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Abstract
Entropy is ubiquitous in machine learning, but it
is in general intractable to compute the entropy of
the distribution of an arbitrary continuous random
variable. In this paper, we propose the amortized
residual denoising autoencoder (AR-DAE) to ap-
proximate the gradient of the log density function,
which can be used to estimate the gradient of
entropy. Amortization allows us to significantly
reduce the error of the gradient approximator by
approaching asymptotic optimality of a regular
DAE, in which case the estimation is in theory
unbiased. We conduct theoretical and experimen-
tal analyses on the approximation error of the
proposed method, as well as extensive studies on
heuristics to ensure its robustness. Finally, using
the proposed gradient approximator to estimate
the gradient of entropy, we demonstrate state-of-
the-art performance on density estimation with
variational autoencoders and continuous control
with soft actor-critic.

1. Introduction
Entropy is an information theoretic measurement of uncer-
tainty that has found many applications in machine learning.
For example, it can be used to incentivize exploration in
reinforcement learning (RL) (Haarnoja et al., 2017; 2018);
prevent mode-collapse of generative adversarial networks
(GANs) (Balaji et al., 2019; Dieng et al., 2019); and cal-
ibrate the uncertainty of the variational distribution in ap-
proximate Bayesian inference. However, it is in general
intractable to compute the entropy of an arbitrary random
variable.

In most applications, one actually does not care about the
quantity of entropy itself, but rather how to manipulate and
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control this quantity as part of the optimization objective. In
light of this, we propose to approximately estimate the gra-
dient of entropy so as to maximize or minimize the entropy
of a data sampler. More concretely, we approximate the
gradient of the log probability density function of the data
sampler. This is sufficient since the gradient of its entropy
can be shown to be the expected value of the path deriva-
tive (Roeder et al., 2017). We can then plug in a gradient
approximator to enable stochastic backpropagation.

We propose to use the denoising autoencoder (DAE, Vin-
cent et al. (2008)) to approximate the gradient of the log
density function, which is also known as denoising score
matching (Vincent, 2011). It has been shown that the op-
timal reconstruction function of the DAE converges to the
gradient of the log density as the noise level σ approaches
zero (Alain & Bengio, 2014). In fact, such an approach
has been successfully applied to recover the gradient field
of the density function of high-dimensional data such as
natural images (Song & Ermon, 2019), which convincingly
shows DAEs can accurately approximate the gradient. How-
ever, in the case of entropy maximization (or minimization),
the non-stationarity of the sampler’s distribution poses a
problem for optimization. On the one hand, the log density
gradient is recovered only asymptotically as σ → 0. On the
other hand, the training signal vanishes while a smaller noise
perturbation is applied, which makes it hard to reduce the
approximation error due to suboptimal optimization. The
fact that the sampler’s distribution is changing makes it even
harder to select a noise level that is sufficiently small. Our
work aims at resolving this no-win situation.

In this work, we propose the amortized residual denoising
autoencoder (AR-DAE), which is a conditional DAE of a
residual form that takes in σ as input. We condition the
DAE on σ = 0 at inference time to approximate the log den-
sity gradient while sampling non-zero σ at training, which
allows us to train with σ sampled from a distribution that
covers a wide range of values. If AR-DAE is optimal, we
expect to continuously generalize to σ = 0 to recover the
log density gradient, which can be used as an unbiased esti-
mate of the entropy gradient. We perform ablation studies
on the approximation error using a DAE, and show that
our method provides significantly more accurate approxi-
mation than the baselines. Finally, we apply our method to
improve distribution-free inference for variational autoen-
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Figure 1. (a) Entropy gradient wrt parameters of an invertible gen-
erator function. (b) Approximate entropy gradient using the pro-
posed method.

coders (Kingma & Welling, 2014; Rezende et al., 2014b)
and soft actor-critic (Haarnoja et al., 2018) for continuous
control problems in reinforcement learning. As these tasks
are non-stationary, amortized (conditional), and highly struc-
tured, it demonstrates AR-DAE can robustly and accurately
approximate log density gradient of non-trivial distributions
given limited computational budgets.

2. Approximate entropy gradient estimation
2.1. Background on tractability of entropy

An implicit density model is characterized by a data gen-
eration process (Mohamed & Lakshminarayanan, 2016).
The simplest form of an implicit density model contains a
prior random variable z ∼ p(z), and a generator function
g : z 7→ x. The likelihood of a particular realization of x is
implied by the pushforward of p(z) through the mapping g.

