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Abstract 
We study the properties of a leave-node-out jack-
knife procedure for network data. Under the 
sparse graphon model, we prove an Efron-Stein-
type inequality, showing that the network jack-
knife leads to conservative estimates of the vari-
ance (in expectation) for any network functional 
that is invariant to node permutation. For a gen-
eral class of count functionals, we also establish 
consistency of the network jackknife. We com-
plement our theoretical analysis with a range of 
simulated and real-data examples and show that 
the network jackknife offers competitive perfor-
mance in cases where other resampling methods 
are known to be valid. In fact, for several network 
statistics, we see that the jackknife provides more 
accurate inferences compared to related methods 
such as subsampling. 

1. Introduction 
Network-structured data are now everywhere. The Inter-
net is a giant, directed network of webpages pointing to 
other webpages. Facebook is an undirected network built 
via friendships between users. The ecological web is a di-
rected network of different species with edges specified by 
‘who-eats-whom’ relationships. Protein-protein interactions 
are undirected networks consisting of pairs of bait-prey pro-
teins that bind to each other during coaffinity purification 
experiments arising in mass spectrometry analysis. 

In these application areas, it is often of interest to char-
acterize a network using statistics such as the clustering 
coefficient, triangle density, or principal eigenvalues. There 
has been a substantial amount of work on approximating 
these quantities with small error on massive networks (Feige, 
2006; Goldreich & Ron, 2008; Assadi et al., 2018; Eden 
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et al., 2017; Gonen et al., 2010; Kallaugher et al., 2019). 
However, comparatively little attention has been paid to 
assessing the variability of these statistics with a few ex-
ceptions that we will discuss shortly. Quantifying the un-
certainty of these estimators is of utmost importance, as it 
gives us information about the underlying variability of the 
data generating process. Take for example the problem of 
comparing two networks, which is a key question in many 
biological applications and in social network analysis. A nat-
ural approach would be to first obtain resamples of networks 
to construct distributions of different summary statistics and 
then compare these distributions. While there has been 
some recent interest in two-sample tests for networks (Kim 
et al., 2014; Durante & Dunson, 2018; Ghoshdastidar et al., 
2017; Tang et al., 2017), very few works use resampling to 
compare networks. Uncertainty estimates from resampling 
also allow the construction of confidence intervals, which is 
a fundamental task in statistics and machine learning. 

Resampling methods have a long and celebrated history 
in statistics, with the bootstrap, jackknife,and subsampling 
being the three main forms. There is a now vast literature 
developing these methods for iid data; see for example, 
(Quenouille, 1949; Efron & Tibshirani, 1986; Bickel et al., 
1997; Politis et al., 1999; Shao & Wu, 1989). Even when 
the data are not independent, resampling methods have been 
shown to yield asymptotically valid inferences for a wide 
range of functionals under various dependence structures. 
For weakly dependent time series, for example, the key 
innovation is to resample contiguous blocks of data instead 
of individual observations. Under mild conditions on the 
block length and nature of dependence, blocked variants of 
resampling methods, including the block bootstrap (Künsch, 
1989), block subsampling (Politis & Romano, 1994), and 
the blockwise jackknife (Künsch, 1989) have been shown to 
asymptotically capture the dependence structure of the data, 
leading to theories that closely resemble the corresponding 
theories for iid data. 

Recently, some work has started to emerge involving re-
sampling procedures for networks. Levin & Levina (2019) 
propose two bootstrap procedures for random dot product 
graphs that involve estimating the latent positions and resam-
pling the estimated positions to conduct inference for the 
functional of interest. The authors establish bootstrap con-
sistency for functionals that are expressible as U-statistics 
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of the latent positions, which encompasses many important 
classes of functionals including subgraph counts. 

Lunde & Sarkar (2019) consider a procedure that involves 
subsampling nodes and computing functionals on the in-
duced subgraphs. This procedure is shown to be asymptot-
ically valid under conditions analogous to the iid setting; 
that is, the subsample size must be o(n) and the functional 
of interest must converge to a non-degenerate limit distri-
bution. Previously, Bhattacharyya & Bickel (2015) had 
shown the validity of subsampling for count functionals. By 
proving a central limit theorem for eigenvalues, Lunde & 
Sarkar (2019) also establish subsampling validity for these 
functionals under certain conditions. Finally, in Green & 
Shalizi (2017), the authors propose sieve and nonparametric 
bootstrap procedures for networks. 

