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Abstract
We introduce a new framework for the exact point-
wise `p robustness verification problem that ex-
ploits the layer-wise geometric structure of deep
feed-forward networks with rectified linear acti-
vations (ReLU networks). The activation regions
of the network partition the input space, and one
can verify the `p robustness around a point by
checking all the activation regions within the de-
sired radius. The GeoCert algorithm (Jordan et al.,
2019) treats this partition as a generic polyhedral
complex in order to detect which region to check
next. In contrast, our LayerCert framework con-
siders the nested hyperplane arrangement struc-
ture induced by the layers of the ReLU network
and explores regions in a hierarchical manner.
We show that, under certain conditions on the al-
gorithm parameters, LayerCert provably reduces
the number and size of the convex programs that
one needs to solve compared to GeoCert. Fur-
thermore, our LayerCert framework allows the
incorporation of lower bounding routines based
on convex relaxations to further improve perfor-
mance. Experimental results demonstrate that
LayerCert can significantly reduce both the num-
ber of convex programs solved and the running
time over the state-of-the-art.

1. Introduction
Deep neural networks have been demonstrated to be sus-
ceptible to adversarial perturbations of the inputs (e.g.,
Szegedy et al. (2013); Biggio et al. (2013); Goodfellow
et al. (2014)). Hence, it is important to be able to mea-
sure how vulnerable a neural network may be to such noise,
especially for safety-critical applications. We study the
problem of pointwise exact verification for `p-norm adver-
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sarial robustness for trained deep feed-forward networks
with ReLU activation functions. The point-wise `p ro-
bustness with respect to an input x ∈ Rn and a classifier
c : Rn → [C] := {1, 2, 3, . . . , C} is defined as

ε∗(x; c) := min
‖v‖p≤ε

ε s.t. c(x+ v) 6= c(x). (1)

The goal of exact or complete robustness verification is to
check if ε > r for some desired radius r. The choices of p
studied in the literature are typically 1, 2, and∞; our work
applies to all p ≥ 1. Solving Problem (1) exactly (or within
a factor of 1−o(1) lnn) is known to be NP-hard (Weng et al.,
2018). Developing methods that perform well in practice
would require a better understanding of the mathematical
structure of neural networks.

In this work, we approach the problem from the angle of
how to directly exploit the geometry induced in input space
by the neural network. Each activation pattern (i.e., whether
each neuron is on or off) corresponds to a polyhedral region
in the input space, and the decision boundary within each
region is linear. A natural geometric approach to the veri-
fication problem is then to check regions in order of their
distance. We illustrate this in Figure 1. We can terminate
this process either when we have reached the desired ver-
ification radius or when we have exceeded the distance to
the closest decision boundary found. In the latter case the
distance to that boundary is the solution to Problem (1).

Jordan et al. (2019) proposed the first algorithm for this
distance-based exploration of the regions. Their GeoCert
algorithm navigates the regions in order of distance by main-
taining a priority queue containing all the polyhedral faces
that make up the frontier of all regions that have been vis-
ited. The priority associated with each face is computed
via an optimization problem that can be solved by a generic
convex programming solver. Under a limited time budget,
GeoCert finds a stronger computational lower bound for
ε∗(x; c) compared to a complete method that directly uses
mixed-integer programming (Tjeng et al., 2019).

In this paper we introduce the LayerCert framework that
makes use of the layer-wise structure of neural networks.
The first layer of ReLUs induce a hyperplane arrangement
structure, and each subsequent layer induces one within
each region of the hyperplane arrangement from the pre-
vious layer. This forms a nested hyperplane pattern and a
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Figure 1. How geometric methods explore the input space. Each
square illustrates one step in the process of exploring regions of
increasing `2 distance from the initial point x. The box represents
the input space to a ReLU network, the inner black lines the regions
induced by three first layer ReLUs, and brown lines the regions
by another three ReLUs in the second layer. The blue regions are
being processed during that step, while the green regions have
already been processed.

hierarchy of regions/subregions that our algorithm will use
to navigate the input space. This hierarchical approach has
two main advantages over GeoCert:

1. Provable reduction in the number and size of convex
programs solved when using a convex distance-based
priority function.

2. The ability to incorporate convex-relaxation-based
lower bounding/incomplete methods for Problem (1)
to reduce the number of regions that are processed.

