On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems

A. Proof of Technical Lemmas

In this section, we provide complete proofs for the lemmas in Section 3 and Section 4.
A.1. Proof of Lemma 3.6
We provide a proof for an expanded version of Lemma 3.6.

Lemma A.1 If f is {-smooth and Y is bounded, we have

1. @y /9¢(x) and proxg s, (x) are well-defined for Vx € R™.
2. @(proxg /o(x)) < @(x) for any x € R™.
3. @y a0 is L-smooth with V@1 j30(x) = 2((x — Proxg o,(x)).

4. @1/24(x’) - @1/24(x) - (x' - x)TV¢'1/gg(x) < (£/2)||x" — x||? for any x',x € R™.

Proof. By the definition of ®, we have

A=l _ aledls

U(x) = 2(x)+—— = max {fxy)+ =51

Since f is ¢-smooth, f(x,y)+(£/2)|x||? is convex in x for any y € ). Since ) is bounded, Danskin’s theorem (Rockafellar,
2015) implies that ¥(x) is convex. Putting these pieces together yields that ®(w) + £ ||w — x||* is (¢/2)-strongly convex.
This implies that @, /2¢(x) and proxg, 5,(x) are well-defined. Furthermore, by the definition of proxg /,(x), we have

D(proxg ae(x)) < By yae(proxg a(x)) < B(x), Vx € R™.
Moreover, Davis & Drusvyatskiy (2019, Lemma 2.2) implies that ® /5 is £-smooth with
V@1 20(x) = 2{(x — Proxg, j(x)).

Finally, it follows from Nesterov (2013, Theorem 2.1.5) that ®, /9, satisfies the last inequality. O

A.2. Proof of Lemma 3.8

Denote X := proxg jo¢(x), we have V@, /5(x) = 2{(x — x) (cf. Lemma 3.6) and hence [|X — x[| = [[V®y /2,(x)]|/2L.
Furthermore, the optimality condition for proxg, »,(x) implies that 2¢(x — %) € 0®(x). Putting these pieces together yields
that Ininge@@(f{) HSH < qu)l/QZ (X) H

A.3. Proof of Lemma 4.3

Since f(x,y) is strongly concave in y for each x € R™, a function y*(-) is unique and well-defined. Then we claim that
y*(+) is k-Lipschitz. Indeed, let x1, x5 € R™, the optimality of y*(x1) and y*(x2) implies that

(v —y*(x1) " Vy f(x1,y*(x1)) <0, Vye, 4)
(y - y*(XZ))Tvyf(XQ,y*(Xz)) < 0, Vy € V. (5)

Letting y = y*(x2) in (4) and y = y*(x1) in (5) and summing the resulting two inequalities yields

(y"(x2) = y*(x1) " (Vy f(x1. 5" (x1)) = Vy f(x2,¥"(x2))) < 0. (©6)

Recall that f(x7, -) is u-strongly concave, we have

(v*(x2) = y*(x1)) " (Vi S (x1, ¥ (x2)) = Viy f(x1, 5" (1)) + 1 [y* (x2) = y*(x0)[* < 0, )
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Then we conclude the desired result by combining (6) and (7) with /-smoothness of f, i.e.,

Y (x2) =y (x1)) " (Vy f(x2, 5" (x2)) = Vy f(x1, 5" (x2)))

plly*(x2) —y*(x)|> < (
< Lly*(x2) =y (xa) | [x2 — x|

Since y*(x) is unique and ) is convex and bounded, we conclude from Danskin’s theorem (Rockafellar, 2015) that ® is
differentiable with V@ (x) = Vi f (x, y*(x)). Since V®(x) = Vx f (x,y*(x)), we have

[Ve(x) = VO = [[Vxf (x,¥"(x)) = Vauf (X, y* )N < £(llx = x| + ly*(x) = y*)])-

Since y*(+) is k-Lipschitz, we conclude the desired result by plugging ||[y*(x) — y*(x')|| < k. Since K > 1, ® is
2kl-smooth. The last inequality follows from Nesterov (2013, Theorem 2.1.5).

A.4. Proof of Lemma 4.7

By the proof in Lemma A.1, ® is ¢-weakly convex and 0®(x) = 0U¥(x) — ¢x where ¥(x) = maxycy{f(x,y) +
(¢/2)x]|?}. Since f(x,y) + (¢/2)]|x]|? is convex in x for each y € ) and ) is bounded, Danskin’s theorem implies that
Vi f(x,y*(x)) + {x € 9U(x). Putting these pieces together yields that Vy f (x,y*(x)) € 0P(x).

A.S. Proof of Lemma on Stochastic Gradient

The following lemma establishes some properties of the stochastic gradients sampled at each iteration.

Lemma A.2 ﬁ Zgl Gx(x¢,y¢, &) and % Ef‘il Gy (X1, ¥1,&;) are unbiased and have bounded variance,
B[4 5, Gule v &)] = Val (xoye), E (|| S, Gulxy 0| | < 19s ey I + 55,

2
]E [ﬁ Zi\il Gy(xhytaé-i)} = vyf(xt7yt)7 E H% Zf\il Gy(xtuytvgi)

2 2
SNV fxey)ll™ + S

Proof. Since G = (G, Gy ) is unbiased, we have

M M
1 1
E M ;Gx(xtvytvfi) = vxf<xtayt), E lM ;GY(thtagi) = vyf(xtvyt)'

Furthermore, we have

2

M S E G,y &) = VafxoydlP] 2
E M;Gx(xtvytagi) _vxf(xt7Yt) = M2 < Mv
M d S E|[IGy (x ) -V ?
1 i=1 y taytvgl) yf(xt»yt)” 0’2
E MZGy(Xt;Yufi)*Vyf(XnYt) = [ e ] S
i=1
Putting these pieces together yields the desired result. ]

B. Proof for Propositions 4.11 and 4.12

In this section, we provide the detailed proof of Propositions 4.11 and 4.12.

Proof of Proposition 4.11:  Assume that a point x satisfies that || V®(%X)|| < ¢, the optimization problem maxycy f(X,y)
is strongly concave (cf. Assumption 4.2) and y* (%) is uniquely defined. We apply gradient descent for solving such problem
and obtain a point y’ € ) satisfying that

Py(y"+ @/OVy f(Zy) =y <e/t, Ny =y )| <e
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If |[V®(x)| < e, we have
IV f Y < IVaf (% Y) = V)| + IVRE)]| = [[Vif(%,Y) = Vf (X, ¥y (X))l + e
Since f(-,-) is £-smooth, we have
Vi f Y < Ly =y Rl +€ = O(e).