We would like to note that that both the sieve approach 
of Green & Shalizi (2017) and the latent position estima-
tion approaches of Levin & Levina (2019) depend on ac-
curately estimating the underlying graphon. The nonpara-
metric bootstrap procedure described in Green & Shalizi 
(2017) requires resampling much larger networks from a 
size n network, leading to computational inefficiency. Even 
subsampling requires weak convergence and a known rate 
of convergence; it turns out that the latter may be estimated 
(Bertail et al., 1999), but doing so entails a substantial in-
crease in computation and is likely to adversely affect the 
finite-sample performance of the procedure. While asymp-
totically valid under general conditions, the finite-sample 
performance of subsampling methods is known to be sen-
sitive to the choice of tuning parameters; see for example, 
Kleiner et al. (2014). 

1.1. Our Contribution 

In the present work, we study the properties of a network 
jackknife introduced by Frank & Snijders (1994) under the 
sparse graphon model. On the theoretical side, we make two 
primary contributions. First, analogous to the iid setting, we 
show that the network jackknife produces variance estimates 
that are conservative in expectation under general conditions. 
Our result here justifies the network jackknife as a rough-
and-ready tool that produces reasonable answers (erring on 
the side of caution) even when the asymptotic properties of 
the functional of interest are poorly understood. 

While the upward bias of the network jackknife is a favor-
able property, it does not provide information as to how 
the jackknife compares to other resampling procedures for 
more well-understood functionals. As another theoretical 
contribution, we establish consistency of the jackknife for 
a general class of count statistics studied in Bickel et al. 
(2011). We also extend our result to smooth functions of 
counts, which encompasses widely used measures such as 
the transitivity coefficient. 

We complement our theoretical results with an empirical 
investigation of the network jackknife on both simulated 
and real datasets. In our simulation study, we study the rate 
of convergence of the jackknife variance estimate for two 
sparse graphon models under a range of choices for the net-
work functional. Our results suggest that by and large, the 
jackknife has better finite-sample properties than subsam-
pling. For real data, we conduct network comparisons of 
Facebook networks constructed from a number of different 
colleges such as Caltech, Berkeley, Stanford, Wellesley, etc. 

The paper is organized as follows. In Section 2, we do prob-
lem setup and introduce notation. In Section 3, we present 
our theoretical results and some proof sketches. Finally in 
Section 4 we present experimental results on simulated and 
real networks. 

2. Background 
We first briefly recall the original Jackknife for iid data, 
followed by a description of the sparse graphon model. We 
conclude this section with the network jackknife procedure. 

2.1. The Jackknife for IID Data 

The jackknife, attributed to Quenouille (1949) and Tukey 
(1958), is a resampling procedure that involves aggregating 
leave-one-out estimates. More precisely, let X1, . . . , Xn ∼ 
P and let Sn be a permutation-invariant function of n 
variables. Furthermore, let Sn,i denote the functional 

¯computed on the dataset with Xi removed and let Sn = 
n1 P Sn,i. The jackknife estimate of the variance of n i=1 

Sn−1 = S(X1, . . . , Xn−1) is given by: 

nXd )2VarJACK Sn−1 := (Sn,i − S̄ 
n (1) 

i=1 

For appropriately smooth functionals, it is well-known that 
the jackknife consistently estimates the variance; see for 
example, Shao & Tu (1995). The bootstrap, introduced 
by Efron (1979), typically requires weaker regularity con-
ditions than the jackknife for consistency. In fact, it is 
well-known that the jackknife is inconsistent for the median 
(Miller, 1974) while the bootstrap variance remains consis-
tent under reasonable conditions (Ghosh et al., 1984)1. 

However, for more complicated functionals, it may often 
be the case that both the bootstrap and the jackknife are in-
consistent2. Even in these cases, the jackknife still provides 
reasonable answers. The remarkable inequality of Efron & 

1It should be noted that the delete-d jackknife is valid under 
more general conditions; see Shao & Wu (1989). 

2Recent work by Fang & Santos (2019) suggests that Hadamard 
differentiability of g is both necessary and sufficient for bootstrap 
consistency of g(θ̂  

n) whenever θ̂  
n is asymptotically Gaussian. 
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Stein (1981) asserts that the jackknife is always upwardly 
biased, ensuring a conservative estimate of the variance. 

Since networks are inherently high-dimensional objects, 
asymptotic results are often harder to come by compared to 
the iid setting. The theory of the jackknife for iid processes 
suggests that, even in this challenging regime, a network 
analogue of the jackknife may have some advantageous 
properties. Before delving into our method, we introduce 
the network model under consideration below. 