We demonstrate the first advantage by studying a simplified
version of LayerCert (LayerCert-Basic), which introduces
our hierarchical approach to navigating the regions but does
not include the use of additional subroutines to prune the
search space. By making use of the nested hyperplane
structure, LayerCert provably reduces the number of convex
programs and the sizes of each program that need to be
solved compared to GeoCert when using the same convex
distance priority function. This is done by identifying a
minimal set of programs that are required and by amortizing
the work associated with a single region in GeoCert across
multiple levels of the hierarchy in LayerCert.

The second advantage comes from the fact that each region
R in the i-th level of the hierarchy is associated with a set
of children regions in the (i+ 1)-th level that is contained
entirely within R. This allows us to use incomplete veri-
fiers over just this region to determine if the region might
intersect with a decision boundary. If the verifier returns
that no such overlap exists, we can then safely remove the

region and all its children from further consideration. One
straightforward way to do this is to use efficient reachability
methods such as interval arithmetic (Xiang et al., 2018). In
this work we also develop a novel method that leverages
linear lower bounds on the neural network function (Weng
et al., 2018; Zhang et al., 2018) to construct a half-space
that is guaranteed not to contain any part of the decision
boundary. This can restrict the search space significantly.
Furthermore, we can warm start LayerCert by projecting
the input point onto the half-space.

Using the experimental setup of Jordan et al. (2019), we
compare the number of programs solved and overall wall-
clock time of different variants of GeoCert and LayerCert.
Each LayerCert method uses a different combination of
lower-bounding methods. For GeoCert, we consider differ-
ent choices of priority functions. In addition to the standard
`p distance priority function, Jordan et al. (2019) describes
a non-convex priority function that incorporates a Lipschitz
term. This Lipschitz variant modifies the order in which
regions are processed and also provides an alternative warm-
start procedure. Our LayerCert variants consistently outper-
form GeoCert using just the `p distance priority function
and in most experiments our lower-bounding techniques
outperform the Lipschitz variant of GeoCert.

Notation. We use [k] to denote the index set {1, 2, . . . , k}.
Superscripts are used to index distinct objects, with the
exception of Rn and R+ to denote the n-dimensional Eu-
clidean space and the nonnegative real numbers respectively.
We use subscripts for vectors and matrices to refer to entries
in the objects and subscripts for sets to refer to distinct sets.
We use typewriter fonts to denote subroutines.

2. Related work
Besides GeoCert (Jordan et al., 2019), the majority of exact
or complete verification methods are based on branch-and-
bound (e.g. Katz et al. (2017); Wang et al. (2018); Tjeng
et al. (2019); Anderson et al. (2019a); Lu & Kumar (2020)),
and Bunel et al. (2018; 2019) provide a detailed overview.
These methods construct a search tree over the possible
individual ReLU activations and use upper and lower bounds
to prune the tree. The upper bounds come from adversarial
examples, while the lower bounds are obtained by solving a
relaxation of the original problem, which we briefly discuss
in the next paragraph. Since our focus in this work is on
methods that directly leverage the geometry of the neural
network function in the input space, we leave a detailed
comparison against these methods to future work.

Instead of exactly measuring or verifying, we can instead
overapproximate or relax the set reachable by an ε-ball
around the input point (e.g. Dvijotham et al. (2018); Xiang
et al. (2018); Singh et al. (2018); Weng et al. (2018); Wong
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& Kolter (2018); Zhang et al. (2018); Singh et al. (2019b)).
These incomplete approaches give us a lower bound for
Problem (1). These can only certify that there is no pertur-
bation that changes the class within some radius r for some
r that can be much smaller than ε∗(x; c) The majority of the
works focus on different convex relaxations of the ReLU
activations (see Salman et al. (2019) for a discussion of the
tightness of the different approaches), though recent works
have started going beyond single ReLU relaxations (Singh
et al., 2019a; Anderson et al., 2019b). Another line of work
studies how to efficiently bound the Lipschitz constant of
the neural network function (Szegedy et al., 2013; Bartlett
et al., 2017; Balan et al., 2017; Weng et al., 2018; Combettes
& Pesquet, 2019; Fazlyab et al., 2019; Zou et al., 2019).

