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A. Proof of Technical Lemmas
In this section, we provide complete proofs for the lemmas in Section 3 and Section 4.

A.1. Proof of Lemma 3.6

We provide a proof for an expanded version of Lemma 3.6.

Lemma A.1 If f is `-smooth and Y is bounded, we have

1. Φ1/2`(x) and proxΦ/2`(x) are well-defined for ∀x ∈ Rm.

2. Φ(proxΦ/2`(x)) ≤ Φ(x) for any x ∈ Rm.

3. Φ1/2` is `-smooth with∇Φ1/2`(x) = 2`(x− proxΦ/2`(x)).

4. Φ1/2`(x
′)− Φ1/2`(x)− (x′ − x)>∇Φ1/2`(x) ≤ (`/2)‖x′ − x‖2 for any x′,x ∈ Rm.

Proof. By the definition of Φ, we have

Ψ(x)
.
= Φ(x) +

`‖x‖2

2
= max

y∈Y
{f(x,y) +

`‖x‖2

2
}.

Since f is `-smooth, f(x,y)+(`/2)‖x‖2 is convex in x for any y ∈ Y . Since Y is bounded, Danskin’s theorem (Rockafellar,
2015) implies that Ψ(x) is convex. Putting these pieces together yields that Φ(w) + ` ‖w − x‖2 is (`/2)-strongly convex.
This implies that Φ1/2`(x) and proxΦ/2`(x) are well-defined. Furthermore, by the definition of proxΦ/2`(x), we have

Φ(proxΦ/2`(x)) ≤ Φ1/2`(proxΦ/2`(x)) ≤ Φ(x), ∀x ∈ Rm.

Moreover, Davis & Drusvyatskiy (2019, Lemma 2.2) implies that Φ1/2` is `-smooth with

∇Φ1/2`(x) = 2`(x− proxΦ/2`(x)).

Finally, it follows from Nesterov (2013, Theorem 2.1.5) that Φ1/2` satisfies the last inequality. �

A.2. Proof of Lemma 3.8

Denote x̂ := proxΦ/2`(x), we have ∇Φ1/2`(x) = 2`(x − x̂) (cf. Lemma 3.6) and hence ‖x̂ − x‖ = ‖∇Φ1/2`(x)‖/2`.
Furthermore, the optimality condition for proxΦ/2`(x) implies that 2`(x− x̂) ∈ ∂Φ(x̂). Putting these pieces together yields
that minξ∈∂Φ(x̂) ‖ξ‖ ≤ ‖∇Φ1/2`(x)‖.

A.3. Proof of Lemma 4.3

Since f(x,y) is strongly concave in y for each x ∈ Rm, a function y?(·) is unique and well-defined. Then we claim that
y?(·) is κ-Lipschitz. Indeed, let x1,x2 ∈ Rm, the optimality of y?(x1) and y?(x2) implies that

(y − y?(x1))>∇yf(x1,y
?(x1)) ≤ 0, ∀y ∈ Y, (4)

(y − y?(x2))>∇yf(x2,y
?(x2)) ≤ 0, ∀y ∈ Y. (5)

Letting y = y?(x2) in (4) and y = y?(x1) in (5) and summing the resulting two inequalities yields

(y?(x2)− y?(x1))> (∇yf(x1,y
?(x1))−∇yf(x2,y

?(x2))) ≤ 0. (6)

Recall that f(x1, ·) is µ-strongly concave, we have

(y?(x2)− y?(x1))
>

(∇yf(x1,y
?(x2))−∇yf(x1,y

?(x1))) + µ ‖y?(x2)− y?(x1)‖2 ≤ 0. (7)
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Then we conclude the desired result by combining (6) and (7) with `-smoothness of f , i.e.,

µ ‖y?(x2)− y?(x1)‖2 ≤ (y?(x2)− y?(x1))
>

(∇yf(x2,y
?(x2))−∇yf(x1,y

?(x2)))

≤ ` ‖y?(x2)− y?(x1)‖ ‖x2 − x1‖ .

Since y?(x) is unique and Y is convex and bounded, we conclude from Danskin’s theorem (Rockafellar, 2015) that Φ is
differentiable with∇Φ(x) = ∇xf (x,y?(x)). Since∇Φ(x) = ∇xf (x,y?(x)), we have

‖∇Φ(x)−∇Φ(x′)‖ = ‖∇xf (x,y?(x))−∇xf (x′,y?(x′))‖ ≤ ` (‖x− x′‖+ ‖y?(x)− y?(x′)‖) .

Since y?(·) is κ-Lipschitz, we conclude the desired result by plugging ‖y?(x)− y?(x′)‖ ≤ κ. Since κ ≥ 1, Φ is
2κ`-smooth. The last inequality follows from Nesterov (2013, Theorem 2.1.5).

A.4. Proof of Lemma 4.7

By the proof in Lemma A.1, Φ is `-weakly convex and ∂Φ(x) = ∂Ψ(x) − `x where Ψ(x) = maxy∈Y{f(x,y) +
(`/2)‖x‖2}. Since f(x,y) + (`/2)‖x‖2 is convex in x for each y ∈ Y and Y is bounded, Danskin’s theorem implies that
∇xf(x,y?(x)) + `x ∈ ∂Ψ(x). Putting these pieces together yields that∇xf(x,y?(x)) ∈ ∂Φ(x).

A.5. Proof of Lemma on Stochastic Gradient

The following lemma establishes some properties of the stochastic gradients sampled at each iteration.

Lemma A.2 1
M

∑M
i=1Gx(xt,yt, ξi) and 1

M

∑M
i=1Gy(xt,yt, ξi) are unbiased and have bounded variance,

E
[

1
M

∑M
i=1Gx(xt,yt, ξi)

]
= ∇xf(xt,yt), E

[∥∥∥ 1
M

∑M
i=1Gx(xt,yt, ξi)

∥∥∥2
]
≤ ‖∇xf(xt,yt)‖2 + σ2

M ,

E
[

1
M

∑M
i=1Gy(xt,yt, ξi)

]
= ∇yf(xt,yt), E

[∥∥∥ 1
M

∑M
i=1Gy(xt,yt, ξi)

∥∥∥2
]
≤ ‖∇yf(xt,yt)‖2 + σ2

M .

Proof. Since G = (Gx, Gy) is unbiased, we have

E

[
1

M

M∑
i=1

Gx(xt,yt, ξi)

]
= ∇xf(xt,yt), E

[
1

M

M∑
i=1

Gy(xt,yt, ξi)

]
= ∇yf(xt,yt).

Furthermore, we have

E

∥∥∥∥∥ 1

M

M∑
i=1

Gx(xt,yt, ξi)−∇xf(xt,yt)

∥∥∥∥∥
2
 =

∑M
i=1 E

[
‖Gx(xt,yt, ξi)−∇xf(xt,yt)‖2

]
M2

≤ σ2

M
,

E

∥∥∥∥∥ 1

M

M∑
i=1

Gy(xt,yt, ξi)−∇yf(xt,yt)

∥∥∥∥∥
2
 =

∑M
i=1 E

[
‖Gy(xt,yt, ξi)−∇yf(xt,yt)‖2

]
M2

≤ σ2

M
.

Putting these pieces together yields the desired result. �

B. Proof for Propositions 4.11 and 4.12
In this section, we provide the detailed proof of Propositions 4.11 and 4.12.

Proof of Proposition 4.11: Assume that a point x̂ satisfies that ‖∇Φ(x̂)‖ ≤ ε, the optimization problem maxy∈Y f(x̂,y)
is strongly concave (cf. Assumption 4.2) and y?(x̂) is uniquely defined. We apply gradient descent for solving such problem
and obtain a point y′ ∈ Y satisfying that

‖PY(y′ + (1/`)∇yf(x̂,y′))− y′‖ ≤ ε/`, ‖y′ − y?(x̂)‖ ≤ ε.
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If ‖∇Φ(x̂)‖ ≤ ε, we have

‖∇xf(x̂,y′)‖ ≤ ‖∇xf(x̂,y′)−∇Φ(x̂)‖+ ‖∇Φ(x̂)‖ = ‖∇xf(x̂,y′)−∇xf(x̂,y?(x̂))‖+ ε.