2.2. The Sparse Graphon Model 
i=1 

denote the random variable formed by applying f to an 
induced subgraph with node i removed. Under the model 
(2), observe that each induced subgraph formed by leaving 
a node out is identically distributed as a consequence of 
vertex exchangeability. Therefore, functionals calculated 
on these induced subgraphs are similar in spirit to the the 
leave-one-out estimates for the jackknife in the iid setting. 
Following Frank & Snijders (1994), a natural generalization 
of the jackknife to the sparse graphon setting is given by: Xn 

VarJACK Zn−1 :=d (Zn,i − Z̄ 
n)

2 (3) 

The model below is due to Bickel & Chen (2009). Let P 
VarJACK Zn−1 is an esti-Zn,i and dZn 

1¯ nwhere{A(n)}n∈N denote a sequence of n × n adjacency matrices 
and ξ1, ξ2, . . . ξn ∼ Uniform[0, 1]. Furthermore, for i =6 j, 

= n i=1 
mate of Var Zn−1, the variance with respect to an induced 

let ηij ∼ Uniform[0, 1] and define A(n) as follows: ij 

(n) (n)
A = A = 1(ηij ≤ ρnw(ξi, ξj ) ∧ 1)ij ji 

(2)
d 
= Bernoulli(ρnw(ξi, ξj ) ∧ 1) 

where w : [0, 1]2 7→ R≥0 is a symmetric measurableR 1 R 1function that satisfies w(u, v) du dv = 1 and ρ = 
0 0 

{ρn}n∈N ∈ [0, 1]N . When kρnw(u, v)k∞ ≤ 1, ρn may be 
interpreted as the probability of an edge and w as the con-
ditional density of the latent positions given an edge. For 
i = j, we will assume that A(n) 

= 0. We refer to w asii 
a graphon, the pair (ρ, w) as a sparse graphon, and (2) as 
graphs generated by the sparse graphon model. 

Bounded graphons arise as a limiting object in the theory 
of graph limits; see Lovász (2012). Alternatively, graphons 
are a natural representation for (infinite-dimensional) jointly 
exchangeable arrays, where this notion of exchangeability 
corresponds to invariance under vertex permutation; see for 
example, Diaconis & Janson (2008). Bounded graphons 
subsume many other commonly studied network models, 
including stochastic block models (Holland et al., 1983) and 
random dot product graphs (Young & Scheinerman, 2007). 

For applications, one major issue with graphons is that they 
generate dense graphs, where the expected number of edges 
is O(n2). However, most real-world graphs are known to 
be sparse in the sense that the number of edges is o(n2). 
Here, the sequence ρ determines the sparsity level; by let-
ting ρn → 0 at an appropriate rate, we may generate a graph 
sequence with the desired sparsity properties. Furthermore, 
notice that in our formulation above, w is allowed to be 

subgraph with node set {1, . . . , n − 1}. We would like to 
note that letting Zn−1 := Zn,n constitutes a slight abuse 
of notation since ρn−1 need not equal ρn, but doing so 
substantially improves the readability of our proofs. 

3. Theoretical Results 
3.1. The Network Efron-Stein Inequality 

The first result we state here is our generalization of the 
Efron-Stein inequality to the network setting. Intuitively, the 
Efron-Stein inequality may be thought of as a general prop-
erty of functions of independent random variables. While 
edges in the adjacency matrix are dependent through the la-
tent positions, the fact that they are functions of independent 
random variables allow us to prove the following: 

Theorem 1 (Network Efron-Stein Inequality). 

Var Zn−1 ≤ E(d (4)VarJACK Zn−1) 

The main ingredients in our proof are an adaptation of a 
martingale argument due to Rhee & Talagrand (1986) and an 
appropriate filtration for graphon models inspired by Borgs 
et al. (2008). We provide a proof sketch below; for details, 
see Supplement Section A. 

Proof Sketch. As discussed in the Supplementary Material, 
for 1 ≤ i ≤ n, we may express Zn,i as a measurable 
function of latent positions ξi ∼ Unif[0, 1] for 1 ≤ i ≤ n 
and ηij ∼ Unif[0, 1] for 1 ≤ i < j ≤ n. More precisely, 
Zn,i is a function of the variables that are not shaded below: ⎞⎛ 

Zn,i = g 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

ξ1 η12 η13 ... η1i ... η1n 

ξ2 η23 ... η2i ... η2n 

ξ3 ... η3i ... η3n 

... ... ... ... 
ξi ηi,i+1 .. ηin 

ξn−1 ηn−1,n 

ξn 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

unbounded. As noted in Borgs et al. (2019), unbounded 
graphons are more expressive than bounded graphons, al-
lowing graphs that exhibit power law degree distributions. 

2.3. The Network Jackknife Procedure 

Let f : {0, 1} n−1 × n−1 7→ R denote a function that takes 
as input a n − 1 × n − 1 adjacency matrix and let Zn,i (5) 
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We design a martingale difference sequence di, 

di = E(Zn−1|Σi) − E(Zn−1|Σi−1), (6) 

based on filtration Σi: 

Σi = σ{ξ1, , ξi, η12, , η1i, η23, , η2i, , , ηi−1,i}⎧ ⎫ 
ξ1 η12 ... η1,i−1 η1i ⎪⎨ 

= σ 

ξ2 ... 
... 
ξi−2 

η2,i−1 

.. 
ηi−2,i−1, 

η2i 

ηi−2,i 

⎪⎬ 
. 