The complexity of geometric methods (and many other exact
methods) for robustness verification can be upper bounded
by a constant × (number of activation regions) × (complex-
ity of solving a convex program). There have been several
works in recent years that study the number of these activa-
tion regions in ReLU networks. The current tightest upper
and lower bounds for the maximum number of nonempty
activation regions, which are exponential in the number of
ReLU neurons, is given by Serra et al. (2018). Hanin &
Rolnick (2019) provide an upper bound on the expected
number of regions (exponential in the lesser of the input
dimension and the number of ReLU neurons).

3. Hierarchical Structure of ReLU Networks
In this section, we describe the structure induced by the
ReLU neurons in the input space and how this leads natu-
rally to a hierarchy of regions that we use in our approach.

3.1. Hyperplane Arrangements

Definition 3.1. (Hyperplanes and hyperplane arrange-
ments) A hyperplane H ⊂ Rn is an (n − 1)-dimensional
affine space that can be written as {x | aᵀx = b} for some
a ∈ Rn and b ∈ R. A hyperplane arrangementH is a finite
set of hyperplanes.

Definition 3.2. (Halfspaces) Given a hyperplane H :=
{x | aᵀx = b}, the halfspaces H≤ and H≥ correspond to
the sets {x | aᵀx ≤ b} and {x | aᵀx ≥ b}, respectively. A
polyhedron is a finite intersection of halfspaces.

Definition 3.3. (Patterns and regions in hyperplane ar-
rangements) Given a hyperplane arrangement H and a
pattern P : H → {−1,+1}, the corresponding region is

R+ :=
⋂

P (H)=−1

H≤ ∩
⋂

P (H)=+1

H≥.

We say that another pattern Q : H → {−1,+1} (or region
RQ) is a neighbor of P (RP resp.) if P and Q differ only
on a single hyperplane.

3.2. Geometric Structure of Deep ReLU Networks

A ReLU network with L hidden layers for classification
with C classes and ni neurons in the i-th layer for i ∈ [L]
can be represented as follows:

x0 := x input,

zi :=W i−1xi−1 + bi−1 for i ∈ [L+ 1], (2)

xi := relu(zi) for i ∈ [L],

f(x) :=WLxL + bL = zL+1 output,

where W i, bi describe the weight matrix and bias in the
i-th layer and the ReLU function is defined as relu(v))i :=
max(0, vi). The length of bi is ni+1 for i ∈ [L − 1] and
b0 ∈ Rn and bL ∈ RC . The classification decision is given
by argmaxi(f(x))i, and the decision boundary between
classes i and j is the set {x | fi(x)− fj(x) = 0}.

Note that layers like batch normalization layers, convolu-
tional layers, and average pooling layers can be included in
this framework by using the appropriate weights and biases.
We can also have a final softmax layer since it does not affect
the decision boundaries as it is a symmetric monotonically
increasing function.
Definition 3.4. (Full activation patterns) Let ni denote the
number of neurons in the i-th layer. A (full) activation
pattern A = (A1, . . . , AL) is a collection of functions Ai :
[ni]→ {−1,+1}. Two activation patterns are neighbors if
they differ on exactly one layer for exactly one neuron.

We can define a neighborhood graph over the set of activa-
tion patterns where each node presents a pattern and we add
an edge between neighboring patterns.
Definition 3.5. (Activation patterns and the input space)
For an input x, the (full) activation pattern of x is Ax where

Axi (j) :=

{
+1 if zij ≥ 0,

−1 if zij < 0,
(3)

where the zij terms are defined according to (2). Conversely,
given an activation pattern A, the corresponding activation
region is RA := {x |Ax = A}.

Given an activation pattern A and some x ∈ RA, the corre-
sponding zi+1 terms for i ∈ [L] are given by

zi+1 =W iIAizi + bi (4)

where IAi is the diagonal ni × ni binary matrix such that

IAi

j,k :=

{
1 if j = k and Ai(j) = 1,

0 otherwise.

