, \) = exp {Tr (—18zz") +27S (Q(w)) " Al — A,(A, w)}

=exp {Tr (—%SZZT) }exp [( Q(w)Sz Ay — A (A, w)}

hl(w,z,)\[*l]) ¢71(w,z,)\[*1])
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Similarly, for block S, ¢(z|w, A) can be re-expressed as follows

T
azw,A) = 1 exp|(~1zz" +2 (A1) QM) 8) — A.(Aw)
ha(w,z,A[=2])
2 (w,z,\[=2])
Since this parameterization satisfies Assumption 1 to 3, this parameterization is a BCN parameterization. (]

We denote the Christoffel symbols of the first kind and the second kind for A ag Lo, by, and T | Tespectively.

1C

Lemma 17 All entries of T'**  for AU are zeros.

Proof: We will prove this by showing that all entries of Fa})lcl are zeros. Let A% denote the a-th element of Al!l.

The following expression holds for any valid a, b, and c.
Loy brer = 3Equy) [Oxe Orer Orar AL (A, w)]
= 1By [0 ((e)” Q(w)S (Qw))" A
= 1By [0 (£ QS Q) e )| =

where in the last step we use the fact that S, Q(w), e, and e, do not depend on A

We denote the Christoffel symbols of the second kind for vec(S) as T'*?

bacs

Lemma 18 The additional term for S is —ng*lgm

Proof: Recall that, in the Gaussian case N'(fz, S), the additional term for S is Mat(T'*;,__ §%4) = g?S g%, where
f“iQCz denotes the Christoffel symbols of the second kind for vec(S).

To prove the statement, we will show that the Christoffel symbols of the second kind for vec(S) is exactly the same as the
Gaussian case, when S = S.

We denote the Christoffel symbols of the second kind for vec(S) as I'*} . . By definition, the Christoffel symbols of the
second kind for vec(S) is defined as follows.

re

_ prazds
boca F Pd2,b262

We will show that T, pyey = Lay byes-

In the Gaussian case, we have
= 1 _
Ly pne, = —Zagbagcagd (log |SD

where A(f1,S) = § [27Sp — log |S/(2m)|] is the log partition function of the Gaussian distribution and S is the a-th

element of vec(S) in the Gaussian case.

Therefore, we have the following result when S=S.
1 _
Ly bres = 5Eq(uiy) 050050050 AL (X, w)] = —Zasbascasd log [S| = T4, b,

where S denotes the a-th element of vec(S).

Let Fy,q, denote the element at position (a, d) of the sub-block matrix of the joint FIM for vec(S). Similarly, we can
show that Fy,4, = Fu,d,, Where Fy,q, denotes the element at position (a, d) of the FIM for vec(S) in the Gaussian case.
Therefore, Fo2d2 = Fazdz
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Finally, when S = S, we obtain the desired result since

Fa%zcz - Fazd?l—‘d27b2c2 = Fuzdzfdz’bQCz Faizcz
where f“%Z ., denotes the Christoffel symbols of the second kind for vec(S) in the Gaussian case. O

Using these lemmas, the proposed update induced by our rule is

I A PSIY
o) <[] -

2 tz 2 2
S<—S—t§”+§gj”5’1g”

where Q[l] and gm are natural gradients.

Similarly, it can be shown that the above update satisfies the underlying constraints.

K.1. Natural Gradients

Now, we discuss how to compute the natural gradients. Since the parameterization is a BCN parameterization, gradients
w.r.t. BC expectation parameters are natural gradients for BCN parameters due to Theorem 4.

Recall that AV = [Z] Let mpy) = {m“

(6%

] denote the BC expectation parameter for AN Given S is known, the BC

expectation parameter is
m
|:mZ:| = ]Eq(u),z) [Q(U})SZ]
= E, |Q()S (Q(w))" A

e [[Ss ST
-[5 SJ[A

Su+ cSa
cSu + Sa

where ¢ = By, [Jw]] = \/%
Since S = X!, we have the following expressions.
1 1

H:mz(my{_cma)’ a:mz(ma_cm‘u)
By the chain rule, we have

1 c
0L —
1—c2 7" 1—¢2

1 c
(9mu£ = 2 < 3a£> 5 3maﬁ = 2 <1_c28a£ - 1—C28#£>

Therefore, the natural gradient w.r.t. Al = [Z ] is g[” = Bm“ ﬂ where the gradient 0,,£ and 0, L can be computed as

suggested by Lin et al. (2019a).

Likewise, the BC expectation parameter for block S is
T T
mpy) = By [;zzT +2 () Q(wﬂ =387 +E [; (QCw) " A (A1) Q<w>]

T
Since A is known, Eqw) [é (Q(w))" Al ()\[1]) Q(w)} does not depend on S. Therefore, the natural gradient w.r.t. S

is g[Q] = Oy £ = —205-1L = =205, L, where we compute the gradient 5L as suggested by Lin et al. (2019a).



Handling the Positive-Definite Constraint in the Bayesian Learning Rule

L. More Results
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Figure 5. The leftmost figure is MOG approximations for the banana distribution mentioned at Section 6.1, where the number indicates
the number of components used in the approximations. The middle figure is a complete version of MOG approximations for the double
banana distribution (the rightmost plot in Figure 2), where the number indicates the number of components used in the approximations.
The rightmost figure is MOG approximations for the posterior p(z|y = 1) of a BNN with a Gaussian prior p(z) = A (z|0,I) and a NN
likelihood p(y|z) = N (y|323 (2 — 1) + 23,0.5%), where the number indicates the number of components used in the approximations.

-+ Gauss-full
. . — Skew-Gauss (iBayesLRule)
mmiBayeslLRule-diag
Vadam
VOGN-diag

Figure 6. The leftmost plot is mean-field Gaussian approximations for the toy Bayesian logistic regression example considered at Section
6.1, where Vadam is proposed by Khan et al. (2018). The rightmost plot is a skew-Gaussian approximation with full covariance structure
for the same example.
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Mixture of T (10) using MOG (25)
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Figure 7. This is a complete version of the leftmost figure in Figure 2. The figure shows MOG approximation (with K = 25) to fit an
MOG model with 10 components in a 20 dimensional problem.
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Figure 8. This is the first 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 9. This is the second 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 10. This is the third 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 11. This is the fourth 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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Figure 12. This is the last 60 marginal distributions obtained from a MOG approximation with K = 60 for a 300-dimensional mixture
of Student’s T distributions with 20 components. We describe the problem at Section 6.1, where the approximation is obtained by our
method at the 50,000-th iteration.
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