(7) 

⎪⎩ 
ξi−1 ηi−1,i 

ξi 
⎪⎭ 

Then we can show that, 

n−1X 
Var Zn−1 = Ed2 

i . 
i=1 

On the other hand, the expectation of Jackknife estimate is: 

nX E(Zn,1 − Zn,2)
2 

E (Zn,i − Z̄ 
n)

2 = (n − 1) . (8)
2 

i=1 

Now, we construct another filtration A such that 
E(Zn,1|A) = E(Zn,2|A). In particular, we use: 

A = σ{ξ3, . . . , ξi+1, η34, . . . , η3,i+1, . . . , ηi,i+1}. (9) 

This is essentially Σi+1, with the first and second row and 
columns removed. Define 

U = E(Zn,1|Σi+1) − E(Zn,1|A) 
V = E(Zn,2|Σi+1) − E(Zn,2|A) 

Using the fact that E(X2) = E(E(X2|Σ)) ≥ 
E(E[X|Σ)2) for some random variable X which is measur-
able w.r.t to some Sigma field Σ, we get: 

E(Zn,1 − Zn,2)
2 ≥ E(U − V )2 = 2E(di 

2) (10) 

The result follows from plugging in Eq 10 to Eq 8. 

Remark 1. Using the aforementioned filtration for graphon 
models, is also possible to prove another network vari-
ant of the Efron-Stein inequality following arguments in 
Boucheron et al. (2004). This alternative procedure does 
not require the functional to be invariant to node permuta-
tion and allows flexibility with the leave-one-out estimates. 
However, the resulting estimate is often not sharp. See the 
Supplement Section F for more details. 

3.2. Beyond the Efron-Stein inequality 

While the Efron Stein inequality in Theorem 1 is surprising 
and useful for estimating uncertainty for network statistics, 
it would be much more satisfying if indeed the jackknife es-
timate of variance in fact coincided with the true underlying 
variance, at least asymptotically. We want to draw the atten-
tion of the reader to leftmost panel in Figure 1. The solid 
black line shows the mean and standard error of the ratio 
between the jackknife estimate of the variance and the true 
variance for edge density for a blockmodel and a smooth 
graphon (details in Section 4), as graph size grows. This 
figure shows the surprising trend that, in fact, the jackknife 
estimate is not only an upper bound on the true variance; 
it is in fact asymptotically unbiased. Our next proposition 
establishes exactly that. In what follows, let Zn denote the 
edge density (see Section 4). R 1 R 1Proposition 1. Suppose that w2(u, v) du dv < ∞

0 0 
and nρn →∞. Let σ2 = limn→∞ n · Var(Zn−1). Then, 

n · E(d (11)VarJACK Zn−1) → σ2 

The proof of the above result involves tedious combinatorial 
arguments and is deferred to the Supplement Section D. 
The above proposition says that, the jackknife estimate of 
variance of the edge density of a sparse graphon model (see 
Eq 2), in expectation, converges to the true variance. This 
is a somewhat weak result, since it does not say anything 
about the jackknife estimate obtained from one network. 
However, it begs the question, whether a stronger result is 
true. In fact, in the next section, we prove that for a broad 
class of count functionals, the jackknife estimate is in fact 
consistent. This paves the way to the next section, which 
we start by introducing count functionals. 

3.3. Jackknife Consistency for Count Functionals 

In this section, we study the properties of the jackknife for 
subgraph counts, which are an important class of functionals 
in network analysis. In graph limit theory, convergence of a 
sequence of graphs can be defined as the convergence of ap-
propriate subgraph frequencies (Lovász, 2012). More prac-
tically, subgraph counts have been used to successfully con-
duct two-sample tests in various settings. In social networks, 
for example, the frequency of triangles provides information 
about the likelihood of mutual friendships/connections and 
is therefore a useful summary statistic. 

The count functionals that we consider were first studied 
in Bickel et al. (2011). We will now introduce some nota-
tion needed to define these functionals. Let Gn denote a 
graph with vertex set V (Gn) = {1, 2, . . . , n} and edge set 
E(Gn) ⊂ V (Gn) × V (Gn). Let R ⊆ E(Gn) denote the 
subgraph of interest parameterized by its edge set. For con-
venience, we assume V (R) = {1, 2, . . . , p}. Furthermore, 
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let Gn[R] denote the subgraph induces by the vertices of R. 