By letting

ci :=

i∑
j=0

 i∏
k=j+1

W kIAk

 bj





Hierarchical Verification for Adversarial Robustness

Figure 2. Left: the activation regions of a ReLU network with
one hidden layer forms a hyperplane arrangement. Middle: the
activation regions of a ReLU network with two hidden layers.
Note that within the regions defined by the previous layer, the lines
induce a hyperplane arrangement. Right: The neighborhood graph
of the regions.

we can expand Eq. (4) as

zi+1 =

 i∏
j=1

W jIAj

W 0x+ ci. (5)

Hence, each zi term and f(x) can be expressed as a linear
expression over x involving W i, IAi , and bi terms. This
also allows us to write RA in the form of linear inequalities
over x as a polyhedron

{x |Ai(j)zij ≥ 0 for i ∈ [L], j ∈ [ni]} (6)

Since the neural network function f is linear within each ac-
tivation region, each decision boundary is also linear within
each activation region. This allows us to efficiently compute
the classification decision boundaries.

The set of activation regions for a network with one hidden
layer corresponds to the regions of a hyperplane arrange-
ment (where each row of W 0 and the corresponding entry
in b0 defines a hyperplane). With each additional layer, we
take the regions corresponding to the previous layer and add
a hyperplane arrangement to each region. Thus, this leads to
a nested hyperplane arrangement. Figure 2 illustrates this
structure and the corresponding neighborhood graph.

In addition to full activation patterns, it is useful to consider
the patterns for all neurons up to a particular layer.

Definition 3.6. (Partial activation patterns and regions)
Given some l < L, an l-layer partial activation pattern
A = (A1, . . . , Al) is a collection of functions Ai : [ni] →
{−1,+1}. The corresponding partial activation region RA
is {x |Ai(j)zij ≥ 0 for i ∈ [L], j ∈ [ni]}.

The partial activation regions naturally induce a hierarchy
of regions. We can describe the relationship between the
regions in the different levels in the following terms:

Definition 3.7. For a l-layer activation pattern A =
(A1, . . . , Al), let parent(A) := (A1, . . . , Al−1). The terms
child and descendant are defined analogously.

Figure 3. The hierarchical structure induced by the partial activa-
tion regions. Each partial region is marked by a circle node. The
nodes of the same color represent the closest subregion within a
parent region to the input point x. For example, the upper left most
green nodes in levels 1 and 2 are connected.

Definition 3.8. Two l-layer partial activation patterns are
siblings if they share the same parent pattern. They are
neighboring siblings if they differ on exactly one neuron in
the l-th layer and agree everywhere else.

We can use Defintion 3.7 and 3.8 to define a hierarchical
search graph with L+ 1 levels. The nodes in the l-th level
represent the l-layer activation patterns. We connect two
activation patterns in the same level if they are neighboring
siblings. We connect a pattern A to parent(A) if RA is
the region closest to the input point x out of all its siblings.
We introduce a single node in the level 0 and connect it to
the first-layer activation pattern that contains x. Figure 3
illustrates this hierarchy of activation regions and the cor-
responding hierarchical search graph. In Sections 4 and 5,
we describe how to leverage this hierarchical structure to
design efficient algorithms for verification.

4. Exploring Activation Regions
Geometrically

In this section, we first describe the GeoCert algorithm (Jor-
dan et al., 2019) that provides a method for navigating the
activation regions in order of increasing distance from the
input. We subsequently consider the hierarchy of partial
regions and describe LayerCert-Basic that leverages the ge-
ometric structure to provably reduce the number and size of
convex programs compared to GeoCert. We then introduce
the full LayerCert framework in Section 5.

4.1. Prior Work: GeoCert

GeoCert performs a process akin to breadth-first search over
the neighbourhood graph (see Figure 2). In each iteration,
GeoCert selects the activation region corresponding to the
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Algorithm 1 GeoCert
1: Input: x, y (label of x), U (upper bound)
2: Ax ← activation pattern of x
3: Q← empty priority queue
4: Q.push((0, Ax))
5: S ← ∅
6: while Q 6= ∅ do
7: (d,A)← Q.pop()
8: if A ∈ S then
9: continue

10: S ← S ∪ {A′}
11: if U ≤ d then
12: return U
13: U ← min(decision bound(A, x, y), U)
14: for A′ ∈ N(A) \ S do
15: if Face(A,A′) is nonempty then
16: d′ ← priority(x,Face(A,A′))
17: Q.push((d′, A′))

closest unexplored node neighbouring an explored node and
then computes the distance to all regions neighbouring the
selected region.