The required number of gradient evaluations is O(x log(1/¢)). This argument holds for applying stochastic gradient with
proper stepsize and the required number of stochastic gradient evaluations is O(1/¢2).

Conversely, if a point (X, §) satisfies | Vi f(X,¥)| < €/ and ||Py(y + (1/0)Vy f(X,¥)) — ¥I| < €/kL, then we have
V)| < [[VOX) = Vi f (X 9) + VxS 3 < Ly =y ()] + ¢/~
Since f(x, -) is p-strongly-concave over ), the global error bound condition holds (Drusvyatskiy & Lewis, 2018) and
ply =y X < APy + (1/0OVy [(%,3) =3Il < €/k.

Therefore, we conclude that
V)| < e+e/x = O).

This completes the proof.

B.1. Proof of Proposition 4.12

Assume that a point X satisfies that ||[V®; /54(X)|| < ¢, the minimax optimization problem minycpn maxycy f(X,y) +
l||x — %||? is strongly-convex-concave (cf. Assumption 4.6) and x*(X) = argmin, cpm ®(x) + £||x — %||? is uniquely
defined. We apply extragradient algorithm for solving such problem and obtain a point (x’,y’) satisfying that

IVaef (', y") +20x" = %) < e, [Py(y' + (1/OVyf(X.¥) =¥ <e€/t, ¥ =x*"(¥)| <e
Since [|[V®q,9¢(X)|| < €, we have
IV f (¥ < IV f(xY) +20x" = X)|| + 2% = %]| = €+ 2(||x" = x*X)[| + 2(]|x* (%) — ]|
< (204 De+ [VO12(%)]| = O(e).

The required number of gradient evaluations is O(e~2) (Mokhtari et al., 2019a). This argument holds for applying stochastic
mirror-prox algorithm and the required number of stochastic gradient evaluations is O(e~*) (Juditsky et al., 2011).

Conversely, we have [|[V®; /2, (X)[|? = 46%||x — x*(X)||?. Since D(-) + /|| - —x[|? is £/2-strongly-convex, we have
max f(X,y) — max f(x*(%),y) — £l|x* (%) - %[> = &(%) - ¢(x* (%)) - £|x* (%) —x[* =
yeY yeY

If a point (X, y) satisfies | Vx f(X,¥)|| < eand |Py(y + (1/0)Vy f(X,¥)) — ¥|| < €2/¢, we have

% = x* )|
; :

max f(%,y) — max f(x*(%),y) = €lx* (%) - x|?

x — x*(%)|)?
< IDIPy(F + (/DT f(%.5) ~ 9]+ [% - @)V .9 - DX
< 62D+ ||fo(;<a5’)||2 _ 0(62).

Putting these pieces together yields that [|[V®, 9,(X)|| = O(e). This completes the proof.

C. Proof of Theorems in Section 4.1

In this section, we first specify the choice of parameters in Theorems 4.4 and 4.5. Then we present the proof of the main
theorems in Section 4.1 with several technical lemmas. Note first that the case of £D < e is trivial. Indeed, this means
that the set ) is sufficiently small such that a single gradient ascent step is enough for approaching the e-neighborhood
of the optimal solution. In this case, the nonconvex-strongly-concave minimax problem reduces to a nonconvex smooth
minimization problem, which has been studied extensively in the existing literature.
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C.1. Choice of Parameters in Theorem 4.4 and 4.5

In this subsection, we present the full version of Theorems 4.4 and 4.5 with the detailed choice of 7, 7y and M which are
important to subsequent analysis.

Theorem C.1 Under Assumption 4.2 and letting the step sizes nx > 0 and 1y > 0 be chosen as nx = 1/[16(x + 1)?¢] and
1y = 1/4, the iteration complexity of Algorithm 1 to return an e-stationary point is bounded by

0 </<;2£Aq> Jg H€2D2) ,
€

which is also the total gradient complexity of the algorithm.

Theorem C.2 Under Assumptions 4.1 and 4.2 and letting the step sizes 1y > 0 and 1y, > 0 be the same in Theorem 4.4
with the batch size M = max{1,26r0%e¢ =2}, the number of iterations required by Algorithm 2 to return an e-stationary
point is bounded by O((k*(Ag + kl2D?)e2) which gives the total gradient complexity of the algorithm:

29A 21)2 2
O(HE CD—ZM max{l7 m;})
€ €

C.2. Proof of Technical Lemmas

In this subsection, we present three key lemmas which are important for the subsequent analysis.

Lemma C.3 For two-time-scale GDA, the iterates {x; };>1 satisfies the following inequality,

xi) < @(xi—1) = (5 = 20266) [VOGx-0)|* + (5 +20200) [VO(xi-1) = Vacf (i1, ¥e-1)

For two-time-scale SGDA, the iterates {x; };>1 satisfy the following inequality:

E[0(x) < E[@(x1)] - (5 - 20ixt) E [[VO(x,1)]

n2klo?

+ (% + 22t B |90 0) — Vi rr, v )] + 20

Proof. We first consider the deterministic setting. Since ® is (¢ + x¢)-smooth, we have
D(x;) — P(xp—1) — (% — X¢-1) VO(xy-1) < wl |3y — x¢-1])? . (®)
Plugging x; — x¢—1 = —1x Vxf(Xt—1,¥t—1) into (8) yields that

D(x;) < D(xi—1) — 1 [IVR(xe—1)|” + 026l || Vaef (Xe-1, ye-1) || 9
+ix (VO(x¢-1) — fo(xt—l,Yt—1))T VO(xi—1).

By Young’s inequality, we have

(VO(xi 1) — VoS (Xi-1,¥1-1)) | VB(x;_1) (10)
[V®(x-1) — Ve f(xem1,¥e-1)|1> + |VO(xe-1) |
< : .