Unlike an explicit density model, an implicit density model
does not require a carefully designed parameterization for
the density to be explicitly defined, allowing it to approx-
imate arbitrary data generation process more easily. This
comes at a price, though, since the density function of the
implicit model cannot be easily computed, which makes it
hard to approximate its entropy using Monte Carlo methods.

2.2. Denoising entropy gradient estimator

Let z and g be defined as above, and let θ be the parameters
of the mapping g (denoted gθ). Most of the time, we are
interested in maximizing (or minimizing) the entropy of the
implicit distribution of x = gθ(z). For example, when the
mapping g is a bijection, the density of x = gθ(z) can be de-
composed using the change-of-variable density formula, so
controlling the entropy of x amounts to controlling the log-
determinant of the Jacobian of gθ (Rezende & Mohamed,
2015), as illustrated in Figure 1-(a). This allows us to es-
timate both the entropy and its gradient. However, for an

iterative optimization algorithm such as (stochastic) gradient
descent, which is commonly employed in machine learning,
it is sufficient to compute the gradient of the entropy rather
than the entropy itself.

Following Roeder et al. (2017), we can rewrite the entropy
of x by changing the variable and neglecting the score func-
tion which is 0 in expectation to get

∇θH(pg(x)) = −Ez
[
[∇x log pg(x)|x=gθ(z)]

ᵀJθgθ(z)
]
,

(1)

where Jθgθ(z) is the Jacobian matrix of the random sample
x = gθ(z) wrt to the sampler’s parameters θ. See Appendix
A for the detailed derivation. We emphasize that this formu-
lation is more general as it does not require g to be bijective.

Equation (1) tells us that we can obtain an unbiased estimate
of the entropy by drawing a sample of the integrand, which
is the path derivative of z. The integrand requires evaluating
the sample x = gθ(z) under the gradient of its log density
∇x log pg(x). As log pg(x) is usually intractable or simply
not available, we directly approximate its gradient using
a black box function. As long as we can provide a good
enough approximation to the gradient of the log density and
treat it as the incoming unit in the backward differentiation
(see Figure 1-(b)), the resulting estimation of the entropy
gradient is approximately unbiased.

In this work, we propose to approximate the gradient of
the log density using a denoising autoencoder (DAE, Vin-
cent et al. (2008)). A DAE is trained by minimizing the
reconstruction loss d of an autoencoder r with a randomly
perturbed input

LDAE(r) = E[d(x, r(x+ ε))],

where the expectation is taken over the random perturbation
ε and data x. Alain & Bengio (2014) showed that if d is
the L2 loss and ε is a centered isotropic Gaussian random
variable with variance σ2, then under some mild regular-
ity condition on log pg the optimal reconstruction function
satisfies

r∗(x) = x+ σ2∇x log pg(x) + o(σ2),

as σ2 → 0. That is, for sufficiently small σ, we can approx-
imate the gradient of the log density using the black box
function fr(x) := r(x)−x

σ2 assuming r ≈ r∗.

3. Error analysis of∇x log pg(x) ≈ fr(x)

Naively using fr(x) to estimate the gradient of the entropy
is problematic. First of all, the division form of fr can lead
to numerical instability and magnify the error of approxima-
tion. This is because when the noise perturbation σ is small,
r(x) will be very close to x and thus both the numerator and
the denominator of fr are close to zero.
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Second, using the triangle inequality, we can decompose the
error of the approximation ∇x log pg(x) ≈ fr(x) into

||∇x log pg(x)− fr(x)|| ≤
||∇x log pg(x)− fr∗(x)||︸ ︷︷ ︸

asymp error

+ ||fr∗(x)− fr(x)||.