We provide a formal description of GeoCert in Algorithm 1
and demonstrate an iteration of the algorithm in Figure 4.
Setting the input U term to a radius r solves the robust-
ness verification problem for that radius, while setting it
sufficiently high measures the robustness (i.e., Problem (1)).

We describe the subroutines in detail below.

Measuring the distance to a distance boundary re-
stricted to a region. The subroutine decision bound
with inputs A, x, y solves the problem

min
v∈RA

‖x− v‖p s.t. fy(v)− fj(v) = 0 for j 6= y (7)

or returns∞ if infeasible. This is equivalent to computing
the `p projection of x onto the respective set. We can use
algorithms specifically designed for projection onto sets
such as Dykstra’s method (Boyle & Dykstra, 1986). We
can also use generic convex optimization solvers to handle
a wider range of priority functions.

Computing the priority function. From (6), we can
write each activation region RA as a polyhedron
{x | Ai(j)zij ≥ 0 for i ∈ [L], j ∈ [ni]}. A neighbour-
ing region R′A that differs only on the a-th neuron on the
b-th layer will intersect with RA within the hyperplane
H = {x | zba ≥ 0}. We name the set RA ∩H = R′A ∩H
as Face(A,A′) since this set is a face of both A and A′. As
with RA and (6), we can write Face(A,A′) as

{x |Ai(j)zij ≥ 0 for i ∈ [L], j ∈ [ni], z
a
b = 0} (8)

Figure 4. One iteration of GeoCert . The ball represents a level set
of the priority function and the blue line the set of boundary faces
of the explored regions. After popping the nearest unexplored acti-
vation region off a priority queue, GeoCert computes the distance
of previously unseen faces in that region (marked in red).

where zij can be expressed in terms of the x variables using
the expression in (5). Given some function q : Rn × Rn →
R+, the subroutine priority with inputs x,Face(A,A′)
solves the following optimization problem:

min
v∈Face(A,A′)

q(x, v). (9)

For `p-robustness, a natural choice of q is the `p distance
function. Jordan et al. (2019) also propose an alternative
variant of GeoCert where they incorporate an additional
miny 6=j

fy(v)−fj(v)
L term in the priority function, where L

denotes an upper bound on the Lipschitz constant. This
makes the priority function nonconvex. We will refer to the
`p priority variant of GeoCert as just GeoCert and specifi-
cally use the term GeoCert-Lip for the Lipschitz variant.

4.2. Our Approach – LayerCert

Instead of exploring the neighborhood graph of full acti-
vation regions, we develop an algorithm that makes use of
the nested hyperplane arrangement and the graph induced
by it. See Definition 3.7 and Figure 3 for a description of
this graph. We first give a description of a basic form of
LayerCert in Algorithm 2, followed by theoretical results
about this method.

In each iteration, LayerCert processes the next nearest par-
tial activation pattern by computing the distances to all
sibling patterns to the queue. This is in contrast to GeoCert
which computes the distance to all neighbouring patterns of
the next nearest full activation pattern.

The new subroutine in LayerCert-Basic is next layer,
which takes an l-layer activation pattern A and an input
vector v and returns the l + 1 layer activation pattern that is
a child of A and contains v:

next layer(A, v) :=(A1, . . . , Al, A
v
l+1)

where Av is the full activation pattern of v (Definition 3.5).
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Algorithm 2 LayerCert-Basic
1: Input: x, y (label of x), U (upper bound)
2: Ax ← activation pattern of x at first layer
3: Q← empty priority queue
4: Q.push((0, Ax, x))
5: S ← ∅
6: while Q 6= ∅ do
7: (d,A, v)← Q.pop()
8: if U ≤ d then
9: return U

10: if A is a full activation pattern then
11: U ← min(decision bound(A, x, y), U)
12: else
13: Q.push((d,next layer(A, v), v))

14: for A′ ∈ Ncurrent layer(A) \ S do
15: if Face(A,A′) is nonempty then
16: v′, d′ ← priority(x,Face(A,A′))
17: Q.push((d′, A′, v′))
18: S ← S ∪ {A′}

We prove in the appendix that when the priority function
is a convex distance function, LayerCert-Basic visits full
activation patterns in ascending order of distance, which
implies that it returns the correct solution.