We consider two different types of count functionals. The 
first notion we consider counts exact matches and has the fol-
lowing probability under the sparse graphon model: (Eq 2): 

P (R) = P (Gn[R] = R)⎡ ⎤ Y Y 
= E ⎣ ρnw(ξi, ξj ) ∧ 1 (1 − ρnw(ξi, ξj ) ∧ 1)⎦ 

(i,j)∈R (i,j)∈R 

(12) 

We also consider the functional Q(R), which provides the 
probability of an induced subgraph containing the subgraph 
R: ⎡ ⎤ Y 

Q(R) = P (R ⊆ Gn(R)) = E ⎣ ρnw(ξi, ξj )⎦ 

(i,j)∈R 

(13) 

Note that Q(R) is agnostic to the presence of additional 
edges. When the graph sequence is sparse, P (R) and Q(R) 
are uninformative, as P (R), Q(R) → 0. Let e = |E(R)|
and p = |V (R)|. Instead, define the following normalized 
subgraph frequency: 

P̃ (R) = ρ−e P (R) Q̃(R) = ρ−e Q(R) (14)n n 

Furthermore, let Iso(R) denote the class of graphs isomor-
phic to R, and |Iso(R)| its cardinality. Our estimator of 
P̃ (R) is given by: X 

P̂ (R) = ρ−e � � 
1 

1(S = Gn[S]) (15)n n |Iso(R)|p S∼R 

Similarly, define Q̂(R) as: X 
Q̂(R) = ρ−e 1� � 1(S ⊆ Gn[S]) (16)n n |Iso(R)|p S∼R 

Due to magnification by ρ−e , (14), (15), and (16) are notn 
necessarily upper bounded by 1; nevertheless, they are still 
meaningful quantities related to subgraph frequencies. 

Bickel et al. (2011) establish a central limit theorem for these 
functionals under general conditions on the sparsity level 
and structure of the subgraph. Under analogous conditions, 
we establish consistency of the network jackknife for counts 
and smooth functions of counts. 
Theorem 2 (Jackknife Consistency for Counts). Suppose 
that R is a p-cycle or acyclic graph. Furthermore, suppose R 1 R 1that w2e(u, v) du dv < ∞ and nρn → ∞. Let

0 0 

σ2 = limn→∞ n · Var P̂ (R). Then, 

d ˆ P 
n · VarJACK P (R) −→ σ2 (17) 

Our proof relies on a signal-noise decomposition of the jack-
knife variance. Bickel et al. (2011) establish that the vari-
ance of a count functional is largely driven by the variance 
of a U-statistic related to the edge structure of the subgraph. 
For this U-statistic component of the decomposition, results 
for jackknifing U-statistics due to Arvesen (1969) may be 
used to show convergence in probability towards the vari-
ance of the corresponding U-statistic. Since the jackknife 
is a sum of squares, we are able to decouple the effects of a 
remainder term and show that it is negligible. We provide a 
sketch below, and defer the details to Supplement Section B. 

Proof Sketch. Define density (normalized counts) of R� �−1n−1when leaving ith node out is Zn,i = p ρ− 
n
e(T − Ti), 

where T is total counts of R in Gn, p and e are number of � �−1n ρ−evertices and edges in R. Define Zn = p n T . Then d = 
P 

)2 , Var P̂ (R) = Var Zn.VarJACK i(Zn,i − Zn 

Theorem 1 of Bickel et al. (2011) establishes that nVar(Zn) 
converges to a positive constant. Thus we scale dVarJACK dby n, and decompose nVarJACK into " #X X X 
n (αi − ᾱ n)

2−2 (αi − ᾱ n)(βi − β̄  
n)+ (βi − β̄  

n)
2 , 

i i i 

(18) 

where αi = Zn,i − E(Zn,i|ξn), βi = E(Zn,i|ξn), ᾱ n = 
1 P ¯ 1 Pn n

αi, βn = βi and ξ = (ξ1, . . . ξn). The n i=1P n i=1 n 
term n (βi − β̄  

n)
2 corresponds to the signal component i 

discussed before the theorem statement. P 
We show in the Supplement that E (αi −ᾱ n)2 can be fur-h i i� � 
ther written as 1 − o(1) · E Var(P̂ (R) | ξ ) = o(1/n),nP 
by Theorem 1 of Bickel et al. (2011). n (αi − ᾱ n)2 

i 
is thus negligible by Markov Inequality. The cross termP 
n (αi − ¯ )(βi − β̄  

n) is also negligible by the Cauchy-i αn 

Schwartz Inequality. 

Remark 2. Our theoretical results hold for both notions 
of subgraph frequencies. However, note that Q̃(R) is in-
dependent of n, but P̃ (R) depends on n and approaches 
Q̃(R). While 

√ 
n[P̂ (R) − P̃ (R)] and 

√ 
n[Q̂(R) − Q̃(R)] 

have the same limiting variance, inference for a fixed target 
using P̂ (R)√requires stronger sparsity conditions; namely 
ρn = ω(1/ n). See Section 3.4 for a related discussion. 