The first error is incurred by using the optimal DAE to
approximate ∇x log pg(x), which vanishes when σ → 0.
We refer to it as the asymptotic error. The second term is
the difference between the optimal DAE and the “current”
reconstruction function. Since we use a parametric family
of functions (denoted by F) to approximate fr∗ , it can be
further bounded by

||fr∗(x)− fr(x)|| ≤
||fr∗(x)− fr∗F (x)||︸ ︷︷ ︸

param error

+ ||fr∗F (x)− fr(x)||︸ ︷︷ ︸
optim error

,

where r∗F := arg minr∈F LDAE(r) is the optimal reconstruc-
tion function within the family F . The first term measures
how closely the family of functions F approximates the op-
timal DAE, and is referred to as the parameterization error.
The second term reflects the suboptimality in optimizing
r. It can be significant especially when the distribution of
x is non-stationary, in which case r needs to be constantly
adapted. We refer to this last error term as the optimiza-
tion error. As we use a neural network to parameterize
r, the parameterization error can be reduced by increas-
ing the capacity of the network. The optimization error is
subject to the variance of the noise σ2 (relative to the dis-
tribution of x), as it affects the magnitude of the gradient
signal E[∇||r(x+ ε)− x||2]. This will make it hard to de-
sign a fixed training procedure for r as different values of σ
requires different optimization specifications to tackle the
optimization error.

4. Achieving asymptotic optimality
In this section, we propose the amortized residual
DAE (AR-DAE), an improved method to approximate
∇x log pg(x) that is designed to resolve the numerical insta-
bility issue and reduce the error of approximation.

4.1. Amortized residual DAE

AR-DAE (denoted far) is a DAE of residual form condi-
tioned on the magnitude of the injected noise, minimizing
the following optimization objective.

Lar (far) = E
x∼p(x)
u∼N(0,I)

σ∼N(0,δ2)

[
‖u+ σfar(x+ σu;σ)‖2

]
. (2)

This objective involves three modifications to the regular
training and parameterization of a DAE: residual connection,
loss rescaling, and scale conditioning for amortization.

Residual form First, we consider a residual form of DAE
(up to a scaling factor): let r(x) = σ2far(x) + x, then
∇x log pg(x) is approximately equal to

r(x)− x
σ2

=
σ2far(x) + x− x

σ2
= far .

That is, this reparameterization allows far to directly ap-
proximate the gradient, avoiding the division that can cause
numerical instability. The residual form also has an obvious
benefit of a higher capacity, as it allows the network to rep-
resent an identity mapping more easily, which is especially
important when the reconstruction function is close to an
identity map for small values of σ (He et al., 2016).

Loss rescaling To prevent the gradient signal from vanish-
ing to 0 too fast when σ is arbitrarily small, we rescale the
loss LDAE by a factor of 1/σ, and since we can decouple the
noise level from the isotropic Gaussian noise into ε = σu
for standard Gaussian u, the rescaled loss can be written as
E[||σfar(x+ σu) + u||2].

We summarize the properties of the optimal DAE of the
rescaled residual form in the following propositions:

Proposition 1. Let x and u be distributed by p(x) and
N (0, I). For σ 6= 0, the minimizer of the functional
Ex,u[||u+σf(x+σu)||2] is almost everywhere determined
by

f∗(x;σ) =
−Eu[p(x− σu)u]

σ Eu[p(x− σu)]
.

Furthermore, if p(x) and its gradient are both bounded, f∗

is continuous wrt σ for all σ ∈ R\0 and limσ→0 f
∗(x;σ) =

∇x log pg(x).

The above proposition studies the asymptotic behaviour of
the optimal f∗ar as σ → 0. Below, we show that under
the same condition, f∗ar approaches the gradient of the log
density function of a Gaussian distribution centered at the
expected value of x ∼ p(x) as σ is arbitrarily large.

Proposition 2. limσ→∞
f∗(x;σ)

∇x logN (x;Ep[X],σ2I) → 1.

Scale conditioning Intuitively, with larger σ values, the
perturbed data x+ σu will more likely be “off-manifold”,
which makes it easy for the reconstruction function to point
back to where most of the probability mass of the distribu-
tion of x resides. Indeed, as Proposition 2 predicts, with
larger σ the optimal f∗ar tends to point to the expected value
Ep[X], which is shown in Figure 2-left. With smaller values
of σ, training far becomes harder, as one has to predict the
vector−u from x+σu (i.e. treating x as noise and trying to
recover u). Formally, the training signal (∆) has a decaying
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Figure 2. Residual DAE trained with a large (left) vs small (right)
σ value. Red cross indicates the mean of the swissroll. The arrows
indicate the approximate gradient directions.

rate of O(σ2) for small σ values, because

Eu[∆] := Eu[∇||u+ σf(x+ σu)||2]