Since f(·, ·) is `-smooth, we have

‖∇xf(x̂,y′)‖ ≤ `‖y′ − y?(x̂)|‖+ ε = O(ε).

The required number of gradient evaluations is O(κ log(1/ε)). This argument holds for applying stochastic gradient with
proper stepsize and the required number of stochastic gradient evaluations is O(1/ε2).

Conversely, if a point (x̂, ŷ) satisfies ‖∇xf(x̂, ŷ)‖ ≤ ε/κ and ‖PY(ŷ + (1/`)∇yf(x̂, ŷ))− ŷ‖ ≤ ε/κ`, then we have

‖∇Φ(x̂)‖ ≤ ‖∇Φ(x̂)−∇xf(x̂, ŷ)‖+ ‖∇xf(x̂, ŷ)‖ ≤ `‖ŷ − y?(x̂)‖+ ε/κ.

Since f(x̂, ·) is µ-strongly-concave over Y , the global error bound condition holds (Drusvyatskiy & Lewis, 2018) and

µ‖ŷ − y?(x̂)‖ ≤ `‖PY(ŷ + (1/`)∇yf(x̂, ŷ))− ŷ‖ ≤ ε/κ.

Therefore, we conclude that
‖∇Φ(x̂)‖ ≤ ε+ ε/κ = O(ε).

This completes the proof.

B.1. Proof of Proposition 4.12

Assume that a point x̂ satisfies that ‖∇Φ1/2`(x̂)‖ ≤ ε, the minimax optimization problem minx∈Rm maxy∈Y f(x,y) +
`‖x − x̂‖2 is strongly-convex-concave (cf. Assumption 4.6) and x?(x̂) = argminx∈Rm Φ(x) + `‖x − x̂‖2 is uniquely
defined. We apply extragradient algorithm for solving such problem and obtain a point (x′,y′) satisfying that

‖∇xf(x′,y′) + 2`(x′ − x̂)‖ ≤ ε, ‖PY(y′ + (1/`)∇yf(x′,y′))− y′‖ ≤ ε/`, ‖x′ − x?(x̂)‖ ≤ ε.

Since ‖∇Φ1/2`(x̂)‖ ≤ ε, we have

‖∇xf(x′,y′)‖ ≤ ‖∇xf(x′,y′) + 2`(x′ − x̂)‖+ 2`‖x′ − x̂‖ = ε+ 2`‖x′ − x?(x̂)‖+ 2`‖x?(x̂)− x̂‖
≤ (2`+ 1)ε+ ‖∇Φ1/2`(x̂)‖ = O(ε).

The required number of gradient evaluations is O(ε−2) (Mokhtari et al., 2019a). This argument holds for applying stochastic
mirror-prox algorithm and the required number of stochastic gradient evaluations is O(ε−4) (Juditsky et al., 2011).

Conversely, we have ‖∇Φ1/2`(x̂)‖2 = 4`2‖x̂− x?(x̂)‖2. Since Φ(·) + `‖ · −x̂‖2 is `/2-strongly-convex, we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2 = Φ(x̂)− Φ(x?(x̂))− `‖x?(x̂)− x̂‖2 ≥ `‖x̂− x?(x̂)‖2

4
.

If a point (x̂, ŷ) satisfies ‖∇xf(x̂, ŷ)‖ ≤ ε and ‖PY(ŷ + (1/`)∇yf(x̂, ŷ))− ŷ‖ ≤ ε2/`, we have

max
y∈Y

f(x̂,y)−max
y∈Y

f(x?(x̂),y)− `‖x?(x̂)− x̂‖2

≤ `D‖PY(ŷ + (1/`)∇yf(x̂, ŷ))− ŷ‖+ ‖x̂− x?(x̂)‖‖∇xf(x̂, ŷ)‖ − `‖x̂− x?(x̂)‖2

4

≤ ε2D +
‖∇xf(x̂, ŷ)‖2

`
= O(ε2).

Putting these pieces together yields that ‖∇Φ1/2`(x̂)‖ = O(ε). This completes the proof.

C. Proof of Theorems in Section 4.1
In this section, we first specify the choice of parameters in Theorems 4.4 and 4.5. Then we present the proof of the main
theorems in Section 4.1 with several technical lemmas. Note first that the case of `D . ε is trivial. Indeed, this means
that the set Y is sufficiently small such that a single gradient ascent step is enough for approaching the ε-neighborhood
of the optimal solution. In this case, the nonconvex-strongly-concave minimax problem reduces to a nonconvex smooth
minimization problem, which has been studied extensively in the existing literature.
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C.1. Choice of Parameters in Theorem 4.4 and 4.5

In this subsection, we present the full version of Theorems 4.4 and 4.5 with the detailed choice of ηx, ηy and M which are
important to subsequent analysis.

Theorem C.1 Under Assumption 4.2 and letting the step sizes ηx > 0 and ηy > 0 be chosen as ηx = 1/[16(κ+ 1)2`] and
ηy = 1/`, the iteration complexity of Algorithm 1 to return an ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
,

which is also the total gradient complexity of the algorithm.

Theorem C.2 Under Assumptions 4.1 and 4.2 and letting the step sizes ηx > 0 and ηy > 0 be the same in Theorem 4.4
with the batch size M = max{1, 26κσ2ε−2}, the number of iterations required by Algorithm 2 to return an ε-stationary
point is bounded by O((κ2`∆Φ + κ`2D2)ε−2) which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ + κ`2D2

ε2
max

{
1,

κσ2

ε2

})
.

C.2. Proof of Technical Lemmas

In this subsection, we present three key lemmas which are important for the subsequent analysis.

Lemma C.3 For two-time-scale GDA, the iterates {xt}t≥1 satisfies the following inequality,

Φ(xt) ≤ Φ(xt−1)−
(ηx

2
− 2η2

xκ`
)
‖∇Φ(xt−1)‖2 +

(ηx
2

+ 2η2
xκ`
)
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 .

For two-time-scale SGDA, the iterates {xt}t≥1 satisfy the following inequality:

E [Φ(xt)] ≤ E [Φ(xt−1)]−
(ηx

2
− 2η2

xκ`
)
E
[
‖∇Φ(xt−1)‖2

]
+
(ηx

2
+ 2η2

xκ`
)
E
[
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2

]
+
η2
xκ`σ

2

M
.

Proof. We first consider the deterministic setting. Since Φ is (`+ κ`)-smooth, we have

Φ(xt)− Φ(xt−1)− (xt − xt−1)>∇Φ(xt−1) ≤ κ` ‖xt − xt−1‖2 . (8)

Plugging xt − xt−1 = −ηx∇xf(xt−1,yt−1) into (8) yields that

Φ(xt) ≤ Φ(xt−1)− ηx ‖∇Φ(xt−1)‖2 + η2
xκ` ‖∇xf(xt−1,yt−1)‖2 (9)

+ηx (∇Φ(xt−1)−∇xf(xt−1,yt−1))
>∇Φ(xt−1).

By Young’s inequality, we have

(∇Φ(xt−1)−∇xf(xt−1,yt−1))
>∇Φ(xt−1) (10)

≤ ‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 + ‖∇Φ(xt−1)‖2

2
.

By the Cauchy-Schwartz inequality, we have

‖∇xf(xt−1,yt−1)‖2 ≤ 2
(
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 + ‖∇Φ(xt−1)‖2

)
. (11)

Plugging (10) and (11) into (9) yields the first desired inequality.
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We proceed to the stochastic setting. Plugging xt − xt−1 = −ηx
(

1
M

∑M
i=1Gx(xt−1,yt−1, ξi)

)
into (8) yields that

Φ(xt) ≤ Φ(xt−1)− ηx ‖∇Φ(xt−1)‖2 + η2
xκ`

∥∥∥∥∥ 1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥
2

+ηx

(
∇Φ(xt−1)−

(
1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)

))>
∇Φ(xt).