Remark 3. Central limit theorems and jackknife consis-
tency can also be shown for more general (cyclic) graphs. 
However, in these cases, more stringent sparsity conditions 
are needed. 

Now, let f(Gn) denote a function of the vector 
(P̂ (R1), . . . , P̂ (Rd)). Furthermore, let rf denote the gra-
dient of f and µ ∈ Rd the limit of (P̃ (R1), . . . , P̃ (Rd)) 
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as n → ∞; it turns out that µ corresponds to an integral 
parameter of the graphon related to the edge structure of the 
subgraph. We have the following result. 

Theorem 3 (Jackknife Consistency for Smooth Func-
tions of Counts). Suppose that (R1, . . . , Rd) are p-
cycles or acyclic graphs and nρn → ∞. Let 
∗ e = max{|E(R1), . . . E(Rd)} and suppose thatR 1 R 1 ∗ 2ew (u, v) du dv < ∞. Furthermore, suppose that 
0 0 
rf exists in a neighborhood of µ, rf(µ) 6= 0, and that rf 
is continuous at µ. Let σ2 denote the asymptotic variance f√ 
of n[f(Gn) − f(E(Gn))]. Then, 

Pd → σ2 n · VarJACK f(Gn) − f 

Proof Sketch. Let Zn,i = (Zn,i(1), . . . Zn,i(d)), where d 
is a constant w.r.t n and each entry corresponds to a countPn¯functional with node i removed. Let Zn = n 

1 
i=1 Zn,i. 

We use a Taylor expansion of f(Zn,i) around Z̄ 
n. 

¯ ¯f(Zn,i) = f Zn) + rf(µ)T (Zn,i − Zn) 

¯+ (rf(ζi) −rf(µ))T (Zn,i − Zn),| {z } 
Ei 

where ζi = (ζi1, . . . , ζid) = ciZn,i + (1 − ci)Z̄ 
n for some 

c ∈ [0, 1]. Thus, we also have: X 
¯f(Zn,i) − f(Zn,i) = rf(µ)T (Zn,i − Zn)+ Ei − 

1 
Ei 

n 
i| {z } | {z } 

Ii IIi 

(19) P P 
We bound n (Ii)

2 and n (IIi)
2 separately. Let Σi i 

denotes the covariance matrix of a multivariate U-statistic 
with kernels (h1, . . . , hd), where each hj is the kernel cor-
responding to the count functional in the jth coordinate of 
the vector Zn (see Eq A.7 for detailed definition). We can 
show that X 

n (Ii)
2 −rf(µ)T Σrf(µ) = op(1). 

i P 
We can also show that n (IIi)

2 is also op(1). Then, let i 
µn = E[Zn]. Note that if one counts subgraphs by an exact 
match as in (Bickel et al., 2011) µn → µ. If one counts 
subgraphs via edge matching, µn = µ. Thus, both these 
types of subgraph densities, which asymptotically have the 
same limit, can be handled by our theoretical results. By 
Theorem 3.8 in Van der Vaart (2000), 

√ 
n(f(Zn) − f(µn)) N(0, rf(µ)T Σrf(µ)) 

This shows that the jackknife estimate of variance converges 
to the asymptotic variance of f(Zn). The proof is deferred 
to the Supplement Section C. 

3.4. A Remark on the use of the Network Jackknife for 
Two-Sample Testing 

In principle, the jackknife variance provides a quantification 
of uncertainty that may be used for many inference tasks. 
When the limiting distribution is Normal, one may use a Nor-
mal approximation; otherwise, one may use Chebychev’s 
inequality. However, in these cases, the natural centering is 
θn−1 = E(Zn−1), which depends on n. Inferences about 
θn−1 are often useful for a single graph, but for two-sample 
testing, issues may arise when comparing networks of dif-
ferent sizes. Probability statements involving a fixed popu-
lation parameter θ are needed. To ensure that the jackknife 
yields valid inferences for an appropriate population param-
eter, we will need to impose some additional assumptions. 
In what follows, let {τn}n∈N denote a sequence of normal-
izing constants and let Un−1 = θ̂  

n−1 − θ for some θ ∈ R. 
We have the following result; see Supplement Section E for 
details. 

Proposition 2. Suppose that τn →∞ and τnUn U for 
some non-degenerate U with mean 0 and variance σ2 and 
{(τnUn)

2}n∈N is uniformly integrable. Then, 

τn(θ̂  
n − E(θ̂  

n)) U, Var Un → Var U (20) 

As a consequence of Proposition 2, if a central limit theorem √ 
is known for n Un and a uniform integrability condition 
is satisfied, then one may use the jackknife variance in con-
junction with a Normal approximation to conduct (possibly 
conservative) inference for θ. Asymptotically, these infer-
ences are the same as those centered at θn−1. For count 
functionals, we have mentioned when this condition holds, 
so in this case it does not need to be checked. 