By the Cauchy-Schwartz inequality, we have

19sfGenye)l” < 2

VO (xi-1) = Vi (i1, v + [V x-)]) (an

Plugging (10) and (11) into (9) yields the first desired inequality.
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We proceed to the stochastic setting. Plugging x; — x;_1 = —7)x (ﬁ Zf\il Gy (Xt—1,¥t—1, 51-)) into (8) yields that

2
O(x) < O(xu-1) = e [VE(uo1)l|” +1irt

1 M
M ZGX(Xt—layt—lagi)
=1

T

+0x <V<I>(xt1) - (Al/[ ZGX(th,Ythi))) Vo(xt).

i=1

Taking an expectation on both sides, conditioned on (x;_1,y:—1), yields that

E[@(x) | x1,yi-1] < ®(x1) = nx VOO 1) ||* + n2sl | Vo (xe-1, y1-1)| (12)
0 (VO(xi-1) = Vif (i1, ¥1-1)) T V8(xe—1) + 13 |V f (xe—1, ye1)|
1 & ’
+nzklE i ; Gx(Xt-1,¥t-1,8) — Vaf (-1, ¥e-1) || | Xe—1,¥1-1
Plugging (10) and (11) into (12) and taking the expectation of both sides yields the second desired inequality. ([

Lemma C.4 For two-time-scale GDA, let 6, = ||y*(x;) — y¢||% the following statement holds true,

1
5 < (1 —5t 45342773;) i1 + 4R | VP (x—1)||%

For two-time-scale SGDA, let 6; = E[||y*(x¢) — y+||?], the following statement holds true,

202 K302 o?

M M

1
< (1 g 40802 G 28 [V )] 4

Proof. We first prove the deterministic setting. Since f(x, -) is pu-strongly concave and 7, = 1/¢, we have

1
Iy s = wel < (1) o 13

By Young’s inequality, we have

o< (1 gy ) I Gceen) =yl (L 20 1) ) = v )

2k —1 N . .
(2,€ — 2) y*(x¢—1) — Yt”2 + 25 |ly*(x¢) —y (Xt—1)||2

(13) 1 * * 2
< 1- % i1+ 26 [y (%) — y" (xe-1)[” -

Since y*(+) is k-Lipschitz, ||y*(x:) — y*(x¢—1)|| < k||x¢ — x¢—1|. Furthermore, we have
e = xi-1[ = Bl Vaf (xe—1,ye-1)* < 20502601 + 20 [V (xe—1) || *.

Putting these pieces together yields the first desired inequality.

We proceed to the stochastic setting. Since f(x, -) is u-strongly concave and n, = 1/¢, we have

o2

TR (14)

B [ly ) - wil?] < (1- 1) dr+
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By Young’s inequality, we have

Ot

IN

(1 " 2<11>) Efly* (xe—1) — vl + (1 + 205 — D) E[ly*(x) — ¥* (x|

< (355) By o) - il + 20l ) - )l

(14) o2

1
& (1 g2 e 2Bl ) -y )T+

Since y*(+) is x-Lipschitz, ||y*(x:) — y*(xt—1)|| < &||x¢ — x¢—1]|. Furthermore, we have

2 2 .2
<0

T

E[llx; — x11]°] = nE |MZG Xt-1,¥t-1,&) < 220261+ 22E[|VO(x—1) 7] +

Putting these pieces together yields the second desired inequality. |

Lemma C.5 For two-time-scale GDA, let 6, = ||y*(x;) — y||% the following statement holds true,

nx

O 026,
Dlxe) < B(xi1) — To IVRGxe) [P+ =2

16

For two-time-scale SGDA, let 6; = E[||y*(x;) — y+||?], the following statement holds true,

T o L Il | nnlo®
E[(I)(Xt)] < E[(I)(thl)} n [”V‘I)(Xt 1)” U t—1 n 1 .
16 M
Proof. For two-time-scale GDA and SGDA, 1, = 1/16(x + 1)¢ and hence
Tnx Mx 977x
X X < < '

Combining (15) with the first inequality in Lemma C.3 yields that

777x 977x

B(x;) < B(xe—1) = 5 [VE(xe—1)|” + 55 IVR(xe—1) = Vief (xe—1, y2-1)II”

Since V@ (x;—1) = Vi f (x¢—1,y*(x¢-1)), we have

IVO(xi—1) — fo(xt—17Yt—1)|\2 < 2y (xe-1) — Yt—1||2 = (%5_,.

Putting these pieces together yields the first desired inequality.

We proceed to the stochastic setting, combining (15) with the second inequality in Lemma C.3 yields that

777x 977x

n2klo?
16 '

E[®(x)] < E[®(x¢-1)] - i

E[IVOGxe-1)IP] + T [IV0(xi-1) = Vol (i1, ye-1)[IP] +
Since VO (x;-1) = Vi f (x¢—1,¥*(x¢-1)), we have
E[IV@Gxi-1) = Vaf ki1, ye-0) ] € 2B [Iy* (1) —yeea|?] = 61,

Putting these pieces together yields the second desired inequality. ]
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C.3. Proof of Theorem C.1

Throughout this subsection, we define v = 1 — 1/2k + 4x3¢?n2. Performing the first inequality in Lemma C.4 recursively

yields that

-1
b < o+ ARG [ Y AT Ve (k)| (16)

< 4'D? +4r’ng Z’yt Ve ;)

Combining (16) with the first inequality in Lemma C.5 yields that,

Ty I PAt-1D2 9323 -2
D) < Dlxi—) = o [VOGee) P + =2 A Ivee) P | an
7=0

Summing up (17) overt = 1,2,...,T 4 1 and rearranging the terms yields that

7nx Inel2D? [ & 9nxe2 3 [R2
P(xr41) < @ Z IV () |* + BETEE Z“Yt Z Z“Yt 2|V (x;)|I?
t=0 t=1 j=0
Since 7% = 1/16(x + 1)?¢, we have v < 1 — - and M < 18;’3&. This implies that Ztho 7" < 4k and
T41t-2 T
YAV < 4x (Z ||V‘I’(Xt)2>
t=1 j=0 t=0
Putting these pieces together yields that
1037« 977x/i€2D2
Q(xr41) < P(x0) — 256 (Z V@ (x)|l > :

By the definition of Ag, we have

a — 212 2 2 12
L S Ivex)?) < 256(®(x0) — P(x741)) | 576KL2D _ 128k (Ag + 5K02D
T+l 103nx (T + 1) 103(T + 1) T+1

This implies that the number of iterations required by Algorithm 1 to return an e-stationary point is bounded by

0 (KQEA@ + /@EQDQ) 7

2
which gives the same total gradient complexity.