Taking an expectation on both sides, conditioned on (xt−1,yt−1), yields that

E [Φ(xt) | xt−1,yt−1] ≤ Φ(xt−1)− ηx ‖∇Φ(xt−1)‖2 + η2
xκ` ‖∇xf(xt−1,yt−1)‖2 (12)

+ηx (∇Φ(xt−1)−∇xf(xt−1,yt−1))
>∇Φ(xt−1) + η2

xκ` ‖∇xf(xt−1,yt−1)‖2

+η2
xκ`E

∥∥∥∥∥ 1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)−∇xf(xt−1,yt−1)

∥∥∥∥∥
2

| xt−1,yt−1

 .
Plugging (10) and (11) into (12) and taking the expectation of both sides yields the second desired inequality. �

Lemma C.4 For two-time-scale GDA, let δt = ‖y?(xt)− yt‖2, the following statement holds true,

δt ≤
(

1− 1

2κ
+ 4κ3`2η2

x

)
δt−1 + 4κ3η2

x ‖∇Φ(xt−1)‖2 .

For two-time-scale SGDA, let δt = E[‖y?(xt)− yt‖2], the following statement holds true,

δt ≤
(

1− 1

2κ
+ 4κ3`2η2

x

)
δt−1 + 4κ3η2

xE
[
‖∇Φ(xt−1)‖2

]
+

2σ2κ3η2
x

M
+

σ2

`2M
.

Proof. We first prove the deterministic setting. Since f(xt, ·) is µ-strongly concave and ηy = 1/`, we have

‖y?(xt−1)− yt‖2 ≤
(

1− 1

κ

)
δt−1. (13)

By Young’s inequality, we have

δt ≤
(

1 +
1

2(κ− 1)

)
‖y?(xt−1)− yt‖2 + (1 + 2(κ− 1)) ‖y?(xt)− y?(xt−1)‖2

≤
(

2κ− 1

2κ− 2

)
‖y?(xt−1)− yt‖2 + 2κ ‖y?(xt)− y?(xt−1)‖2

(13)
≤

(
1− 1

2κ

)
δt−1 + 2κ ‖y?(xt)− y?(xt−1)‖2 .

Since y?(·) is κ-Lipschitz, ‖y?(xt)− y?(xt−1)‖ ≤ κ‖xt − xt−1‖. Furthermore, we have

‖xt − xt−1‖2 = η2
x‖∇xf(xt−1,yt−1)‖2 ≤ 2η2

x`
2δt−1 + 2η2

x‖∇Φ(xt−1)‖2.

Putting these pieces together yields the first desired inequality.

We proceed to the stochastic setting. Since f(xt, ·) is µ-strongly concave and ηy = 1/`, we have

E
[
‖y?(xt−1)− yt‖2

]
≤
(

1− 1

κ

)
δt−1 +

σ2

`2M
. (14)
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By Young’s inequality, we have

δt ≤
(

1 +
1

2(κ− 1)

)
E[‖y?(xt−1)− yt‖2] + (1 + 2(κ− 1))E[‖y?(xt)− y?(xt−1)‖2]

≤
(

2κ− 1

2κ− 2

)
E[‖y?(xt−1)− yt‖2] + 2κE[‖y?(xt)− y?(xt−1)‖2]

(14)
≤

(
1− 1

2κ

)
δt−1 + 2κE[‖y?(xt)− y?(xt−1)‖2] +

σ2

`2M
.

Since y?(·) is κ-Lipschitz, ‖y?(xt)− y?(xt−1)‖ ≤ κ‖xt − xt−1‖. Furthermore, we have

E[‖xt − xt−1‖2] = η2
xE

∥∥∥∥∥ 1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥
2
 ≤ 2η2

x`
2δt−1 + 2η2

xE[‖∇Φ(xt−1)‖2] +
η2
xσ

2

M
.

Putting these pieces together yields the second desired inequality. �

Lemma C.5 For two-time-scale GDA, let δt = ‖y?(xt)− yt‖2, the following statement holds true,

Φ(xt) ≤ Φ(xt−1)− 7ηx
16
‖∇Φ(xt−1)‖2 +

9ηx`
2δt−1

16
.

For two-time-scale SGDA, let δt = E[‖y?(xt)− yt‖2], the following statement holds true,

E [Φ(xt)] ≤ E [Φ(xt−1)]− 7ηx
16

E
[
‖∇Φ(xt−1)‖2

]
+

9ηx`
2δt−1

16
+
η2
xκ`σ

2

M
.

Proof. For two-time-scale GDA and SGDA, ηx = 1/16(κ+ 1)` and hence

7ηx
16
≤ ηx

2
− 2η2

xκ` ≤
ηx
2

+ 2η2
xκ` ≤

9ηx
16

. (15)

Combining (15) with the first inequality in Lemma C.3 yields that

Φ(xt) ≤ Φ(xt−1)− 7ηx
16
‖∇Φ(xt−1)‖2 +

9ηx
16
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 .

Since ∇Φ(xt−1) = ∇xf (xt−1,y
?(xt−1)), we have

‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 ≤ `2 ‖y?(xt−1)− yt−1‖2 = `2δt−1.

Putting these pieces together yields the first desired inequality.

We proceed to the stochastic setting, combining (15) with the second inequality in Lemma C.3 yields that

E [Φ(xt)] ≤ E [Φ(xt−1)]− 7ηx
16

E
[
‖∇Φ(xt−1)‖2

]
+

9ηx
16

E
[
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2

]
+
η2
xκ`σ

2

M
.

Since ∇Φ(xt−1) = ∇xf (xt−1,y
?(xt−1)), we have

E
[
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2

]
≤ `2E

[
‖y?(xt−1)− yt−1‖2

]
= `2δt−1.

Putting these pieces together yields the second desired inequality. �
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C.3. Proof of Theorem C.1

Throughout this subsection, we define γ = 1− 1/2κ+ 4κ3`2η2
x. Performing the first inequality in Lemma C.4 recursively

yields that

δt ≤ γtδ0 + 4κ3η2
x

t−1∑
j=0

γt−1−j ‖∇Φ(xj)‖2
 (16)

≤ γtD2 + 4κ3η2
x

t−1∑
j=0

γt−1−j ‖∇Φ(xj)‖2
 .

Combining (16) with the first inequality in Lemma C.5 yields that,

Φ(xt) ≤ Φ(xt−1)− 7ηx
16
‖∇Φ(xt−1)‖2 +

9ηx`
2γt−1D2

16
+

9η3
x`

2κ3

4

t−2∑
j=0

γt−2−j ‖∇Φ(xj)‖2
 . (17)

Summing up (17) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

Φ(xT+1) ≤ Φ(x0)− 7ηx
16

T∑
t=0

‖∇Φ(xt)‖2 +
9ηx`

2D2

16

(
T∑
t=0

γt

)
+

9η3
x`

2κ3

4

T+1∑
t=1

t−2∑
j=0

γt−2−j ‖∇Φ(xj)‖2
 .

Since ηx = 1/16(κ+ 1)2`, we have γ ≤ 1− 1
4κ and 9η3x`

2κ3

4 ≤ 9ηx
1024κ . This implies that

∑T
t=0 γ

t ≤ 4κ and

T+1∑
t=1

t−2∑
j=0

γt−2−j ‖∇Φ(xj)‖2 ≤ 4κ

(
T∑
t=0

‖∇Φ(xt)‖2
)

Putting these pieces together yields that

Φ(xT+1) ≤ Φ(x0)− 103ηx
256

(
T∑
t=0

‖∇Φ(xt)‖2
)

+
9ηxκ`

2D2

4
.

By the definition of ∆Φ, we have

1

T + 1

(
T∑
t=0

‖∇Φ(xt)‖2
)
≤ 256(Φ(x0)− Φ(xT+1))

103ηx(T + 1)
+

576κ`2D2

103(T + 1)
≤ 128κ2`∆Φ + 5κ`2D2

T + 1
.