4. Experiments 
In this section, we present simulation experiments and ex-
periments on real data. For simulations, we compare our 
variance estimate with that estimated using subsampling. 
We present our results on two graphons. For real data, we 
compare networks based on C.I.’s constructed using jack-
knife estimates of variance of network statistics like edge or 
triangle density and normalized transitivity. 

Count functionals used: In this section we consider the 
edge, triangle, two star density, and normalized transitivity, 
which we explicitly define below. P 

i<j Aij
Edge density := � � 

n 
2 ρn 

P 
i<j<k Aij AjkAki 

Triangle density := � � 
n ρ3 
3 n 
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Figure 1. Ratio of Jackknife estimate dVarJACK to true variance Var for edge density, triangle density, two-star density and transitivity in 
size n = 100, 500, 1000, 2000, 3000 graphs simulated from the SBM (top) and GR2 (bottom), compared to subsampling with b = 0.05n, 
b = 0.1n, b = 0.2n variance estimation on the same graphs. P 

i,j<k,j,k 6=i Aij Aik
Two star density := � � 

n ρ2 
3 n 

As a smooth function of count statistics, we use: 

Triangle density 
Normalized transitivity := 

Two star density 

4.1. Simulated Data 

We simulate graphs from two different graphons. The 
first is a Stochastic Block Model (SBM) (Holland et al., 
1983), which is a widely used model for networks with 
communities. A SBM is characterized by a binary cluster 
membership matrix Z ∈ {0, 1}n×r , where r is the num-
ber of communities, and a community-community interac-
tion matrix B. Conditioned on Zia = 1 and Zjb = 1, 
nodes i and j form a link with probability Bab. We 
use B = ((0.4, 0.1, 0.1), (0.1, 0.5, 0.1), (0.1, 0.1, 0.7)) and 
generate a Z from a Multinomial(0.3, 0.3, 0.4). 

For the other graphon, we consider the following parameter-
ization: 

hn(u, v) = P (Aij = 1 | ξi = u, ξj = v) = νn|u − v|
(GR2) 

where νn is a sparsity parameter. We use νn = n−1/3 . We 
denote this graphon by GR2. 

From these two graphons, we consider graph size n of n = 
100, 500, 1000, 2000, 3000. For each n, we simulated 100 

graphs to calculate the approximate true variance of edge 
density, triangle density, two-star density and normalized 
transitivity among these graphs. 

Computation: For each simulated network, we remove 
one node at a time, recalculate a statistic Zn,i on the graph 
with (n − 1) nodes left. Next we compute the jackknife esti-

¯mate of the variance d P 
(Zn,i − )2, where VarJACK := i Zn 

Z̄n is the average of the Zn,i’s. It should be noted that for 
some statistics, jackknife, owing to its leave-one-node-out 
characteristic, can be implemented to reduce computation. 
For example, in calculating triangles, we calculate the num-
ber of triangle on the whole graph once and the number 
of triangles each node is involved in. This can be done by 
keeping track of the number of common neighbors between 
a node and its neighbors. 

For each statistic mentioned, we report the mean of the ratio dVarJACK/Var Zn among 100 graphs of each n and a 95% 
confidence interval from the standard deviation from a nor-
mal approximation of these 100 ratios. We also plot a dotted 
line to denote 1. Closer to this line a resampling procedure 
is, the better. In Figure 1, we plot this on the Y axis with 
n on the X axis. We also plot the same for subsampling 
with b = 0.05n, b = 0.1n, b = 0.2n performed on the same 
graphs. Figure 1 a,b,c, and d contain results for the SBM, 
whereas the rest are for the smooth graphon. 

We see that for both graphons, dVarJACK/Var converges to 
1 much more quickly in comparison to subsampling and 
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has much smaller variance. These figures also show how 
susceptible the performance of subsampling is to the choice 
of b. For b = 0.05n, subsampling overestimates the vari-
ance, and exceeds the upper bound on Y axis of some of the 
figures. In Figure 1 (h) we see that dVarJACK for the normal-
ized transitivity converges slowly for GR2, and subsampling 
with all choices of b are worse as well. 

Eigenvalues: Here we examine the performance of jack-
knife on assessing the variance of eigenvalues, to which we 
have not yet extended our theoretical guarantees. In Figure 2 
we show the dVarJACK/Var for the two principal eigenvalues 
of the SBM ((a) and (b)) and two graphons described before. 
Here we only compared with subsampling with b = 0.3n 
and n = 1000, 2000, 3000 as subsampling for eigenvalues 
in sparse graphs only works asymptotically for very large n 
(Lunde & Sarkar, 2019). For smaller n and b in our sparsity 
setting, we saw that subsamples of adjacency matrices often 
were too sparse leading to incorrect estimate of the variance. 