C.4. Proof of Theorem C.2

Throughout this subsection, we define v = 1 —1/2k + 4k3(?n?2

together with 6y < D? yields that

<. Performing the second inequality in Lemma C.4 recursively

‘ t—1 ) ) 20_2K13n2
B < A DRt | DRIV +(x ) ZV“J ~ (%)
§=0

M 2M
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Combining (18) with the second inequality in Lemma C.5 yields that,

Tix I 2y 1 D? 2 klo?
E@x)] < E[@(x-1)] - ToE [IVO(x,1)|*] + 2 41

16 16 M (19
9n3 (243 =2 o ) Inl? [ 202K5n2 o2 =2 o
(e [ivee] | + 2 (P gy ) (S
3=0

Summing up (19) overt = 1,2,...,T 4 1 and rearranging the terms yields that

777" ZE [IV@Ex))7] + =2 9”"6 D’ (ZV>

E [®(x7+41)]

IN

2kla?(T + 1 g3 e2gs [ i2
LT ( )+ M

2 2

= . VIR V()|

t=1 j=0

T41t—2

977x€2 2"{377;% 02 t—2—j
16 M T eM K

t=1 j=0
Slr(llce x = 1/16(k+1)2¢, we have y < 1— - and 9"3‘5”3 < o2 and 202]\'}377 < L,QM This implies that 3", ' < 4k
an

T+1t—-2

t=1j

I\
<)

TIE[IVeG)] < dx (iﬂf [HW(Xt)“?D |

t=0
T41¢—2

Zz'ytflﬂ < 4r(T +1).
t=1 j=0

Putting these pieces together yields that

T
1037 Inukl?2D?  no?(T +1 Inyko?(T + 1
E[®(xr41)] < @(x0) ~ ¢ <ZE[||V¢(xt)|2]>+ yE— 16(/<M )4 2;4 )
t=0

By the definition of Ag, we have

T
1 9 256(®(x0) — B [®(x741)]) = 576k02D? 1602 1152k02
_— E { Vo } <
T+1 (; VoGl ) = 1030 (T + 1) 103(T + 1) 103500 T 10301

2As 502D%  13ko?

+ +
w(T+1)  T+1 M
128k%0A g + 5kl D? n 1302k
T+1 M

This implies that the number of iterations required by Algorithm 2 to return an e-stationary point is bounded by

0 </<;2€Aq> —12— /<;€2D2) .
€

iterations, which gives the total gradient complexity of the algorithm:

2 212 2
O(ﬁ EACI)—ZMD max{l7 m;})
€ €

This completes the proof.
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D. Proof of Theorems in Section 4.2

In this section, we first specify the choice of parameters in Theorems 4.8 and 4.9. Then we present the proof of main
theorems in Section 4.2 with several technical lemmas. Differently from the previous section, we include the case of /D < ¢
in the analysis for nonconvex-concave minimax problems.

D.1. Choice of Parameters in Theorem 4.8 and 4.9

In this subsection, we present the full version of Theorems 4.8 and 4.9 with the detailed choice of 7, 7, and M which are
important to subsequent analysis.

Theorem D.1 Under Assumption 4.6 and letting the step sizes nx > 0 and ny > 0 be chosen as ny =
min{e?/[16¢L?], €* /[4096¢3 L2 D?|} and ny = 1/{, the iterations complexity of Algorithm 1 to return an e-stationary
point is bounded by

I et

BI2D*Ay  3D2A
0] ( ® 4 1.
which is also the total gradient complexity of the algorithm.
Theorem D.2 Under Assumptions 4.1 and 4.6 and letting the step sizes 1 > 0 and ny > 0 be chosen as 1y, =
min{1/2¢, €2 /[1600?%]|} and nx = min{e?/[16¢(L? + 02)],€*/[819203 D2 L/ L? + 02], €°/[65536¢3 D02 L\/L? + 02|}
with a batch size M = 1, the iteration complexity of Algorithm 2 to return an e-stationary point is bounded by

03 (L2 2 D23 312 A 2
o(( ( J”;) ¢+£D4A0>max{1, 02}>
€ € €

which is also the total gradient complexity of the algorithm.

D.2. Proof of Technical Lemmas

In this subsection, we present three key lemmas which are important for the subsequent analysis.

Lemma D.3 For two-time-scale GDA, let Ay = ®(x:) — f(X¢,yt), the following statement holds true,
x 2
Dy /00(xt) < Pojoe(Xe—1) + 21l — % V@1 20(x¢—1)||” + nalL>.
For two-time-scale SGDA, let Ay = E [®(x:) — f(x¢,¥¢)], the following statement holds true,

E [®1/20(x¢)] < E [®120(x¢-1)] + 20lDy—1 — %E [||V<I>1/2z(xt—1)||2] +n2l (L + 0?).

Proof. We first consider the deterministic setting. Let X;_; = proxg /2 +(x¢_1), we have
Dyyoe(xr) < B(ke) + L [%—1 — x4 (20)
Since f(-,y) is L-Lipschitz for any y € Y, we have

%1 —x|” = %1 — %1+ 0 Vaef (1, e 1)| 21
%1 — xe1|)* 4 20 (Reo1 — Xe—1, Vaef (Xe—1,¥21)) + 72 L2

IN

Plugging (21) into (20) yields that
Dy j00(xs) < Pyyoe(xe—1) + 20l (Re—1 — Xe—1, Ve f (Xe—1, ¥1-1)) + n2lL>. (22)

Since f is £-smooth, we have

. . e .
(Xe—1 — X1, Vi f (xe—1,y1-1)) < f(Rem1,yi-1) — f(Xem1,¥e—1) + 3 l|%e—1 — Xt—1H2~ (23)
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Furthermore, ®(X;—1) > f(%X;—1,y+—1). By the definition of A;, we have

. . e .
f(&em1,¥e-1) = f(Rem1,ye—1) < P(Rem1) — f(Xem1,¥e-1) < Dpq — 3 %1 — x| (24)

Plugging (23) and (24) into (22) together with [|%X; 1 — x; 1| = ||V ®y/9¢(x;—1)]|/2¢ yields the first desired inequality.
We proceed to the stochastic setting. Indeed, we have

1 M
M Z Gx(xt—layt—lagi)

i=1

et —xe|)? < (et — x| P02

M
N 1
+21x <Xt—l — X137 Z Gx(Xt—1,¥t-1, 51)> .