This implies that the number of iterations required by Algorithm 1 to return an ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
,

which gives the same total gradient complexity.

C.4. Proof of Theorem C.2

Throughout this subsection, we define γ = 1−1/2κ+4κ3`2η2
x. Performing the second inequality in Lemma C.4 recursively

together with δ0 ≤ D2 yields that

δt ≤ γtD2 + 4κ3η2
x

t−1∑
j=0

γt−1−jE[‖∇Φ(xj)‖2]

+

(
2σ2κ3η2

x

M
+

σ2

`2M

)t−1∑
j=0

γt−1−j

 . (18)
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Combining (18) with the second inequality in Lemma C.5 yields that,

E [Φ(xt)]] ≤ E [Φ(xt−1)]− 7ηx
16

E
[
‖∇Φ(xt−1)‖2

]
+

9ηx`
2γt−1D2

16
+
η2
xκ`σ

2

M
(19)

+
9η3

x`
2κ3

4

t−2∑
j=0

γt−2−jE
[
‖∇Φ(xj)‖2

]+
9ηx`

2

16

(
2σ2κ3η2

x

M
+

σ2

`2M

)t−2∑
j=0

γt−2−j

 .

Summing up (19) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

E [Φ(xT+1)] ≤ Φ(x0)− 7ηx
16

T∑
t=0

E
[
‖∇Φ(xt)‖2

]
+

9ηx`
2D2

16

(
T∑
t=0

γt

)

+
η2
xκ`σ

2(T + 1)

M
+

9η3
x`

2κ3

4

T+1∑
t=1

t−2∑
j=0

γt−2−jE
[
‖∇Φ(xj)‖2

]
+

9ηx`
2

16

(
2σ2κ3η2

x

M
+

σ2

`2M

)T+1∑
t=1

t−2∑
j=0

γt−2−j

 .

Since ηx = 1/16(κ+1)2`, we have γ ≤ 1− 1
4κ and 9η3x`

2κ3

4 ≤ 9ηx
1024κ and 2σ2κ3η2x

M ≤ σ2

`2M . This implies that
∑T
t=0 γ

t ≤ 4κ
and

T+1∑
t=1

t−2∑
j=0

γt−2−jE
[
‖∇Φ(xj)‖2

]
≤ 4κ

(
T∑
t=0

E
[
‖∇Φ(xt)‖2

])
,T+1∑

t=1

t−2∑
j=0

γt−1−j

 ≤ 4κ(T + 1).

Putting these pieces together yields that

E [Φ(xT+1)] ≤ Φ(x0)− 103ηx
256

(
T∑
t=0

E
[
‖∇Φ(xt)‖2

])
+

9ηxκ`
2D2

4
+
ηxσ

2(T + 1)

16κM
+

9ηxκσ
2(T + 1)

2M
.

By the definition of ∆Φ, we have

1

T + 1

(
T∑
t=0

E
[
‖∇Φ(xt)‖2

])
≤ 256(Φ(x0)− E [Φ(xT+1)])

103ηx(T + 1)
+

576κ`2D2

103(T + 1)
+

16σ2

103κM
+

1152κσ2

103M

≤ 2∆Φ

ηx(T + 1)
+

5κ`2D2

T + 1
+

13κσ2

M

≤ 128κ2`∆Φ + 5κ`2D2

T + 1
+

13σ2κ

M
.

This implies that the number of iterations required by Algorithm 2 to return an ε-stationary point is bounded by

O

(
κ2`∆Φ + κ`2D2

ε2

)
.

iterations, which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ + κ`2D2

ε2
max

{
1,

κσ2

ε2

})
.

This completes the proof.
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D. Proof of Theorems in Section 4.2
In this section, we first specify the choice of parameters in Theorems 4.8 and 4.9. Then we present the proof of main
theorems in Section 4.2 with several technical lemmas. Differently from the previous section, we include the case of `D . ε
in the analysis for nonconvex-concave minimax problems.

D.1. Choice of Parameters in Theorem 4.8 and 4.9

In this subsection, we present the full version of Theorems 4.8 and 4.9 with the detailed choice of ηx, ηy and M which are
important to subsequent analysis.

Theorem D.1 Under Assumption 4.6 and letting the step sizes ηx > 0 and ηy > 0 be chosen as ηx =
min{ε2/[16`L2], ε4/[4096`3L2D2]} and ηy = 1/`, the iterations complexity of Algorithm 1 to return an ε-stationary
point is bounded by

O

(
`3L2D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
.

which is also the total gradient complexity of the algorithm.

Theorem D.2 Under Assumptions 4.1 and 4.6 and letting the step sizes ηx > 0 and ηy > 0 be chosen as ηy =
min{1/2`, ε2/[16`σ2]} and ηx = min{ε2/[16`(L2 + σ2)], ε4/[8192`3D2L

√
L2 + σ2], ε6/[65536`3D2σ2L

√
L2 + σ2]}

with a batch size M = 1, the iteration complexity of Algorithm 2 to return an ε-stationary point is bounded by

O

((
`3
(
L2 + σ2

)
D2∆̂Φ

ε6
+
`3D2∆̂0

ε4

)
max

{
1,

σ2

ε2

})
,

which is also the total gradient complexity of the algorithm.

D.2. Proof of Technical Lemmas

In this subsection, we present three key lemmas which are important for the subsequent analysis.

Lemma D.3 For two-time-scale GDA, let ∆t = Φ(xt)− f(xt,yt), the following statement holds true,

Φ1/2`(xt) ≤ Φ1/2`(xt−1) + 2ηx`∆t−1 −
ηx
4

∥∥∇Φ1/2`(xt−1)
∥∥2

+ η2
x`L

2.

For two-time-scale SGDA, let ∆t = E [Φ(xt)− f(xt,yt)], the following statement holds true,

E
[
Φ1/2`(xt)

]
≤ E

[
Φ1/2`(xt−1)

]
+ 2ηx`∆t−1 −

ηx
4
E
[∥∥∇Φ1/2`(xt−1)

∥∥2
]

+ η2
x`
(
L2 + σ2

)
.

Proof. We first consider the deterministic setting. Let x̂t−1 = proxΦ/2`(xt−1), we have

Φ1/2`(xt) ≤ Φ(x̂t−1) + ` ‖x̂t−1 − xt‖2 (20)

Since f(·,y) is L-Lipschitz for any y ∈ Y , we have

‖x̂t−1 − xt‖2 = ‖x̂t−1 − xt−1 + ηx∇xf(xt−1,yt−1)‖2 (21)

≤ ‖x̂t−1 − xt−1‖2 + 2ηx 〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉+ η2
xL

2.

Plugging (21) into (20) yields that

Φ1/2`(xt) ≤ Φ1/2`(xt−1) + 2ηx` 〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉+ η2
x`L

2. (22)

Since f is `-smooth, we have

〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉 ≤ f(x̂t−1,yt−1)− f(xt−1,yt−1) +
`

2
‖x̂t−1 − xt−1‖2 . (23)
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Furthermore, Φ(x̂t−1) ≥ f(x̂t−1,yt−1). By the definition of ∆t, we have

f(x̂t−1,yt−1)− f(xt−1,yt−1) ≤ Φ(x̂t−1)− f(xt−1,yt−1) ≤ ∆t−1 −
`

2
‖x̂t−1 − xt−1‖2 . (24)

Plugging (23) and (24) into (22) together with ‖x̂t−1 − xt−1‖ = ‖∇Φ1/2`(xt−1)‖/2` yields the first desired inequality.

We proceed to the stochastic setting. Indeed, we have

‖x̂t−1 − xt‖2 ≤ ‖x̂t−1 − xt−1‖2+η2
x

∥∥∥∥∥ 1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥+2ηx

〈
x̂t−1 − xt−1,

1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)

〉
.