= 2σ2∇
(
tr(∇xf(x)) +

1

2
||f(x)||2

)
+ o(σ2),

where the first term is proportional to the stochastic gradient
of the implicit score matching (Hyvärinen, 2005). That is,
with smaller σ values, minimizing the rescaled loss is equiv-
alent to score matching, up to a diminishing scaling factor.
Moreover, the variance of the gradient signal Var(∆) also
has a quadratic rateO(σ2), giving rise to a decreasing signal-
to-noise ratio (SNR) E[∆]/

√
Var(∆) = O(σ), which is an

obstacle for stochastic optimization (Shalev-Shwartz et al.,
2017). See Appendix C for the SNR analysis.

In order to leverage the asymptotic optimality of the gradi-
ent approximation as σ → 0 (Figure 2-right), we propose
to train multiple (essentially infinitely many) models with
different σ’s at the same time, hoping to leverage the benefit
of training a large-σ model while training a model with a
smaller σ.

More concretely, we condition far on the scaling factor σ, so
that far can "generalize" to the limiting behaviour of f∗ar as
σ → 0 to reduce the asymptotic error. Note that we cannot
simply take σ to be zero, since setting σ = 0 would result
in either learning an identity function for a regular DAE or
learning an arbitrary function for the rescaled residual DAE
(as the square loss would be independent of the gradient
approximator).

The scale-conditional gradient approximator far(x;σ) will
be used to approximate ∇x log pg(x) by setting σ = 0
during inference, while σ is never zero at training. This can
be done by considering a distribution of σ, which places
zero probability to the event {σ = 0}; e.g. a uniform density
between [0, δ] for some δ > 0. The issue of having a non-
negative support for the distribution of σ is that we need to
rely on far to extrapolate to 0, but neural networks usually
perform poorly at extrapolation. This can be resolved by
having a symmetric distribution such as centered Gaussian

Figure 3. Approximating log density gradient of 1-D MoG. AR-
DAE: the approximation error of the proposed method. f∗ar: the
optimal DAE. resDAE: a DAE of residual form (as well as loss
rescaling). regDAE: a regular DAE.

with variance δ2 or uniform density between [−δ, δ]; owing
to the the symmetry of the noise distribution N(u; 0, I), we
can mirror the scale across zero without changing the loss:

Eu
[
‖u+ σf(x+ σu)‖2

]
= E

[
‖(−u) + σf(x+ σ(−u))‖2

]
= E

[
‖u+ (−σ)f(x+ (−σ)u)‖2

]
.

Furthermore, Proposition 1 implies a good approximation
to f∗ar(x, σ

′) would be close to f∗ar(x, σ) if σ′ is sufficiently
close to σ. We suspect this might help to reduce the opti-
mization error of AR-DAE, since the continuity of both
far and f∗ar implies that far(x, σ) only needs to refine
far(x, σ

′) slightly if the latter already approximates the cur-
vature of f∗ar(x, σ

′) well enough. Then by varying different
σ values, the conditional DAE is essentially interpolating
between the gradient field of the log density function of in-
terest and that of a Gaussian with the same expected value.

4.2. Approximation error

To study the approximation error with different variants of
the proposed method, we consider a 1-dimensional mixture
of Gaussians (MoG) with two equally weighted Gaussians
centered at 2 and -2, and with a standard deviation of 0.5, as
this simple distribution has a non-linear gradient function
and an analytical form of the optimal gradient approximator
f∗. See Appendix D.1 for the formula and an illustration of
approximation with f∗ with different σ values.

We let p be the density function of the MoG just described.
For a given gradient approximator f , we estimate the ex-
pected error Ep[|∇x log p(x)−f |] using 1000 i.i.d. samples
of x ∼ p. The results are presented in Figure 3. The curve
of the expected error of the optimal f∗ar shows the asymp-
totic error indeed shrinks to 0 as σ → 0, and it serves as a
theoretical lower bound on the overall approximation error.