=1

Taking an expectation of both sides of the above inequality, conditioned on (x;_1, y:—1), together with Lemma A.2 and the
Lipschitz property of f(-,y:—1) yields that

E |[|%:—1 — x| | Xt—laYt—l} < ke — X |)P 4 20 (Rem1 — %o 1, Vaef (%¢—1,ye-1)) + 2 L2
2

M
1
Vaf(Xe—1,¥t-1) — i Z Gx(x¢—1,¥t-1,&)

i=1

+nZE | X¢—1,¥e—1

Taking the expectation of both sides together with Lemma A.2 yields that
. 2 . 2 5 2 (72 2
E %1 =%l < B [I%e-1 = xe-all?] + 20E [t = X1, Voef ko1, ye-1))] + 02 (B2 +02).
Combining with (23) and (24) yields that

E [‘I)l/zé(xt)] < E [(1)1/26()%—1)] + 20k E [(ﬁt—l — X1, vxf(xt—17Yt—1)>] + nif (L2 + 02)
< E[®1)20(x¢-1)] + 20xlDy—1 — 0 l°E ||| %41 — xt_lﬂ + 2l (L* + 0%).

This together with [|%X; 1 — x; 1| = [[V®y9¢(x¢—1)||/2¢ yields the second desired inequality. O
Lemma D.4 For two-time-scale GDA, let Ay = ®(x:) — f(Xt,yt), the following statement holds true forVs <t — 1,
¢ x
Beor < mel2(2t =25 = 1)+ 5 (Ilyis =y ()P = llye =" ()I7) + (Fxe, 1) = F(x-1,¥e1)

For two-time-scale SGDA, let Ay = E [®(x:) — f(x¢,¥¢)], the following statement holds true for Vs <t — 1,

Bt € VI =25 - 1) 4 g (B Iy -y )] < B Iy -y (o)1)

2

FE[f(x6,¥¢) — f(Xe—1,¥e-1)] + 77y20

Proof. We first consider the deterministic setting. For any y € ), the convexity of ) and the update formula of y; imply that

(y — ye) ' (¥t = ¥i—1 =y Vy f(xi—1,¥1-1)) > 0.

Rearranging the inequality yields that

ly =yl < 20y (yee1 —¥) ' Vyf (X1, ¥e-1) + 20y (ye — yi1) Vyf(Xem1,¥i-1) + |y = Ye1l]* = Iy — ye—1 >

Since f(x¢—1, -) is concave and ¢-smooth and 7, = 1/¢, we have

f(xe-1,y) = f(xt-1,¥¢) <

N

(Ily = ye—1l? = lly — yell?) -
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Plugging y = y*(xs) (s <t — 1) in the above inequality yields that

POy ) = FG1y0) < 5 (i =¥ Gl = v v (s) )
By the definition of A;_;, we have
At S (Flmony Gema)) = Foeny (e + (F0ye) = sy 1) + (1, 30) = fx0)
0 (Iyeer =y eI = llye —y* (eI
Since f(x,,y*(x5)) > f(xs,y) for Yy € Y, we have

(X1, y" (x¢-1)) — (-1, ¥ (x5)) (25)
F(xe—1, ¥y (xe—1)) = f(xs, ¥ (x0-1)) + f (%, ¥ (x0—1)) — f(x—1, ¥ (%))
F&eo1, ¥y (xe-1)) — f(Xe, Y (Xe1)) + f(X6, ¥ (X6)) — f(Xe—1, ¥ (X6))-

IN A

Since f(-,y) is L-Lipschitz for any y € ), we have

fe—1, ¥ (%)) = f(xs, ¥y (x¢-1)) < Llxe—1 —xsf] <
O y* (%) = fxem1, " (%)) < Loy —xol| € nL*(t — 1)
fxe-1,y) = f(xe,y0) < Lxe—1 —xf| <
Putting these pieces together yields the first desired inequality.

We proceed to the stochastic setting. For Vy € ), we use the similar argument and obtain that

||y - Yt||2 < 277y(}’t—1 - }’)TGy(Xt—la}’t—lvf) + 27)y(}’t - Yt—l)Tvyf(xt—17Yt—1)
+2ny (ye — yi-1) T (Gy(xe—1,¥1-1,€) = Vy F(xe—1,¥7:-1)) + Iy = ye—1l® = llyr — ye—1 [

Using the Young’s inequality, we have

v 2
77y(y1t—yt—1)T (Gy(xt—lv}’t—hE)_Vyf(xt—laYt—l)) < wﬂﬁ\@y(xt—uYt—l,f)—vyf(xt—17y1t—1)“2~

Taking an expectation of both sides of the above equality, conditioned on (x;_1,y:—1), together with Lemma A.2 yields that

2
E{lly = yel* | %11 y1-1]

< 2y (ye1 — y)' Vy f(xi—1,yt-1) + 2nyE [(y: — yi-1) Vyf(xi—1,¥t-1) | X1, Yt-1]
[HYt - Yt71||2 \ thl,Ytq]

E
+2n2E [Hvyf(xtflaytfl) — Gy(xe-1,¥:-1,6)|% | thhywl} +ly =yl - 5
Taking the expectation of both sides together with Lemma A.2 yields that

Elly = yill?] < 2B |1 -3 Vyfoonye)+ G-y 1) VSt yi1)]

E [lly: — ye-1l%]
2

2
+E [”y_Yt—lH } - + 0%

Since f(x¢—_1, -) is concave and ¢-smooth, ) is convex and 7, < 1/2¢, we have
E[ly = yel*] < E[lly —yeoal®] + 20y (FGim1.30) = F(xim1,)) + nor
Plugging y = y*(x5) (s < t — 1) in the above inequality yields that

E[f(xe-1, 5" (%)) — f(xe-1,y0)] < 2717)’ (E [HYt—l _ y*(Xs)HQ} —E {HYt - y*(Xs)||2D + nyTUQ.
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By the definition of A;_, we have

Ay < Elf(xe-1,y (xe-1)) = f(xem1, ¥ (%6)) + (f(xe,5¢) = f(xe—1,¥e-1)) + (f(xe—1,¥¢) — f(Xe,5¢))]

+77YTUQ + 2717y (B [lyemr =y e IP] = B {llye - y* () P])

By the fact that f(-,y) is L-Lipschitz for Vy € ) and Lemma A.2, we have
E[f(xt—lay*(xt—l)) _f(sty*(Xt—l))] nXL L2+O2(t_ 1 _8)7

E[f(xe,y*(xs)) = f(xe—1,¥"(x4))] < mxLVIL?+0%(t—1—5),
Elf(xt—1,y:) — f(x,y0)] < UxL\/m.

Putting these pieces together with (25) yields the second desired inequality. ]

IN

Without loss of generality, we assume that B < T + 1 such that (T'+ 1)/B is an integer. The following lemma provides an
upper bound for %H (Z?:o A;) for two-time-scale GDA and SGDA using a localization technique.