Taking an expectation of both sides of the above inequality, conditioned on (xt−1,yt−1), together with Lemma A.2 and the
Lipschitz property of f(·,yt−1) yields that

E
[
‖x̂t−1 − xt‖2 | xt−1,yt−1

]
≤ ‖x̂t−1 − xt−1‖2 + 2ηx 〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉+ η2

xL
2

+η2
xE

∥∥∥∥∥∇xf(xt−1,yt−1)− 1

M

M∑
i=1

Gx(xt−1,yt−1, ξi)

∥∥∥∥∥
2

| xt−1,yt−1

 .
Taking the expectation of both sides together with Lemma A.2 yields that

E
[
‖x̂t−1 − xt‖2

]
≤ E

[
‖x̂t−1 − xt−1‖2

]
+ 2ηxE [〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉] + η2

x

(
L2 + σ2

)
.

Combining with (23) and (24) yields that

E
[
Φ1/2`(xt)

]
≤ E

[
Φ1/2`(xt−1)

]
+ 2ηxE [〈x̂t−1 − xt−1,∇xf(xt−1,yt−1)〉] + η2

x`
(
L2 + σ2

)
≤ E

[
Φ1/2`(xt−1)

]
+ 2ηx`∆t−1 − ηx`2E

[
‖x̂t−1 − xt−1‖2

]
+ η2

x`
(
L2 + σ2

)
.

This together with ‖x̂t−1 − xt−1‖ = ‖∇Φ1/2`(xt−1)‖/2` yields the second desired inequality. �

Lemma D.4 For two-time-scale GDA, let ∆t = Φ(xt)− f(xt,yt), the following statement holds true for ∀s ≤ t− 1,

∆t−1 ≤ ηxL
2(2t− 2s− 1) +

`

2

(
‖yt−1 − y?(xs)‖2 − ‖yt − y?(xs)‖2

)
+ (f(xt,yt)− f(xt−1,yt−1)) .

For two-time-scale SGDA, let ∆t = E [Φ(xt)− f(xt,yt)], the following statement holds true for ∀s ≤ t− 1,

∆t−1 ≤ ηxL
√
L2 + σ2(2t− 2s− 1) +

1

2ηy

(
E
[
‖yt−1 − y?(xs)‖2

]
− E

[
‖yt − y?(xs)‖2

])
+E [f(xt,yt)− f(xt−1,yt−1)] +

ηyσ
2

2
.

Proof. We first consider the deterministic setting. For any y ∈ Y , the convexity of Y and the update formula of yt imply that

(y − yt)
> (yt − yt−1 − ηy∇yf(xt−1,yt−1)) ≥ 0.

Rearranging the inequality yields that

‖y− yt‖2 ≤ 2ηy(yt−1 − y)>∇yf(xt−1,yt−1) + 2ηy(yt − yt−1)>∇yf(xt−1,yt−1) + ‖y− yt−1‖2 − ‖yt − yt−1‖2.

Since f(xt−1, ·) is concave and `-smooth and ηy = 1/`, we have

f(xt−1,y)− f(xt−1,yt) ≤
`

2

(
‖y − yt−1‖2 − ‖y − yt‖2

)
.



On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems

Plugging y = y?(xs) (s ≤ t− 1) in the above inequality yields that

f(xt−1,y
?(xs))− f(xt−1,yt) ≤

`

2

(
‖yt−1 − y?(xs)‖2 − ‖yt − y?(xs)‖2

)
.

By the definition of ∆t−1, we have

∆t−1 ≤ (f(xt−1,y
?(xt−1))− f(xt−1,y

?(xs))) + (f(xt,yt)− f(xt−1,yt−1)) + (f(xt−1,yt)− f(xt,yt))

+
`

2

(
‖yt−1 − y?(xs)‖2 − ‖yt − y?(xs)‖2

)
.

Since f(xs,y
?(xs)) ≥ f(xs,y) for ∀y ∈ Y , we have

f(xt−1,y
?(xt−1))− f(xt−1,y

?(xs)) (25)
≤ f(xt−1,y

?(xt−1))− f(xs,y
?(xt−1)) + f(xs,y

?(xt−1))− f(xt−1,y
?(xs))

≤ f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1)) + f(xs,y
?(xs))− f(xt−1,y

?(xs)).

Since f(·,y) is L-Lipschitz for any y ∈ Y , we have

f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1)) ≤ L ‖xt−1 − xs‖ ≤ ηxL
2(t− 1− s),

f(xs,y
?(xs))− f(xt−1,y

?(xs)) ≤ L ‖xt−1 − xs‖ ≤ ηxL
2(t− 1− s)

f(xt−1,yt)− f(xt,yt) ≤ L ‖xt−1 − xt‖ ≤ ηxL
2.

Putting these pieces together yields the first desired inequality.

We proceed to the stochastic setting. For ∀y ∈ Y , we use the similar argument and obtain that

‖y − yt‖2 ≤ 2ηy(yt−1 − y)>Gy(xt−1,yt−1, ξ) + 2ηy(yt − yt−1)>∇yf(xt−1,yt−1)

+2ηy(yt − yt−1)> (Gy(xt−1,yt−1, ξ)−∇yf(xt−1,yt−1)) + ‖y − yt−1‖2 − ‖yt − yt−1‖2.

Using the Young’s inequality, we have

ηy(yt−yt−1)> (Gy(xt−1,yt−1, ξ)−∇yf(xt−1,yt−1)) ≤ ‖yt − yt−1‖2

4
+η2

y‖Gy(xt−1,yt−1, ξ)−∇yf(xt−1,yt−1)‖2.

Taking an expectation of both sides of the above equality, conditioned on (xt−1,yt−1), together with Lemma A.2 yields that

E
[
‖y − yt‖2 | xt−1,yt−1

]
≤ 2ηy (yt−1 − y)

>∇yf(xt−1,yt−1) + 2ηyE
[
(yt − yt−1)>∇yf(xt−1,yt−1) | xt−1,yt−1

]
+2η2

yE
[
‖∇yf(xt−1,yt−1)−Gy(xt−1,yt−1, ξ)‖2 | xt−1,yt−1

]
+ ‖y − yt−1‖2 −

E
[
‖yt − yt−1‖2 | xt−1,yt−1

]
2

.

Taking the expectation of both sides together with Lemma A.2 yields that

E
[
‖y − yt‖2

]
≤ 2ηyE

[
(yt−1 − y)

>∇yf(xt−1,yt−1) + (yt − yt−1)>∇yf(xt−1,yt−1)
]

+E
[
‖y − yt−1‖2

]
−

E
[
‖yt − yt−1‖2

]
2

+ η2
yσ

2.

Since f(xt−1, ·) is concave and `-smooth, Y is convex and ηy ≤ 1/2`, we have

E
[
‖y − yt‖2

]
≤ E

[
‖y − yt−1‖2

]
+ 2ηy (f(xt−1,yt)− f(xt−1,y)) + η2

yσ
2.

Plugging y = y?(xs) (s ≤ t− 1) in the above inequality yields that

E [f(xt−1,y
?(xs))− f(xt−1,yt)] ≤

1

2ηy

(
E
[
‖yt−1 − y?(xs)‖2

]
− E

[
‖yt − y?(xs)‖2

])
+
ηyσ

2

2
.
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By the definition of ∆t−1, we have

∆t−1 ≤ E [f(xt−1,y
?(xt−1))− f(xt−1,y

?(xs)) + (f(xt,yt)− f(xt−1,yt−1)) + (f(xt−1,yt)− f(xt,yt))]

+
ηyσ

2

2
+

1

2ηy

(
E
[
‖yt−1 − y?(xs)‖2

]
− E

[
‖yt − y?(xs)‖2

])
.

By the fact that f(·,y) is L-Lipschitz for ∀y ∈ Y and Lemma A.2, we have

E [f(xt−1,y
?(xt−1))− f(xs,y

?(xt−1))] ≤ ηxL
√
L2 + σ2(t− 1− s),

E [f(xs,y
?(xs))− f(xt−1,y

?(xs))] ≤ ηxL
√
L2 + σ2(t− 1− s),

E [f(xt−1,yt)− f(xt,yt)] ≤ ηxL
√
L2 + σ2.