Our ablation includes two steps of increments. First, modi-
fying the regular DAE (regDAE) to be of the residual form
(with loss rescaling, resDAE) largely reduces the param-
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eterization error and optimization error combined, as we
use the same architecture for the reconstruction function of
regDAE and for the residual function of resDAE. We also
experiment with annealing the σ values (as opposed to train-
ing each model individually): we take the model trained
with a larger σ to initialize the network that will be trained
with a slightly smaller σ. Annealing significantly reduces
the error and thus validates the continuity of the optimal
f∗ar. All four curves have a jump in the error when σ gets
sufficiently small, indicating the difficulty of optimization
when the training signal diminishes. This leads us to our
second increment: amortization of training (i.e. AR-DAE).
We see that not only does the error of AR-DAE decrease
and transition more smoothly as σ gets closer to 0, but it
also significantly outperforms the optimal f∗ar for large σ’s.
We hypothesize this is due to the choice of the distribution
over σ; N (0, δ2) concentrates around 0, which biases the
training of far to focus more on smaller values of σ.

5. Related Works
Denoising autoencoders were originally introduced to learn
useful representations for deep networks by Vincent et al.
(2008; 2010). It was later on noticed by Vincent (2011) that
the loss function of the residual form of DAE is equal to the
expected quadratic error ||f−∇x log pσ||2, where pσ(x′) =∫
p(x)N (x′;x, σ2I)dx is the marginal distribution of the

perturbed data, to which the author refers as denoising score
matching. Minimizing expected quadratic error of this form
is in general known as score matching (Hyvärinen, 2005),
where ∇x log p is referred to as the score 1 of the density p.
And it is clear now when we convolve the data distribution
with a smaller amount of noise, the residual function f tends
to approximate ∇x log p(x) better. This is formalized by
Alain & Bengio (2014) as the limiting case of the optimal
DAE. Saremi et al. (2018); Saremi & Hyvarinen (2019)
propose to use the residual and gradient parameterizations
to train a deep energy model with denoising score matching.

As a reformulation of score matching, instead of explicitly
minimizing the expected square error of the score, the origi-
nal work of Hyvärinen (2005) proposes the Implicit score
matching and minimizes

Ep
[

1

2
||f(x)||2 + tr(∇xf(x))

]
. (3)

Song et al. (2019) proposed a stochastic algorithm called the
sliced score matching to estimate the trace of the Jacobian,
which reduces the computational cost from O(d2

x) to O(dx)
(where dx is the dimensionality of x). It was later noted by
the same author that the computational cost of the sliced

1This is not to be confused with the score (or informant) in
statistics, which is the gradient of the log likelihood function wrt
the parameters.
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1
Z
e−U(x) Aux
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hierarchical

AR-DAE
implicit

Figure 4. Fitting energy functions. First column: target energy
functions. Second column: auxiliary variational method for hier-
archical model. Third column: hierarchical model trained with
AR-DAE. Last column: implicit model trained with AR-DAE.

score matching is still much higher than that of the denoising
score matching (Song & Ermon, 2019).

Most similar to our work are Song & Ermon (2019) and
Bigdeli et al. (2020). Song & Ermon (2019) propose to
learn the score function of a data distribution, and propose
to sample from the corresponding distribution of the learned
score function using Langevin dynamics. They also propose
a conditional DAE trained with a sequence of σ’s in decreas-
ing order, and anneal the potential energy for the Langevin
dynamics accordingly to tackle the mixing problem of the
Markov chain. Bigdeli et al. (2020) propose to match the
score function of the data distribution and that of an implicit
sampler. As the resulting algorithm amounts to minimizing
the reverse KL divergence, their proposal can be seen as a
combination of Song & Ermon (2019) and our work.

Implicit density models are commonly seen in the context
of likelihood-free inference (Mescheder et al., 2017; Tran
et al., 2017; Li et al., 2017; Huszár, 2017). Statistics of an
implicit distribution are usually intractable, but there has
been an increasing interest in approximately estimating the
gradient of the statistics, such as the entropy (Li & Turner,
2018; Shi et al., 2018) and the mutual information (Wen
et al., 2020).

6. More Analyses and Experiments
6.1. Energy function fitting

In Section 4.2, we have analyzed the error of approximat-
ing the gradient of the log-density function in the context
of a fixed distribution. In reality, we usually optimize the
distribution iteratively, and once the distribution is updated,
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Figure 5. Density estimation with VAE on 5× 5 grid MoG. 1st column: data sampled from the MoG. 2nd column: VAE+DAE in residual
form trained with a large σ value. 3rd column: VAE+DAE in residual form trained with a small σ value. 4th column: VAE+AR-DAE.
Last column: averaged log variance of z throughout training.

the gradient approximator also needs to be updated accord-
ingly to constantly provide accurate gradient signal. In this
section, we use the proposed entropy gradient estimator
to train an implicit sampler to match the density of some
unnormalized energy functions.