Theorem 4.1. (Correctness of LayerCert-Basic) If the pri-
ority function used is a convex distance function, LayerCert
processes full activation patterns in ascending order of dis-
tance and returns the distance of the closest point with a
different class from x.

As a corollary of Theorem 4.1, LayerCert-Basic and Geo-
Cert equipped with the same priority function visit the acti-
vation patterns in the same order (allowing for permutations
of patterns with the exact same priority).

The primary difference in computational difficulty between
the two methods is that the number and complexity of
priority computations is reduced in LayerCert. There
are three main reasons for this. First, LayerCert-Basic adds
A to the set of seen patterns S once we have processed any
neighbour of A. Hence, we only do a single priority
computation for each A. This is not necessarily the case
in GeoCert. Secondly, the convex programs correspond-
ing to nodes further up the hierarchy have less constraints
since they only need to consider all neurons to the respec-
tive layer. Finally, in LayerCert-Basic we do not need to
compute priority between two l-layer partial activation
patterns that differ on exactly a single neuron that is not
in layer l (i.e. these patterns are not siblings). GeoCert
in contrast computes the priority between any two neigh-
bours as long as the corresponding Face is non-empty. This
allows us to amortize the number of convex programs to
compute for a single full activation region in GeoCert over

Algorithm 3 LayerCert Framework
1: Input: x, y (label of x), U (upper bound)
2: d,A, v,M ← restriction(x, U)
3: Q← empty priority queue
4: Q.push((d,A, v))
5: S ← ∅
6: while Q 6= ∅ do
7: (d,A, v)← Q.pop()
8: if U ≤ d then
9: return U

10: if A is a full activation pattern then
11: U ← min(decision bound(A, x, y), U)
12: else
13: if contains db(A, x, U) = ‘maybe’ then
14: Q.push((d,next layer(A, v), v))

15: for A′ ∈ Ncurrent layer(A) \ S do
16: if Face(A,A′) ∩M is nonempty then
17: v′, d′ ← priority(x,Face(A,A′) ∩M)
18: Q.push((d′, A′, v′))
19: S ← S ∪ {A′}

multiple levels in LayerCert — Consider a full activation
pattern A = (A1, . . . , AL) and the set of all ancestor pat-
terns B1, . . . , BL−1 where Bi := (A1, . . . , Ai). We have∑L
i ni potential neighbours for GeoCert when processing

pattern A. For LayerCert-Basic, we have up to ni siblings
when processing each Bi, for a total of

∑L
i ni patterns

when processing B1, . . . , BL−1, A.

These facts can be used to prove our main theoretical result
about the complexity of LayerCert-Basic. The proof of these
and the main theorem are in the appendix.

Theorem 4.2. (Complexity of LayerCert-Basic) Given an
input x, suppose the distance to the nearest adversary re-
turned by LayerCert/GeoCert is not equal to the distance
of any activation region from x. Suppose we formulate the
convex problems associated with decision bound and
next layer using Formulations (6) and (8). We can con-
struct an injective mapping from the set of convex programs
solved by LayerCert to the corresponding set in GeoCert
such that the constraints in the LayerCert program is a
subset of those in the corresponding GeoCert program.

5. The LayerCert Framework
We now describe how our hierarchical approach is amenable
to the use of convex relaxation-based lower bounds to prune
the search space. For simplicity, in this section we will
assume that we are performing verification with respect to
a targeted class y′. The general LayerCert framework is
presented in Algorithm 3. The two new subroutines in the
algorithm are contains db and restriction.
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Let Bp,r(x) denote the `p-ball of radius r around x. The
subroutine contains db(A, x, r) returns ‘false’ when
RA ∩ Bp,r(x) is guaranteed not to intersect with a deci-
sion boundary. This means that we can remove A and all
its descendants from consideration. Otherwise, it returns
‘maybe’ and we proceed on to the next level.

The routine restriction(x, r) explicitly computes a
convex set M that is a superset of the part of the deci-
sion boundary contained in Bp,r(x). This both restricts the
search directions we need to consider and also allows us to
warm start the algorithm by projecting the initial point onto
this set. In the following we describe some possible choices
for these subroutines. In the appendix we discuss a version
of LayerCert that recursively applies a modified version of
restriction to aggressively prune the search space.