Lemma D.5 For two-time-scale GDA, let Ay = ®(x:) — f(X¢,yt), the following statement holds true,

T o~
1 D> A,
- A < o I2B+1)+ = .
T+1<; ‘)-” (B+D+ o5+ 71

For two-time-scale SGDA, let Ay = E [®(xt) — f(x¢,¥t)], the following statement holds true,

1 4 D? Nyo? 80
] A < ieLVI*+oX(B+1)+ + 22—+
t=0

2Bn, 2 | T+1

Proof. We first consider the deterministic setting. In particular, we divide {A;}7_, into several blocks in which each block
contains at most B terms, given by

(A2 (A5 AT B

Then we have

1 T B (T+1/B-1 [ (+1)B-1
m(ZAt> S| 2 (B 2 A @)
t=0 j=0 t=jB

Furthermore, letting s = 0 in the first inequality in Lemma (D.4) yields that

Sy}
—

Y4
Ay < nL’B*+ 3 Iyo — ¥* (x0)I* + (f(x5,¥5) — f(%0,¥0)) (27)

N
I
=3

2

< n<L?B%+ % + (f(xB,yB) — f(X0,¥0))-

. . . _ . . . T+1
Similarly, letting s = jB yields that, for 1 < j < 2= — 1,

(j+1)B—1 /D2

> A < PB4 -5 T (fxjB+B,¥jB+B) — f(XB,Y;B))- (28)
t=jB

Plugging (27) and (28) into (26) yields

T
1 ¢D?  f(xr41,y7+1) — f(X0,¥0)
< 2 ) 9 .

T+1(§At) S LB H ot T+l 29
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Since f(-,y) is L-Lipschitz for any y € ), we have

J&xri1,yre1) — f(X0,50) = f(Xri1,¥741) — f(Xo,y741) + f (X0, yr41) — f(X0,¥0)

A

L2 (T 4 1) + Ao,

(30)

Plugging (30) into (29) yields the desired inequality. As for the stochastic case, letting s = j B in the second inequality in

Lemma D.4 yields that
(G+1DB-1 Ti1
Y A < mLVIP+o?B ¢ L Iy L0
77

t=jB y

Using the similar argument with (31) and (26) yields the second desired inequality.

D.3. Proof of Theorem D.1

Summing up the first inequality in Lemma D.3 over ¢t = 1,2, ...,T + 1 yields that

D1 jo0(x741) < Pyyoe(x0) + 20xl (ZA > (Z HV@l/% (% H ) n20LA(T +1).

Combining the above inequality with the first inequality in Lemma D.5 yields that

2

{D
Dy /00(xr11) < Pijoe(x0) + 20xl(T + 1) (ﬂxL2(B +1)+ 23> + 2 lA

(Z ||V<I>1/25 Xt || ) +77x£L2 T+ ].)

By the definition of &p, we have

T+1 (T + 1 2B ) " T+1

Letting B = 1for D =0and B = %,/WL for D > 0, we have

1 a 2 4Ag 8(A, )
1 <;||V‘I>1/2Z(Xt)” > S o Ta Ty Tl T ISEDV bt L.

. . 2 4
Since 75 = min { 166“2 , 4096;3L2D2 }, we have

T - =
L 2 4As 8IA, €2
T+1 (; [Vl ) : wT+D) Tr1to

This implies that the number of iterations required by Algorithm 1 to return an e-stationary point is bounded by

2N N 2 12
O LA + @ max < 1, L D ,
et €2 €2

which gives the same total gradient complexity.

T “~ 2 N
L (Z ||vq>1/2@(xt)||2> 4A) +8¢ (nx(B +1)L2 + w> L BB tr?.
t=0

€2y
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D.4. Proof of Theorem D.2

Summing up the second inequality in Lemma D.3 over¢t = 1,2,...,T + 1 yields that

T T
E [¢1/2€(XT+1)] S @1/24(X0) + 27]XZZA7§ - Tif ZE |:qu)1/2z(xt)u2i| + 77)2(6 (L2 + 0’2) (T + 1)
t=0 t=0

Combining the above inequality with the second inequality in Lemma D.5 yields that
2

2Bn

2 o~
E [®1/20(x741)] < P1/20(x0) + 2nxl(T + 1) <77va L?+02(B+1)+ + 7 > + 20yl Qg

y 2

T
— BN E [V 200 |*] +m2 (L2 +02) (T + 1),
t=0

By the definition of th we have

L XT:E[HVfD )] ) = e BByt 2 b
T+1\ = 1/20(X¢ = T+ 1) Tx 2By 5

(
8¢A
T+1

Letting B=1forD = 0and B = %MW&W for D > 0, we have

T ~ ~
1 2 VAW 80A¢ Nx LV L? + o2 5 5 o
—_— P < 160Dy | —————— + 4n,/ Anl (L .

+ +4nkl (L? + 07) .

2 4 6 2
. s € € € s 1 €
Since 7x = min { 0L 7o)’ 31936 D2 LV o7’ 55360 D2e? LV o7 } and 7y, = min { 30 16052 } we have

1 - 2 43@ 8630 3e2
T+1 (; 901 /2060 ) = ne (T + 1) trai T

This implies that the number of iterations required by Algorithm 2 to return an e-stationary point is bounded by

0 (L2 2) A A 212 2252
O((( +o?) ¢+£A20>max{1,€?,€D4o })
€ € € €

which gives the same total gradient complexity.

E. Results for GDmax and SGDmax

For the sake of completeness, we present GDmax and SGDmax in Algorithm 3 and 4. For any given x; € R™, the max-
oracle approximately solves maxycy f(x,y) at each iteration. Although GDmax and SGDmax are easier to understand,
they have two disadvantages over two-time-scale GDA and SGDA: 1) Both GDmax and SGDmax are nested-loop algorithms.
Since it is difficult to pre-determine the number iterations for the inner loop, these algorithms are not favorable in practice;
2) In the general setting where f(x, -) is nonconcave, GDmax and SGDmax are inapplicable as we can not efficiently solve
the maximization problem to a global optimum. Nonetheless, we present the complexity bound for GDmax and SGDmax
for the sake of completeness. Note that a portion of results have been derived before (Jin et al., 2019; Nouiehed et al., 2019)

and our proof depends on the same techniques.