Concretely, we would like to approximately sample from
a target density which can be written as ptarget(x) ∝
exp(−U(x)), where U(x) is an energy function. We train
a neural sampler g by minimizing the reverse Kullback-
Leibler (KL) divergence

DKL(pg(x)||ptarget(x))

= −H(pg(x)) + E
x∼pg(x)

[
− log ptarget(x)

]
. (4)

where pg is the density induced by g. We use the target en-
ergy functions U proposed in Rezende & Mohamed (2015)
(see Table 4 for the formulas). The corresponding density
functions are illustrated at the first column of Figure 4.

We consider two sampling procedures for g. The first
one has a hierarchical structure: let z be distributed by
N (0, I), and x be sampled from the conditional pg(x|z) :=
N (µg(z), σ

2
g(z)) where µg and log σg are parameterized

by neural networks. The resulting marginal density has the
form pg(x) =

∫
pg(x|z)pg(z)dz, which is computationally

intractable due to the marginalization over z. We compare
against the variational method proposed by Agakov & Bar-
ber (2004), which lower-bounds the entropy by

H(pg(x)) ≥ − E
x,z∼pg(x|z)p(z)

[
log

pg(x|z)p(z)
h(z|x)

]
. (5)

Plugging (5) into (4) gives us an upper bound on the KL
divergence. We train pg and h jointly by minimizing this
upper bound 2 as a baseline.

2The normalizing constant of the target density will not affect
the gradient∇x log ptarget(x) = −∇xU(x).

The second sampling procedure has an implicit density: we
first sample z ∼ N (0, I) and pass it through the generator
x = g(z). We estimate the gradient of the negentropy of
both the hierarchical and implicit models by following the
approximate gradient of the log density far ≈ log pg. The
experimental details can be found in Appendix E.

As shown in Figure 4, the density learned by the auxiliary
method sometimes fails to fully capture the target density.
As in this experiment, we anneal the weighting of the cross-
entropy term from 0.01 to 1, which is supposed to bias
the sampler to be rich in noise during the early stage of
training, the well-known mode seeking behavior of reverse
KL-minimization should be largely mitigated. This suggests
the imperfection of the density trained with the auxiliary
method is a result of the looseness of the variational lower
bound on entropy, which leads to an inaccurate estimate
of the gradient. On the other hand, the same hierarchical
model and the implicit model trained with AR-DAE both
exhibit much higher fidelity. This suggests our method can
provide accurate gradient signal even when the sampler’s
distribution pg is being constantly updated. 3

6.2. Variational autoencoder

In the previous section, we have demonstrated that AR-
DAE can robustly approximate the gradient of the log den-
sity function that is constantly changing and getting closer
to some target distribution. In this section, we move on
to a more challenging application: likelihood-free infer-
ence for variational autoencoders (VAE, Kingma & Welling
(2014); Rezende et al. (2014a)). Let p(z) be the standard
normal. We assume the data is generated by x ∼ p(x|z)
which is parameterized by a deep neural network. To esti-
mate the parameters, we maximize the marginal likelihood∫
p(x|z)p(z)dz of the data x, sampled from some data dis-

3We update far 5 times per update of pg to generate this figure;
we also include the results with less updates of far in Appendix E.
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log p(x)

MLP Conv ResConv
Gaussian† -85.0 -81.9 -
HVI aux† -83.8 -81.6 -
AVB† -83.7 -81.7 -

Gaussian -84.40 -81.82 -80.75
HVI aux -84.63 -81.87 -80.80
HVI AR-DAE (ours) -83.42 -81.46 -80.45
IVI AR-DAE (ours) -83.62 -81.26 -79.18

Table 1. Dynamically binarized MNIST. †Results taken from
Mescheder et al. (2017).

Model log p(x)
(Models with a trained prior)
VLAE (Chen et al., 2016) -79.03
PixelHVAE + VampPrior (Tomczak & Welling, 2018) -79.78

(Models without a trained prior)
VAE IAF (Kingma et al., 2016) -79.88
VAE NAF (Huang et al., 2018) -79.86
Diagonal Gaussian -81.43
IVI AR-DAE (ours) -79.61

Table 2. Statically binarized MNIST.