Putting these pieces together with (25) yields the second desired inequality. �

Without loss of generality, we assume that B ≤ T + 1 such that (T + 1)/B is an integer. The following lemma provides an
upper bound for 1

T+1 (
∑T
t=0 ∆t) for two-time-scale GDA and SGDA using a localization technique.

Lemma D.5 For two-time-scale GDA, let ∆t = Φ(xt)− f(xt,yt), the following statement holds true,

1

T + 1

(
T∑
t=0

∆t

)
≤ ηxL

2(B + 1) +
`D2

2B
+

∆̂0

T + 1
.

For two-time-scale SGDA, let ∆t = E [Φ(xt)− f(xt,yt)], the following statement holds true,

1

T + 1

(
T∑
t=0

∆t

)
≤ ηxL

√
L2 + σ2(B + 1) +

D2

2Bηy
+
ηyσ

2

2
+

∆̂0

T + 1
.

Proof. We first consider the deterministic setting. In particular, we divide {∆t}Tt=0 into several blocks in which each block
contains at most B terms, given by

{∆t}B−1
t=0 , {∆t}2B−1

t=B , . . . , {∆t}TT−B+1.

Then we have

1

T + 1

(
T∑
t=0

∆t

)
≤ B

T + 1

(T+1)/B−1∑
j=0

 1

B

(j+1)B−1∑
t=jB

∆t

 . (26)

Furthermore, letting s = 0 in the first inequality in Lemma (D.4) yields that

B−1∑
t=0

∆t ≤ ηxL
2B2 +

`

2
‖y0 − y?(x0)‖2 + (f(xB ,yB)− f(x0,y0)) (27)

≤ ηxL
2B2 +

`D2

2
+ (f(xB ,yB)− f(x0,y0)).

Similarly, letting s = jB yields that, for 1 ≤ j ≤ T+1
B − 1,

(j+1)B−1∑
t=jB

∆t ≤ ηxL
2B2 +

`D2

2
+ (f(xjB+B ,yjB+B)− f(xjB ,yjB)). (28)

Plugging (27) and (28) into (26) yields

1

T + 1

(
T∑
t=0

∆t

)
≤ ηxL

2B +
`D2

2B
+
f(xT+1,yT+1)− f(x0,y0)

T + 1
. (29)
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Since f(·,y) is L-Lipschitz for any y ∈ Y , we have

f(xT+1,yT+1)− f(x0,y0) = f(xT+1,yT+1)− f(x0,yT+1) + f(x0,yT+1)− f(x0,y0)

≤ ηxL
2(T + 1) + ∆̂0. (30)

Plugging (30) into (29) yields the desired inequality. As for the stochastic case, letting s = jB in the second inequality in
Lemma D.4 yields that

(j+1)B−1∑
t=jB

∆t ≤ ηxL
√
L2 + σ2B2 +

D2

2ηy
+
ηyσ

2

2
, 0 ≤ j ≤ T + 1

B
− 1. (31)

Using the similar argument with (31) and (26) yields the second desired inequality. �

D.3. Proof of Theorem D.1

Summing up the first inequality in Lemma D.3 over t = 1, 2, . . . , T + 1 yields that

Φ1/2`(xT+1) ≤ Φ1/2`(x0) + 2ηx`

(
T∑
t=0

∆t

)
− ηx

4

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
+ η2

x`L
2(T + 1).

Combining the above inequality with the first inequality in Lemma D.5 yields that

Φ1/2`(xT+1) ≤ Φ1/2`(x0) + 2ηx`(T + 1)

(
ηxL

2(B + 1) +
`D2

2B

)
+ 2ηx`∆̂0

−ηx
4

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
+ η2

x`L
2(T + 1).

By the definition of ∆̂Φ, we have

1

T + 1

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
≤ 4∆̂Φ

ηx(T + 1)
+ 8`

(
ηx(B + 1)L2 +

`D2

2B

)
+

8`∆̂0

T + 1
+ 4ηx`L

2.

Letting B = 1 for D = 0 and B = D
2L

√
`
ηx

for D > 0, we have

1

T + 1

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
≤ 4∆̂Φ

ηx(T + 1)
+

8`∆̂0

T + 1
+ 16`LD

√
`ηx + 4ηx`L

2.

Since ηx = min
{

ε2

16`L2 ,
ε4

4096`3L2D2

}
, we have

1

T + 1

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
≤ 4∆̂Φ

ηx(T + 1)
+

8`∆̂0

T + 1
+
ε2

2
.

This implies that the number of iterations required by Algorithm 1 to return an ε-stationary point is bounded by

O

((
`L2∆̂Φ

ε4
+
`∆̂0

ε2

)
max

{
1,

`2D2

ε2

})
,

which gives the same total gradient complexity.
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D.4. Proof of Theorem D.2

Summing up the second inequality in Lemma D.3 over t = 1, 2, . . . , T + 1 yields that

E
[
Φ1/2`(xT+1)

]
≤ Φ1/2`(x0) + 2ηx`

T∑
t=0

∆t −
ηx
4

T∑
t=0

E
[∥∥∇Φ1/2`(xt)

∥∥2
]

+ η2
x`
(
L2 + σ2

)
(T + 1).

Combining the above inequality with the second inequality in Lemma D.5 yields that

E
[
Φ1/2`(xT+1)

]
≤ Φ1/2`(x0) + 2ηx`(T + 1)

(
ηxL

√
L2 + σ2(B + 1) +

D2

2Bηy
+
ηyσ

2

2

)
+ 2ηx`∆̂0

−ηx
4

T∑
t=0

E
[∥∥∇Φ1/2`(xt)

∥∥2
]

+ η2
x`
(
L2 + σ2

)
(T + 1).

By the definition of ∆̂Φ, we have

1

T + 1

(
T∑
t=0

E
[∥∥∇Φ1/2`(xt)

∥∥2
])

≤ 4∆̂Φ

ηx(T + 1)
+ 8`

(
ηxL

√
L2 + σ2(B + 1) +

D2

2Bηy
+
ηyσ

2

2

)

+
8`∆̂0

T + 1
+ 4ηx`

(
L2 + σ2

)
.

Letting B = 1 for D = 0 and B = D
2

√
1

ηxηyL
√
L2+σ2

for D > 0, we have

1

T + 1

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
≤ 4∆̂Φ

ηx(T + 1)
+

8`∆̂0

T + 1
+ 16`D

√
ηxL
√
L2 + σ2

ηy
+ 4ηy`σ

2 + 4ηx`
(
L2 + σ2

)
.

Since ηx = min
{

ε2

16`(L2+σ2) ,
ε4

8192`3D2L
√
L2+σ2

, ε6

65536`3D2σ2L
√
L2+σ2

}
and ηy = min

{
1
2` ,

ε2

16`σ2

}
, we have

1

T + 1

(
T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2

)
≤ 4∆̂Φ

ηx(T + 1)
+

8`∆̂0

T + 1
+

3ε2

4
.

This implies that the number of iterations required by Algorithm 2 to return an ε-stationary point is bounded by

O

((
`
(
L2 + σ2

)
∆̂Φ

ε4
+
`∆̂0

ε2

)
max

{
1,

`2D2

ε2
,
`2D2σ2

ε4

})
,

which gives the same total gradient complexity.

E. Results for GDmax and SGDmax
For the sake of completeness, we present GDmax and SGDmax in Algorithm 3 and 4. For any given xt ∈ Rm, the max-
oracle approximately solves maxy∈Y f(xt,y) at each iteration. Although GDmax and SGDmax are easier to understand,
they have two disadvantages over two-time-scale GDA and SGDA: 1) Both GDmax and SGDmax are nested-loop algorithms.
Since it is difficult to pre-determine the number iterations for the inner loop, these algorithms are not favorable in practice;
2) In the general setting where f(x, ·) is nonconcave, GDmax and SGDmax are inapplicable as we can not efficiently solve
the maximization problem to a global optimum. Nonetheless, we present the complexity bound for GDmax and SGDmax
for the sake of completeness. Note that a portion of results have been derived before (Jin et al., 2019; Nouiehed et al., 2019)
and our proof depends on the same techniques.