For nonconvex-strongly-convex problems, the target is to find an e-stationary point (cf. Definition 3.3) given only gradient
(or stochastic gradient) access to f. Denote Ag = ®(x0) — mingeg= ®(x), we present the gradient complexity for GDmax

in the following theorem.
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Theorem E.1 Under Assumption 4.2 and letting the step size nx > 0 and the tolerance for the max-oracle { > 0 be
nx = 1/[8kl] and ¢ = €% /[6¢), the number of iterations required by Algorithm 3 to return an e-stationary point is bounded
by O(klAge?2). Furthermore, the (-accurate max-oracle can be realized by gradient ascent (GA) with the stepsize
ny = 1/¢ for O(rlog(¢D? /() iterations, which gives the total gradient complexity of the algorithm:

29N D
0(“ 62 ® Jog (€)>
€ €

Theorem E.1 shows that, if we alternate between one-step gradient descent over x and O(x log(¢D/¢)) gradient ascent steps
over y with a pair of proper learning rates (1x, 17y ), we find at least one stationary point of ® within O(r%¢~2log(¢/e))
gradient evaluations. Then we present similar guarantees when only stochastic gradients are available in the following
theorem.

Theorem E.2 Under Assumption 4.1 and 4.2 and letting the step size nx > 0 and the tolerance for the max-oracle ¢ > 0 be
the same in Theorem E.1 with the batch size M = max{1,12kco2e =2}, the number of iterations required by Algorithm 4 to
return an e-stationary point is bounded by O(klAge=2). Furthermore, the (-accurate max-oracle can be realized by mini-
batch stochastic gradient ascent (SGA) with the step size ny = 1/¢ and the mini-batch size M = max{1, 202Kk for
O(klog(¢D?/¢) max{1,202kl~1(~1}) gradient evaluations, which gives the total gradient complexity of the algorithm:

2 2
o~ Ao log D max q 1, B L)
€2 € €2

The sample size M = O(ko?e~2) guarantees that the variance is less than €2 /x so that the average stochastic gradients
over the batch are sufficiently close to the true gradients V f and Vy f.

We now proceed to the theoretical guarantee for GDmax and SGDmax algorithms for nonconvex-concave problems. The
target is to find an e-stationary point of a weakly convex function (Definition 3.7) given only gradient (or stochastic gradient)
access to f. Denote Ag = Pq/9¢(X0) — minyerm Pq/2¢(x), we present the gradient complexity for GDmax and SGDmax
in the following two theorems.

Theorem E.3 Under Assumption 4.6 and letting the step size 1x > 0 and the tolerance for the max-oracle ¢ > 0 be
Nx = €2 /(L% and ¢ = €% /[244), the number of iterations required by Algorithm 3 to return an e-stationary point is bounded
by O(€L2£<be_4). Furthermore, the C-accurate max-oracle is realized by GA with the step size 1y = 1/2¢ for O({D?/()
iterations, which gives the total gradient complexity of the algorithm:

BL2D?Ag

Theorem E.4 Under Assumptions 4.1 and 4.6 and letting the tolerance for the max-oracle { > 0 be chosen as the same as
in Theorem E.3 with a step size 1x > 0 and a batch size M > 0 given by 0y = €2 /[{(L? + 02)] and M = 1, the number
of iterations required by Algorithm 4 to return an e-stationary point is bounded by O(¢(L?* + 02)34,6*4). Furthermore,
the -accurate max-oracle is realized by SGA with the step size ny, = min{1/2¢,€?/[¢c*]} and a batch size M = 1 for
O(UD*¢ "t max{1,02¢~1(~1}) iterations, which gives the following total gradient complexity of the algorithm:

372 2\ P2 A 2
o (z (L +o )D?Ag max{L ‘2})
€ €

When o2 < &2, the stochastic gradients are sufficiently close to the true gradients V f and Vy, f and the gradient complexity
of SGDmax matches that of GDmax.

E.1. Proof of Theorem E.1

We present the gradient complexity bound of the gradient-ascent-based (-accurate max-oracle in the following lemma.
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Algorithm 3 Gradient Descent with Max-oracle (GDmax)

Input: initial point x, learning rate 1y and max-oracle accuracy (.
fort=1,2,...do
findy,_1 € Ysothat f(x,—1,y,—1) > maxyey f(x¢—1,¥) — ¢
Xp 4 X1 — Nx Vacf (Xe—1,¥t-1)-

Algorithm 4 Stochastic Gradient Descent with Max-oracle (SGDmax)

Input: initial point x, learning rate 7y and max-oracle accuracy (.
fort=1,2,...do

Draw a collection of i.i.d. data samples {;}

findy;,—1 € Ysothat E[f(x¢—1,y1—1) | x¢e—1] > maxyey f(xi—1,y) — C.

Xt & Xp—1 — Tx (ﬁ Zf& Gx (Xt—la Yi—1, fz))

M
i=1"

Lemma E.5 Let ¢ > 0 be given, the (-accurate max-oracle can be realized by running gradient ascent with a step size

ny = 1/¢ for
(D?
0] (KJ log ())
¢
gradient evaluations. In addition, the output y satisfies |y* — y||?> < (/{, where y* is the exact maximizer.

L2
K 2’

* 2 1 e 2
ly*(x¢) —yell” < 1*; D=,

Proof. Since f(x¢, ) is p-strongly concave, we have

IN

F(xe, y™(xt)) = f(xe,¥1)

The first inequality implies that the number of iterations required is O(x log(¢D?/()) which is also the number of gradient
evaluations. This, together with the second inequality, yields the other results. (]

Proof of Theorem E.1: It is easy to find that the first descent inequality in Lemma C.3 is applicable to GDmax:
M)x

xi) < B(xi1) — (B -

Since VO (x:-1) = Vi f (x¢—1,¥*(%x¢—1)), we have

IV (xi-1) — Vaf (X1, ye-)|I> < Clly* (xe-1) =yl < £ (33)

Since 7 = 1/8x¢, we have

220 ) V(x| + (5 + 202t ) [IVR(xe1) = Vi (xeen, v (B2)

T)x Mx 2 Mx 2 3nx
< = -2 < =42 < —. 4
N Mkl < 5 + 2nkl < 1 (34)
Plugging (33) and (34) into (32) yields that
x 3nxl
D)) < Bloxi1) — B[V )|+ G3)

Summing up (35) overt = 1,2,...,T 4 1 and rearranging the terms yields that

RS 4 (B(x0) — B(x
71 2 IVRel” < ( (ni)<T+(1>Tﬂ))+3f<-

By the definition of 7, and Ag, we conclude that

T
1 2 32I€£Aq>

B < — .
TH?:O VeI < ==~ +36C
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This implies that the number of iterations required by Algorithm 3 to return an e-stationary point is bounded by

KZKA@

Combining Lemma E.5 gives the total gradient complexity of Algorithm 3:

20N D
O(R 62 q)log (€>>
€ €

This completes the proof.