Pruning partial activation regions. We can use incom-
plete verifiers (see Section 2 for references) to check if the
region Bp,U (x) might contain a decision boundary. These
methods work by implicitly or explicitly computing some
overapproximation of the set

{fy(v)− fy′(v) | v ∈ Bp,U (x)}. (10)

If all values in (10) are strictly positive, then we know that
the decision boundary cannot be in RA ∩Bp,U (x).

Many incomplete verifiers work by constructing convex re-
laxations of each nonlinear ReLU function. If a neuron is
guaranteed to be always on or always off over all points in
the region of interest, we can use this to tighten the convex
relaxation. This allows us to incorporate information from
the current partial activation region into incomplete verifiers.
For our experiments, we choose to use the efficient interval
arithmetic approach (first applied in the context of neural
network verification by Xiang et al. (2018)). Below we de-
scribe a version of the method that incorporates information
about partial regions:

X0 := Bp,U (x),

Zi :=W i−1Xi−1 + bi−1 for i ∈ [L+ 1],

Xi := relu(BoxAi(Z
i)) for i ∈ [L],

where BoxAi(Z
i) is the set of vectors v satisfying

min
w∈Zi

wj ≤ vj ≤ max
w∈Zi

wj if Ai(j) = +1,

vj = 0 if Ai(j) = −1.

We can use the fact that f(Bp,U (x)∩RA) ⊆ ZL+1 to check
if we need to explore the descendants of A.

Warm starts via restricting search area. Certain incom-
plete verifiers implicitly generate enough information to
allow us to efficiently compute a convex set M that contains

Figure 5. Computing a set that contains the decision boundary and
warm starting. The red shaded region corresponds to the region
that contains any potential decision boundary. By identifying this
region, we can warm start the algorithm by initializing the search
at the closest point in the red region.

the decision boundary. We will describe how to do this for
verifiers based on simple linear underestimates of fy − fy′
in the ball Bp,U (x) such as Fast-Lin (Weng et al., 2018) and
CROWN (Zhang et al., 2018). These methods construct a
linear function g ≤ fy−fy′ by propagating linear and upper
bounds of the ReLUs through the layers. The resulting set
{v | g(v) ≤ 0} is a halfspace that we can efficiently project
onto. Figure 5 illustrates this concept. For the purposes
of this paper we use the lower bound from the CROWN
verifier (Zhang et al., 2018) to compute a halfspace M .

Once we have computed M , we can use it throughout our
algorithm. In particular, if a face does not overlap with M ,
we can remove it from consideration in our algorithm. We
discuss this in more detail in the appendix.

Instead of just using linear approximations, we can also
use tighter approximations such as the linear programming
relaxation that models single ReLUs tightly (see for example
Salman et al. (2019)) These result in a smaller convex set
M that is still guaranteed to contain the decision boundary
but overlaps with less regions, resulting in a reduction in
the search space. The drawback of using such methods
is that the representation of M can get significantly more
complicated, which in turn increases the cost of solving
Problems (7) and (9).

6. Experimental Evaluation
We use an experimental setup similar to the one used in
Jordan et al. (2019). The two experiments presented here
are taken directly from them, except for an additional neural
network in the first and a larger neural network in the second.
Additional results are presented in the appendix.

We consider a superset of the networks used in GeoCert. The
fully connected ReLU networks we use in the paper have
two to five hidden layers, with between 10 to 50 neurons
in each layer. As with Jordan et al. (2019), we train our
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Table 1. Average number of convex programs and running time over 100 inputs for 12 different networks for `∞-distance. The green
shaded entries indicate the best performing method for each neural network under each metric. The gray shaded entries indicates the
algorithm timed out before an exact solution to Problem (1) could be found for at least one input. Whenever a timeout occurs, we use a
time of 1800 seconds in its place, which leads to an underestimate of the true time.

networks to classify the digits 1 and 7 in the MNIST dataset
and used the same training parameters. We consider `∞
distance here and also `2 distance in the appendix.

Methods evaluated. We test the following variants of
GeoCert and LayerCert. All variants of LayerCert use an `p
distance priority function.

• GeoCert with `p distance priority function.

• GeoCert-Lip: GeoCert with ‖x − v‖p +

miny 6=j
fy(v)−fj(v)

L priority function, where L
denotes an upper bound on the Lipschitz constant
found by the Fast-Lip method (Weng et al., 2018).