Figure 6. Generated samples (the mean value of the decoder) of
the IVI AR-DAE trained on statically binarized MNIST.

tribution pdata(x). Since the marginal likelihood is usually
intractable, the standard approach is to maximize the evi-
dence lower bound (ELBO):

log p(x) ≥ E
z∼q(z|x)

[log p(x, z)− log q(z|x)] , (6)

where q(z|x) is an amortized variational posterior distribu-
tion. The ELBO allows us to jointly optimize p(x|z) and
q(z|x) with a unified objective.

Note that the equality holds iff q(z|x) = p(z|x), which mo-
tivates using more flexible families of variational posterior.
Note that this is more challenging for two reasons: the target
distribution p(z|x) is constantly changing and is conditional.
Similar to Mescheder et al. (2017), we parameterize a con-
ditional sampler z = g(ε, x), ε ∼ N (0, I) with an implicit
q(z|x). We use AR-DAE to approximate∇z log q(z|x) and
estimate the entropy gradient to update the encoder while
maximizing the ELBO. To train AR-DAE, instead of fix-
ing the prior variance δ in the Lar we adaptively choose
δ for different data points. See Appendix F for a detailed
description of the algorithm and heuristics we use.

Toy dataset To demonstrate the difficulties in inference,
we train a VAE with a 2-D latent space on a mixture of 25

Gaussians. See Appendix F.3 for the experimental details.

In Figure 5, we see that if a fixed σ is chosen to be too
large for the residual DAE, the DAE tends to underestimate
the gradient of the entropy, so the variational posteriors col-
lapse to point masses. If σ is too small, the DAE manages
to maintain a non-degenerate variational posterior, but the
inaccurate gradient approximation results in a non-smooth
encoder and poor generation quality. On the contrary, the
same model trained with AR-DAE has a very smooth en-
coder that maps the data into a Gaussian-shaped, aggregated
posterior and approximates the data distribution accurately.

MNIST We first demonstrate the robustness of our
method on different choices of architectures for VAE: (1)
a one-hidden-layer fully-connected network (denoted by
MLP), (2) a convolutional network (denoted by Conv), and
(3) a larger convolutional network with residual connections
(denoted by ResConv) from (Huang et al., 2018). The first
two architectures are taken from Mescheder et al. (2017) for
a direct comparison with the adversarially trained implicit
variational posteriors (AVB). We also implement a diago-
nal Gaussian baseline and the auxiliary hierarchical method
(HVI aux, (Maaløe et al., 2016)). We apply AR-DAE to
estimate the entropy gradient of the hierarchical posterior
and the implicit posterior (denoted by HVI AR-DAE and
IVI AR-DAE, respectively). As shown in Table 1, AR-DAE
consistently improves the quality of inference in compari-
son to the auxiliary variational method and AVB, which is
reflected by the better likelihood estimates.

We then compare our method with state-of-the-art VAEs
evaluated on the statically binarized MNIST dataset
(Larochelle & Murray, 2011). We use the implicit distri-
bution with the ResConv architecture following the previ-
ous ablation. As shown in Table 2, the VAE trained with
AR-DAE demonstrates state-of-the-art performance among
models with a fixed prior. Generated samples are presented
in Figure 6.

6.3. Entropy-regularized reinforcement learning

We now apply AR-DAE to approximate entropy gradient in
the context of reinforcement learning (RL). We use the soft
actor-critic (SAC, Haarnoja et al. (2018)), a state-of-the-art
off-policy algorithm for continuous control that is designed
to encourage exploration by regularizing the entropy of the
policy. We train the policy π(a|s) to minimize the following
objective:

L(π) = E
s∼D

[
DKL

(
π(a|s)

∥∥∥∥exp (Q(s, a))

Z(s)

)]
,

whereD is a replay buffer of the past experience of the agent,
Q is a “soft” state-action value function that approximates
the entropy-regularized expected return of the policy, and
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Figure 7. Continuous control in reinforcement learning. SAC: soft actor-critic with diagonal Gaussian. SAC-NF: soft actor-critic with
normalizing flows. SAC-AR-DAE: soft actor-critic with implicit distribution trained with AR-DAE. The shaded area indicates the standard
error with 5 runs.