E.2. Proof of Theorem E.2

We present the gradient complexity bound of the stochastic-gradient-ascent-based (-accurate max-oracle in terms of
stochastic gradient in the following lemma.

Lemma E.6 Let ( > 0 be given, the (-accurate max-oracle can be realized by running stochastic gradient ascent with a
step size 1y = 1/ and a batch size M = max{1, 20k /((} for

O <K10g (”;2> max {1, Q(ZH}>

stochastic gradient evaluations. In addition, the output y satisfies ||y* — y||?> < (/¢ where y* is the exact maximizer.

Proof. Since f(x;,-) is p-strongly concave, we have

N, 292 [ Ne—1 N,
1 t ¢D? 7). lo Ni_q—1—j 1 t¢D?> o’k
B0y )~ va) < (1= )G B (X ™ ) < (1) G
and
N, 2 9 [Ne-1 Ny 2 2
1 nyo N, 1—1—4 1 ED [
E [||y* -yl < (1-=) D*4+ 22— 1— T < (1-2) 4
[lly* (x)) = yel1?] _( ) + j:0< py) —( ) > T EM

The first inequality implies that the number of iterations is O(x log(¢D?/¢)) and the number of stochastic gradient evaluation
is O(klog(¢D?/¢) max{1,20%k/¢C}). This together with the second inequality yields the other results. O

Proof of Theorem E.2: It is easy to find that the second descent inequality in Lemma C.3 is applicable to SGDmax:

Efe(x)] < E[@(-1)) - (5 - 2mint) B[IVE(xi1)|?] (36)
(B 2020 B [[V(x11) - VS (11, )|7] o+
Since V®(x;_1) = Vi f (Xe—1,y*(X;_1)). we have
E[IVe(x) - VS (e, y0) 7] < £2E [ly" () = will?] < #c. 37

Since 1x = 1/8k{, we have (34). Plugging (34) and (37) into (36) yields that

3y lC . n2klo?
4 M

E[®(x)] < E[®(x¢-1)] — %"E [||V<1>(xt71)||2} + (38)

Summing up (38) overt = 1,2,...,T + 1 and rearranging the terms yields that

Ly 4(2(x0) ~ E[®(x71)]) 4y, il
TH;E[W@(XM} < SRS s ST
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By the definition of 7y and Ag, we conclude that

T
1 9 32kl g o2
— NTE||Ve < == T
T [IVe@)|?| < St 436+ o

This implies that the number of iterations required by Algorithm 4 to return an e-stationary point is bounded by

IieA(p

Note that the same batch set can be reused to construct the unbiased stochastic gradients for both Vy f(x¢-1,y:—1) and
Vy f(x¢—1,¥¢—1) at each iteration. Combining Lemma E.6 gives the total gradient complexity of Algorithm 4:

2 2,2
(0] (ﬁ €2A¢ log <ﬁ€D> max{l, Uf })
€ € €

This completes the proof.

E.3. Proof of Theorem E.3

We present the gradient complexity bound of the gradient-ascent-based (-accurate max-oracle in the following lemma.

Lemma E.7 Let ¢ > 0 be given, the (-accurate max-oracle can be realized by running gradient ascent with a step size

1y = 1/2¢ for
2
o(onfp22)

gradient evaluations.

Proof. Since f(x,-) is concave, we have

20D?
Ny’

A

fOet,y7(x4)) = f(x,y1) <

which implies that the number of iterations required is O (max {1, # }) which is the number of gradient evaluation. [J

Proof of Theorem E.3: It is easy to find that the first descent inequality in Lemma D.3 is applicable to GDmax:
x 2
D@y /00(xt) < Pyjop(xi—1) + 20xlAy 1 — TIZ [V ®1/20(x—1)||” + nzlL?. (39)
Summing up (39) over ' = 1,2,...,T + 1 together with A;_; < ( and rearranging the terms yields that

T
1 2 4 (Pyy20(x0) — P1yae(x741)) )
< .
o1 ;HV‘I’W(XQH < T + 8UC + Al L

By the definition of 7y and 8@, we have

Ly 2 ASIL2Ag &2
m;HV‘I’l/ze(xt)H S m+8€(+§.

This implies that the number of iterations required by Algorithm 3 to return an e-stationary point is bounded by

(I2As

Combining Lemma E.7 gives the total gradient complexity of Algorithm 3:

2N 2 12
o <€L 4A<1> max{l, Z?}) .
€ €

This completes the proof.
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E.4. Proof of Theorem E.4

We present the gradient complexity bound of the stochastic-ascent-based (-accurate max-oracle in the following lemma.

Lemma E.8 Ler ¢ > 0 be given, the (-accurate max-oracle can be realized by running stochastic gradient ascent with a
step size ny = min{1/2¢,(/20?} and a batch size M = 1 for

4¢D? 402 D?
o (mc1. * ) o
stochastic gradient evaluations.

Proof. Since f(xy,-) is concave and 7, = min{3;, %}, we have

D2

E[f(xe,y*(x¢))] = E[f(xt,y¢)] < + 1yo?.

nyNt

which implies that the number of iterations required is O(max{1,4¢D?*¢ "1, 462 D?(~2}) which is also the number of
stochastic gradient evaluations since M = 1. ]

Proof of Theorem E.4: It is easy to find that the second descent inequality in Lemma D.3 is applicable to SGDmax:
x 2
E [®1)20(x¢)] < E [®1/00(x¢-1)] + 20xlA¢_1 — %E {||V@1/2Z(Xt—1)|| } + 3l (L* +0?). 41)

Summing up (41) over T' = 1,2,...,T + 1 together with A;_; < ( and rearranging the terms yields that

T
1 2 4 (®1)20(x0) — E [®1/20(x741)]) 2, 2
—T+1§E [||V<I>1/2e(Xt)H ] < Y + 80C + Ayl (L + 07) .
By the definition of 7y and Ao, we have
7 ~
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t=0

This implies that the number of iterations required by Algorithm 4 to return an e-stationary point is bounded by
O <€(L2 + 0'2)3@> )

Combining Lemma E.8 gives the total gradient complexity of Algorithm 3:
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This completes the proof.