For nonconvex-strongly-convex problems, the target is to find an ε-stationary point (cf. Definition 3.3) given only gradient
(or stochastic gradient) access to f . Denote ∆Φ = Φ(x0)−minx∈Rm Φ(x), we present the gradient complexity for GDmax
in the following theorem.
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Theorem E.1 Under Assumption 4.2 and letting the step size ηx > 0 and the tolerance for the max-oracle ζ > 0 be
ηx = 1/[8κ`] and ζ = ε2/[6`], the number of iterations required by Algorithm 3 to return an ε-stationary point is bounded
by O(κ`∆Φε

−2). Furthermore, the ζ-accurate max-oracle can be realized by gradient ascent (GA) with the stepsize
ηy = 1/` for O(κ log(`D2/ζ)) iterations, which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ

ε2
log

(
`D

ε

))
.

Theorem E.1 shows that, if we alternate between one-step gradient descent over x and O(κ log(`D/ε)) gradient ascent steps
over y with a pair of proper learning rates (ηx, ηy), we find at least one stationary point of Φ within O(κ2ε−2 log(`/ε))
gradient evaluations. Then we present similar guarantees when only stochastic gradients are available in the following
theorem.

Theorem E.2 Under Assumption 4.1 and 4.2 and letting the step size ηx > 0 and the tolerance for the max-oracle ζ > 0 be
the same in Theorem E.1 with the batch size M = max{1, 12κσ2ε−2}, the number of iterations required by Algorithm 4 to
return an ε-stationary point is bounded by O(κ`∆Φε

−2). Furthermore, the ζ-accurate max-oracle can be realized by mini-
batch stochastic gradient ascent (SGA) with the step size ηy = 1/` and the mini-batch size M = max{1, 2σ2κ`−1ζ−1} for
O(κ log(`D2/ζ) max{1, 2σ2κ`−1ζ−1}) gradient evaluations, which gives the total gradient complexity of the algorithm:

O

(
κ2`∆Φ

ε2
log

(
`D

ε

)
max

{
1,

κσ2

ε2

})
.

The sample size M = O(κσ2ε−2) guarantees that the variance is less than ε2/κ so that the average stochastic gradients
over the batch are sufficiently close to the true gradients∇xf and∇yf .

We now proceed to the theoretical guarantee for GDmax and SGDmax algorithms for nonconvex-concave problems. The
target is to find an ε-stationary point of a weakly convex function (Definition 3.7) given only gradient (or stochastic gradient)
access to f . Denote ∆̂Φ = Φ1/2`(x0)−minx∈Rm Φ1/2`(x), we present the gradient complexity for GDmax and SGDmax
in the following two theorems.

Theorem E.3 Under Assumption 4.6 and letting the step size ηx > 0 and the tolerance for the max-oracle ζ > 0 be
ηx = ε2/[`L2] and ζ = ε2/[24`], the number of iterations required by Algorithm 3 to return an ε-stationary point is bounded
by O(`L2∆̂Φε

−4). Furthermore, the ζ-accurate max-oracle is realized by GA with the step size ηy = 1/2` for O(`D2/ζ)
iterations, which gives the total gradient complexity of the algorithm:

O

(
`3L2D2∆̂Φ

ε6

)
.

Theorem E.4 Under Assumptions 4.1 and 4.6 and letting the tolerance for the max-oracle ζ > 0 be chosen as the same as
in Theorem E.3 with a step size ηx > 0 and a batch size M > 0 given by ηx = ε2/[`(L2 + σ2)] and M = 1, the number
of iterations required by Algorithm 4 to return an ε-stationary point is bounded by O(`(L2 + σ2)∆̂Φε

−4). Furthermore,
the ζ-accurate max-oracle is realized by SGA with the step size ηy = min{1/2`, ε2/[`σ2]} and a batch size M = 1 for
O(`D2ζ−1 max{1, σ2`−1ζ−1}) iterations, which gives the following total gradient complexity of the algorithm:

O

(
`3(L2 + σ2)D2∆̂Φ

ε6
max

{
1,

σ2

ε2

})
.

When σ2 . ε2, the stochastic gradients are sufficiently close to the true gradients∇xf and∇yf and the gradient complexity
of SGDmax matches that of GDmax.

E.1. Proof of Theorem E.1

We present the gradient complexity bound of the gradient-ascent-based ζ-accurate max-oracle in the following lemma.
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Algorithm 3 Gradient Descent with Max-oracle (GDmax)

Input: initial point x0, learning rate ηx and max-oracle accuracy ζ.
for t = 1, 2, . . . do

find yt−1 ∈ Y so that f(xt−1,yt−1) ≥ maxy∈Y f(xt−1,y)− ζ.
xt ← xt−1 − ηx∇xf(xt−1,yt−1).

Algorithm 4 Stochastic Gradient Descent with Max-oracle (SGDmax)

Input: initial point x0, learning rate ηx and max-oracle accuracy ζ.
for t = 1, 2, . . . do

Draw a collection of i.i.d. data samples {ξi}Mi=1.
find yt−1 ∈ Y so that E[f(xt−1,yt−1) | xt−1] ≥ maxy∈Y f(xt−1,y)− ζ.

xt ← xt−1 − ηx
(

1
M

∑M
i=1Gx (xt−1,yt−1, ξi)

)
.

Lemma E.5 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running gradient ascent with a step size
ηy = 1/` for

O

(
κ log

(
`D2

ζ

))
gradient evaluations. In addition, the output y satisfies ‖y? − y‖2 ≤ ζ/`, where y? is the exact maximizer.

Proof. Since f(xt, ·) is µ-strongly concave, we have

f(xt,y
?(xt))− f(xt,yt) ≤

(
1− 1

κ

)Nt `D2

2
,

‖y?(xt)− yt‖2 ≤
(

1− 1

κ

)Nt

D2.

The first inequality implies that the number of iterations required is O(κ log(`D2/ζ)) which is also the number of gradient
evaluations. This, together with the second inequality, yields the other results. �

Proof of Theorem E.1: It is easy to find that the first descent inequality in Lemma C.3 is applicable to GDmax:

Φ(xt) ≤ Φ(xt−1)−
(ηx

2
− 2η2

xκ`
)
‖∇Φ(xt−1)‖2 +

(ηx
2

+ 2η2
xκ`
)
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 . (32)

Since ∇Φ(xt−1) = ∇xf (xt−1,y
?(xt−1)), we have

‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2 ≤ `2 ‖y?(xt−1)− yt−1‖2 ≤ `ζ. (33)

Since ηx = 1/8κ`, we have
ηx
4
≤ ηx

2
− 2η2

xκ` ≤
ηx
2

+ 2η2
xκ` ≤

3ηx
4
. (34)

Plugging (33) and (34) into (32) yields that

Φ(xt) ≤ Φ(xt−1)− ηx
4
‖∇Φ(xt−1)‖2 +

3ηx`ζ

4
. (35)

Summing up (35) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

1

T + 1

T∑
t=0

‖∇Φ(xt)‖2 ≤
4 (Φ(x0)− Φ(xT+1))

ηx(T + 1)
+ 3`ζ.

By the definition of ηx and ∆Φ, we conclude that

1

T + 1

T∑
t=0

‖∇Φ(xt)‖2 ≤
32κ`∆Φ

T + 1
+ 3`ζ.
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This implies that the number of iterations required by Algorithm 3 to return an ε-stationary point is bounded by

O

(
κ`∆Φ

ε2

)
.

Combining Lemma E.5 gives the total gradient complexity of Algorithm 3:

O

(
κ2`∆Φ

ε2
log

(
`D

ε

))
.

This completes the proof.