Z(s) =
∫
a

exp(Q(s, a))da is the normalizing constant of
the Gibbs distribution. A complete description of the SAC
algorithm can be found in Appendix G.1. We compare with
the original SAC that uses a diagonal Gaussian distribution
as policy and a normalizing flow-based policy proposed by
Mazoure et al. (2019). We parameterize an implicit policy
and use AR-DAE to approximate∇a log π(a|s) to estimate

∇φL(π)

= E
s∼D
a∼π

[[∇a log πφ(a|s)−∇aQ(s, a)]
ᵀ
Jφgφ(ε, s)] , (7)

where π(a|s) is implicitly induced by a = gφ(ε, s) with
ε ∼ N (0, I). We parameterize far as the gradient of a
scalar function Far, so that Far can be interpreted as the
unnormalized log-density of the policy which will be used
to update the soft Q-network. We run our experiments on
six continuous control environments from the OpenAI gym
benchmark suite (Brockman et al., 2016) and Rllab (Duan
et al., 2016). The experimental details can be found in
Appendix G.2.

The results are presented in Table 3 and Figure 7. We see
that SAC-AR-DAE using an implicit policy improves the
performance over SAC-NF. This also shows the approxi-
mate gradient signal of AR-DAE is stable and accurate even
for reinforcement learning. The extended results for a full
comparison of the methods are provided in Table 5 and 6.

6.4. Maximum entropy modeling

As a last application, we apply AR-DAE to solve the con-
strained optimization problem of the maximum entropy prin-
ciple. Let m ∈ R10 be a random vector and B ∈ R10×10 be

SAC SAC-NF SAC-AR-DAE

HalfCheetah-v2 9695 ± 879 9325 ± 775 10907 ± 664
Ant-v2 5345 ± 553 4861 ± 1091 6190 ± 128
Hopper-v2 3563 ± 119 3521 ± 129 3556 ± 127
Walker-v2 4612 ± 249 4760 ± 624 4793 ± 395
Humanoid-v2 5965 ± 179 5467 ± 44 6275 ± 202
Humanoid (rllab) 6099 ± 8071 3442 ± 3736 10739 ± 10335

Table 3. Maximum average return. ± corresponds to one standard
deviation over five random seeds.

Figure 8. Maximum entropy principle experiment. Left: estimated
EMD of (red) the implicit distribution trained with AR-DAE and
(green) the IAF. Right: the estimated EMD of the implicit distribu-
tion minus that of the IAF.

a random matrix withmi andBij drawn i.i.d. fromN (0, 1).
It is a standard result that among the class of real-valued ran-
dom vectors x ∈ R10 satisfying the constraints E[x] = m
and Var(x) = B>B, x ∼ N (m,B>B) has the maximal
entropy. Similar to Loaiza-Ganem et al. (2017), we solve
this constrained optimization problem but with an implicit
distribution. We use the penalty method and increasingly
penalize the model to satisfy the constraints. Concretely, let
m̃ and C̃ be the sample mean and sample covariance matrix,
respectively, estimated with a batch size of 128. We mini-
mize the modified objective −H(pθ(x)) + λ

∑
j∈{1,2} c

2
j ,

where c1 = ||m̃ − m||2 and c2 = ||C̃ − B>B||F , with
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increasing weighting λ on the penalty. We estimate the
entropy gradient using AR-DAE, and compare against the
inverse autoregressive flows (IAF, Kingma et al. (2016)). At
the end of training, we estimate the earth mover’s distance
(EMD) from N (m,B>B).

We repeat the experiment 256 times and report the histogram
of EMD in Figure 8. We see that most of the time the im-
plicit model trained with AR-DAE has a smaller EMD,
indicating the extra flexibility of arbitrary parameterization
allows it to satisfy the geometry of the constraints more eas-
ily. We leave some more interesting applications suggested
in Loaiza-Ganem et al. (2017) for future work.

7. Conclusion
We propose AR-DAE to estimate the entropy gradient of
an arbitrarily parameterized data generator. We identify the
difficulties in approximating the log density gradient with
a DAE, and demonstrate the proposed method significantly
reduces the approximation error. In theory, AR-DAE ap-
proximates the zero-noise limit of the optimal DAE, which
is an unbiased estimator of the entropy gradient. We apply
our method to a suite of tasks and empirically validate that
AR-DAE provides accurate and reliable gradient signal to
maximize entropy.
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