Let us first look at Figure 2 (a) and (b) for the SBM set-
ting. For both the eigenvalues in this case, dVarJACK/Var 
converges to 1, whereas subsampling consistently underes-
timates the true variance. For graphon GR2, we see from 
Figure 2 (c) that both jackknife and subsampling estimate 
the true variance well, whereas for the second eigenvalue 
(see (d)) they both perform extremely poorly. These prelim-
inary results of jackknife estimates show tentative evidence 
that our theory can be applied to statistics beyond count 
statistics, like eigenvalues, which we aim to investigate in 
future work. 

4.2. Real-world Data 

Below, we present two experiments using Facebook net-
work data (Rossi & Ahmed, 2015); additional data results 
are discussed in Supplement Section G. In the first experi-
ment, we compared three colleges: Caltech, Williams and 
Wellesley. While Caltech is known for its strength in natural 
sciences and engineering, Williams and Wellesley are strong 
liberal arts colleges. They all have relatively small number 
of students (800-3000), but with different demographics. 
For example, Wellesley is a women’s liberal arts college, 
whereas the other have a mixed population. We present 
the 95% confidence intervals (CI) obtained using a normal 
approximation with the estimated variances for two-star and 
triangle densities for these networks. 

We see that while all three have similar two-star density, 
Wellesley has significantly higher triangle density. We also 
see that CI’s from jackknife and subsampling with b = 0.1n 
and b = 0.2n are comparable. Subsampling with b = 0.05n 
tends have a wider CI, as it overestimates the variance. It is 
interesting to note that, for triangles, subsampling with b = 
0.2n took nearly 10 times as much time as jackknife, since 

Table 1. Triangle, two-star density and normalized transitivity and 
their variances estimated in college training sets 

College Triangle dEst V ar 
Two-star dEst V ar 

Norm. Trans. dEst V ar 

Berkeley 
Stanford 

77.95 
36.62 

18.10 
5.12 

6.31 
5.90 

0.27 
0.11 

37.05 
18.61 

5.57 
0.16 

Yale 24.20 2.40 5.22 0.09 13.90 0.06 
Princeton 20.87 2.34 5.25 0.11 11.91 0.06 
Harvard 38.56 5.11 6.28 0.10 18.43 0.10 
MIT 30.20 7.89 6.11 0.24 14.82 0.15 

we used the leave-one-node-out structure. In comparison, 
for both methods, two-star counting is overall much faster 
than counting triangles. 

In the second experiment, we look at three college pairs: 
Berkeley and Stanford, Yale and Princeton, Harvard and 
MIT. First we decide which statistic differentiates between 
a given pair. For this, we split each college data set in half, 
into a training set and test set. On each of training set, we 
estimated their triangle density, two-star density, normal-
ized transitivity and their variances estimated by jackknife, 
demonstrated in Table 1. Interestingly, in Table 1, the tri-
angle density is large for all colleges, owing to the sparsity 
of the networks. From Table 1 we can see normalized tran-
sitivity estimates have relatively smaller variance and well 
separates each of the pairs in training sets. Thus we choose 
normalized transitivity as the test statistic. We now obtain 
jackknife estimate of variance of normalized transitivity 
using the the test sets. 

Figure 4 presents 97.5% CI’s for normalized transitivity 
for each college. Thus, two disjoint CI’s are equivalent to 
rejecting a level 0.05 test. Figure 4 basically shows that tran-
sitivity can in fact separate Berkeley and Stanford Facebook 
networks, as well as Harvard and MIT Facebook networks, 
giving us interesting information about the inherent differ-
ences between the network structures of these colleges. 

5. Discussion 
In the present work, we have shown that the network jack-
knife is a versatile tool that may be used in a wide variety of 
situations. For poorly understood functionals, the Network 
Efron-Stein inequality ensures that the jackknife produces 
conservative estimates of the variance in expectation. For a 
general class of functionals related to counts, we establish 
consistency of the jackknife. Our empirical investigation 
is encouraging regarding the finite sample properties of the 
procedure, as the network jackknife outperforms subsam-
pling in many simulation settings. Our simulations sug-
gest that, for variance estimation of eigenvalues, on certain 
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Figure 2. Ratio of Jackknife estimate VarJACK to true variance V ar for first and second eigenvalues in size n =d 

100, 500, 1000, 2000, 3000 graphs simulated from stochastic block model in (a) and (b) and the graphon GR2 in (c) and (d), com-
pared to subsampling with b = 0.3n variance estimation on the same graphs. 

(A) (B) 

Figure 3. (A) Triangle density , and (B) two-star density (bottom) and their CI’s based on jackknife and subsampling variance estimates. 

graphons, the jackknife’s performance is similar to subsam-
pling. However we also see that, for some graphons, it is in 
fact worse than subsampling. We intend to investigate this 
further both theoretically and empirically. 
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