E.2. Proof of Theorem E.2

We present the gradient complexity bound of the stochastic-gradient-ascent-based ζ-accurate max-oracle in terms of
stochastic gradient in the following lemma.

Lemma E.6 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running stochastic gradient ascent with a
step size ηy = 1/` and a batch size M = max{1, 2σ2κ/`ζ} for

O

(
κ log

(
`D2

ζ

)
max

{
1,

2σ2κ

`ζ

})
stochastic gradient evaluations. In addition, the output y satisfies ‖y? − y‖2 ≤ ζ/` where y? is the exact maximizer.

Proof. Since f(xt, ·) is µ-strongly concave, we have

E [f(xt,y
?(xt))− f(xt,yt)] ≤

(
1− 1

κ

)Nt `D2

2
+
η2
y`σ

2

M

Nt−1∑
j=0

(1− µηy)
Nt−1−1−j

 ≤ (
1− 1

κ

)Nt `D2

2
+
σ2κ

`M
,

and

E
[
‖y?(xt))− yt‖2

]
≤
(

1− 1

κ

)Nt

D2 +
η2
yσ

2

M

Nt−1∑
j=0

(1− µηy)
Nt−1−1−j

 ≤ (
1− 1

κ

)Nt `D2

2
+
σ2κ

`2M
.

The first inequality implies that the number of iterations isO(κ log(`D2/ζ)) and the number of stochastic gradient evaluation
is O(κ log(`D2/ζ) max{1, 2σ2κ/`ζ}). This together with the second inequality yields the other results. �

Proof of Theorem E.2: It is easy to find that the second descent inequality in Lemma C.3 is applicable to SGDmax:

E [Φ(xt)] ≤ E [Φ(xt−1)]−
(ηx

2
− 2η2

xκ`
)
E
[
‖∇Φ(xt−1)‖2

]
(36)

+
(ηx

2
+ 2η2

xκ`
)
E
[
‖∇Φ(xt−1)−∇xf(xt−1,yt−1)‖2

]
+
η2
xκ`σ

2

M
.

Since ∇Φ(xt−1) = ∇xf (xt−1,y
?(xt−1)), we have

E
[
‖∇Φ(xt)−∇xf(xt,yt)‖2

]
≤ `2E

[
‖y?(xt)− yt‖2

]
≤ `ζ. (37)

Since ηx = 1/8κ`, we have (34). Plugging (34) and (37) into (36) yields that

E [Φ(xt)] ≤ E [Φ(xt−1)]− ηx
4
E
[
‖∇Φ(xt−1)‖2

]
+

3ηx`ζ

4
+
η2
xκ`σ

2

M
. (38)

Summing up (38) over t = 1, 2, . . . , T + 1 and rearranging the terms yields that

1

T + 1

T∑
t=0

E
[
‖∇Φ(xt)‖2

]
≤ 4 (Φ(x0)− E [Φ(xT+1)])

ηx(T + 1)
+ 3`ζ +

4ηxκ`σ
2

M
.
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By the definition of ηx and ∆Φ, we conclude that

1

T + 1

T∑
t=0

E
[
‖∇Φ(xt)‖2

]
≤ 32κ`∆Φ

T + 1
+ 3`ζ +

σ2

2M
.

This implies that the number of iterations required by Algorithm 4 to return an ε-stationary point is bounded by

O

(
κ`∆Φ

ε2

)
.

Note that the same batch set can be reused to construct the unbiased stochastic gradients for both ∇xf(xt−1,yt−1) and
∇yf(xt−1,yt−1) at each iteration. Combining Lemma E.6 gives the total gradient complexity of Algorithm 4:

O

(
κ2`∆Φ

ε2
log

(√
κ`D

ε

)
max

{
1,

σ2κ2

ε2

})
.

This completes the proof.

E.3. Proof of Theorem E.3

We present the gradient complexity bound of the gradient-ascent-based ζ-accurate max-oracle in the following lemma.

Lemma E.7 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running gradient ascent with a step size
ηy = 1/2` for

O

(
max

{
1,

2`D2

ζ

})
gradient evaluations.

Proof. Since f(xt, ·) is concave, we have

f(xt,y
?(xt))− f(xt,yt) ≤

2`D2

Nt
,

which implies that the number of iterations required is O
(

max
{

1, 2`D2

ζ

})
which is the number of gradient evaluation. �

Proof of Theorem E.3: It is easy to find that the first descent inequality in Lemma D.3 is applicable to GDmax:

Φ1/2`(xt) ≤ Φ1/2`(xt−1) + 2ηx`∆t−1 −
ηx
4

∥∥∇Φ1/2`(xt−1)
∥∥2

+ η2
x`L

2. (39)

Summing up (39) over T = 1, 2, . . . , T + 1 together with ∆t−1 ≤ ζ and rearranging the terms yields that

1

T + 1

T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2 ≤

4
(
Φ1/2`(x0)− Φ1/2`(xT+1)

)
ηx(T + 1)

+ 8`ζ + 4ηx`L
2.

By the definition of ηx and ∆̂Φ, we have

1

T + 1

T∑
t=0

∥∥∇Φ1/2`(xt)
∥∥2 ≤ 48`L2∆̂Φ

ε2(T + 1)
+ 8`ζ +

ε2

3
.

This implies that the number of iterations required by Algorithm 3 to return an ε-stationary point is bounded by

O

(
`L2∆̂Φ

ε4

)
.

Combining Lemma E.7 gives the total gradient complexity of Algorithm 3:

O

(
`L2∆̂Φ

ε4
max

{
1,

`2D2

ε2

})
.

This completes the proof.
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E.4. Proof of Theorem E.4

We present the gradient complexity bound of the stochastic-ascent-based ζ-accurate max-oracle in the following lemma.

Lemma E.8 Let ζ > 0 be given, the ζ-accurate max-oracle can be realized by running stochastic gradient ascent with a
step size ηy = min{1/2`, ζ/2σ2} and a batch size M = 1 for

O

(
max

{
1,

4`D2

ζ
,

4σ2D2

ζ2

})
(40)

stochastic gradient evaluations.

Proof. Since f(xt, ·) is concave and ηy = min{ 1
2` ,

ζ
2σ2 }, we have

E [f(xt,y
?(xt))]− E [f(xt,yt)] ≤

D2

ηyNt
+ ηyσ

2.

which implies that the number of iterations required is O(max{1, 4`D2ζ−1, 4σ2D2ζ−2}) which is also the number of
stochastic gradient evaluations since M = 1. �

Proof of Theorem E.4: It is easy to find that the second descent inequality in Lemma D.3 is applicable to SGDmax:

E
[
Φ1/2`(xt)

]
≤ E

[
Φ1/2`(xt−1)

]
+ 2ηx`∆t−1 −

ηx
4
E
[∥∥∇Φ1/2`(xt−1)

∥∥2
]

+ η2
x`
(
L2 + σ2

)
. (41)

Summing up (41) over T = 1, 2, . . . , T + 1 together with ∆t−1 ≤ ζ and rearranging the terms yields that

1

T + 1

T∑
t=0

E
[∥∥∇Φ1/2`(xt)

∥∥2
]
≤

4
(
Φ1/2`(x0)− E

[
Φ1/2`(xT+1)

])
ηx(T + 1)

+ 8`ζ + 4ηx`
(
L2 + σ2

)
.

By the definition of ηx and ∆̂Φ, we have

1

T + 1

T∑
t=0

E
[∥∥∇Φ1/2`(xt)

∥∥2
]
≤ 48`(L2 + σ2)∆̂Φ

ε2(T + 1)
+ 8`ζ +

ε2

3
.

This implies that the number of iterations required by Algorithm 4 to return an ε-stationary point is bounded by

O

(
`(L2 + σ2)∆̂Φ

ε4

)
.

Combining Lemma E.8 gives the total gradient complexity of Algorithm 3:

O

(
`(L2 + σ2)∆̂Φ

ε4
max

{
1,

`2D2

ε2
,
`2D2σ2

ε4

})
.

This completes the proof.