• LayerCert-Basic.

• LayerCert with interval arithmetic pruning.

• LayerCert with warmstart in the initial iteration using
CROWN (Zhang et al., 2018) to underestimate fy− fj .

• LayerCert-Both: with both interval arithmetic pruning
and CROWN-based warm start.

We initialize each algorithm with a target verification radius
of 0.3. Each method terminates when we have exactly com-
puted the answer to (1) or when it has determined that the
lower bound is at least the radius.
Implementation details. Our implementation of GeoCert
(Jordan et al., 2019) starts with the original code provided by
the authors at https://github.com/revbucket/
geometric-certificates and modifies it to make

use of open-source convex programming solvers to enable
further research to a wider community, as the original code
uses Gurobi (Gurobi Optimization, 2019), which is a com-
mercial software. We use CVXPY (Diamond & Boyd, 2016)
to model the convex programs and the open-source ECOS
solver (Domahidi et al., 2013) as the main solver. Since
ECOS can occasionally fail, we also use OSQP (Stellato
et al., 2017) and SCS (O’donoghue et al., 2016) as backup
solvers. In our tests, ECOS and OSQP are significantly
faster than SCS which we use only as a last resort.

We implemented LayerCert in Python using the packages
numpy, PyTorch, numba (for the lower bounding methods),
and the aforementioned packages for solving convex pro-
grams. Our experiments were performed on an Ubuntu
18.04 server on an Intel Xeon Gold 6136 CPU with 12 cores.
We restricted the algorithms to use only a single core and do
not allow the use of the GPU. All settings, external packages,
and compute are identical for all the methods compared.

6.1. Exact measurement experiments.

We randomly picked 100 ‘1’s and ‘7’s from MNIST and
collected the wall-clock time and number of linear programs
solved. Since some instances can take a very long time to
solve fully, we set a time limit of 1800s for each instance.

Averaged metrics. We measure (1) the average of the
wall-clock time taken to measure the distances and (2) the
average of number of linear programs solved. The first
metric is what matters in practice but is heavily dependent

https://github.com/revbucket/geometric-certificates
https://github.com/revbucket/geometric-certificates
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Figure 6. Performance profiles comparing LayerCert-Both (orange, ‘x’ markers) with GeoCert-Lip (blue, dotted, circle markers) over 12
different networks using `∞ norm. Marks are placed for every 10 input points.

on the machine and the solver used, whereas the second
metric provides a system-independent proxy for time. We
present the results in Table 1. The basic GeoCert method is
consistently outperformed in both metrics by our methods,
while GeoCert-Lip always improves on GeoCert in terms of
number of LPs and often in terms of run time. The method
with the fastest run time is always one of the three LayerCert
variants that use lower bounds. With the exception of the
3× [50] network where all methods timed out, the method
with the least number of convex programs solved is always
LayerCert-Both. Plain LayerCert always outperforms both
GeoCert methods in terms of timing, while it often outper-
forms GeoCert-Lip in number of LPs. In some cases only
one of the two lower bounding methods helps significantly,
though the use of both methods at most includes a small
overhead. Thus, we recommend in general using both.

Performance profiles. Performance profiles (Dolan &
Moré, 2002) are a commonly-used technique to benchmark
the performance of different optimization methods over sets
of instances. A performance profile is a plot of a cumulative
distribution, where the x-axis denotes the amount of time
each method is allowed to run for, and the y-axis the number
of problems that can be solved within that time period. If
the performance profile of a method is consistently above
the performance profile of another method, it indicates that

the former method is always able to solve more problems
regardless of the time limit. We illustrate the performance
profiles for GeoCert-Lip and LayerCert-Both in Figure 6.
LayerCert-Both consistently dominates GeoCert-Lip.

7. Conclusion
We have developed a novel hierarchical framework Lay-
erCert for exact robustness verification that leverages the
nested hyperplane arrangement structure of ReLU networks.
We prove that a basic version of LayerCert is able to reduce
the number and size of the convex programs over GeoCert
using the equivalent priority functions. We showed that Lay-
erCert is amenable to the use of lower bounding methods
that use convex relaxations to both prune and warm start
the algorithm. Our experiments showed that LayerCert can
significantly outperform variants of GeoCert.
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