
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

A. Gradient of the entropy with respect to density functions
Consider a probability density function pg(x). We assume pg is the pushforward of some prior distribution p(z) by a
mapping gθ : z 7→ x. Our goal is to compute the gradient of the entropy of pg wrt the parameter θ. Following Roeder et al.
(2017), we show that the entropy gradient can be rewritten as Equation (1).

Proof. By the law of the unconscious statistician∗ (LOTUS, Theorem 1.6.9 of Durrett (2019)), we have

∇θH(pg(x)) = ∇θ E
x∼pg(x)

[− log pg(x)]

∗
= ∇θ E

z∼p(z)
[− log pg(gθ(z))]

= −∇θ
∫
p(z) log pg(gθ(z))dz

=
((((

(((
((((

(((
−
∫
p(z)∇θ log pg(x)|x=gθ(z)dz −

∫
p(z)[∇x log pg(x)|x=gθ(z)]

ᵀJθgθ(z)dz

= − E
z∼p(z)

[
[∇x log pg(x)|x=gθ(z)]

ᵀJθgθ(z)
]
.

where the crossed-out term is due to the following identity

E
z∼p(z)

[
∇θ log pg(x)

∣∣
x=gθ(z)

]
= E
x∼pg(x)

[∇θ log pg(x)] =

∫
pg(x)∇θ log pg(x)dx

=

∫
��
�pg(x)

1

�
��pg(x)
∇θpg(x)dx = ∇θ

∫
pg(x)dx = ∇θ1 = 0.

B. Properties of residual DAE
Proposition 1. Let x and u be distributed by p(x) and N (0, I). For σ 6= 0, the minimizer of the functional Ex,u[||u +
σf(x+ σu)||2] is almost everywhere determined by

f∗(x;σ) =
−Eu[p(x− σu)u]

σ Eu[p(x− σu)]
.

Furthermore, if p(x) and its gradient are both bounded, f∗ is continuous wrt σ for all σ ∈ R \ 0 and limσ→0 f
∗(x;σ) =

∇x log pg(x).

Proof. For simplicy, when the absolute value and power are both applied to a vector-valued variable, they are applied
elementwise. The characterization of the optimal function f∗ can be derived by following Alain & Bengio (2014). For the
second part, the symmetry of the distribution of u implies

f∗(x;σ) =
−Eu[p(x− σu)u]

σ Eu[p(x− σu)]

=
Eu[p(x+ σu)u]

σ Eu[p(x+ σu)]
= f∗(x;−σ),

so we only need to show f∗ is continuous for σ > 0. Since p is bounded, by the dominated convergence theorem (DOM),
both Eu[p(x− σu)u] and Eu[p(x− σu)] are continuous for σ > 0, and so is f∗(x, σ).

Lastly, an application of L’Hôpital’s rule gives

lim
σ→0

f∗(x;σ) = lim
σ→0

d
dσ Eu[p(x+ σu)u]
d
dσσ Eu[p(x+ σu)]

,

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

which by another application of DOM (since gradient of p is bounded) is equal to

lim
σ→0

E[∇p(x+ σu)>uu]

E[p(x+ σu)] + σ E[∇p(x+ σu)>u]
.

Applying DOM a final time gives

lim
σ→0

f∗(x;σ) =
∇p(x)� E[u2]

p(x)
= ∇ log p(x).

Proposition 2. limσ→∞
f∗(x;σ)

∇x logN (x;Ep[X],σ2I) → 1.

Proof. We rewrite the optimal gradient approximator as

f∗(x;σ) =
1

σ2

∫
N (u; 0, I)p(x− σu)∫
N (u′; 0, I)p(x− σu′)du′

· σu du.

Changing the variables ε = σu and ε′ = σu′ gives

1

σ2

∫
N (ε/σ; 0, I)p(x− ε)∫
N (ε′/σ; 0, I)p(x− ε′)dε′

· ε dε,

which can be written as 1
σ2Eq(ε)[ε] where q(ε) ∝ N (ε/σ; 0, I)p(x− ε) is the change-of-variable density.

By DOM (applied to the numerator and denominator separately, since the standard Gaussian density is bounded), Eq[ε]→∫
p(x− ε)ε dε as σ →∞. The latter integral is equal to Ep[X]− x (which can be seen by substituting y = x− ε).

C. Signal-to-noise ratio analysis on DAE’s gradient
Fixing x and u, the gradient of the L2 loss can be written as

∆ := ∇||u+ σf(x+ σu)||2 = ∇

(∑
i

(ui + σfi(x+ σu))2

)
=
∑
i

∇(ui + σfi(x+ σu))2,

where i iterates over the entries of the vectors u and f , and ∇ denotes the gradient wrt the parameters of f . We further
expand the gradient of the summand via chain rule, which yields

∇(ui + σfi(x+ σu))2 = 2σ(ui + σfi(x+ σu))∇fi(x+ σu)

= 2σ

ui∇ fi(x+ σu)︸ ︷︷ ︸
A

+σ fi(x+ σu)︸ ︷︷ ︸
B

∇ fi(x+ σu)︸ ︷︷ ︸
C

 .

Taylor theorem with the mean-value form of the remainder allows us to approximate fi(x+ σu) by fi(x) as σ is small:

fi(x+ σu) = fi(x) + σ∇xfi(x̂)>u (8)

= fi(x) + σ∇xfi(x)>u+
σ2

2
u>∇2

xfi(x̃)u, (9)

where∇x denotes the gradient wrt the input of f , and x̂ and x̃ are points lying on the line interval connecting x and x+ σu.
Plugging (9) into A and (8) into B and C gives

2σ

(
ui∇

(
fi(x) + σ∇xfi(x)>u+

σ2

2
u>∇2

xfi(x̃)u

)
+ σ

(
fi(x) + σ∇xfi(x̂)>u

)
∇
(
fi(x) + σ∇xfi(x̂)>u

))
= 2σui∇fi(x) + 2σ2ui∇∇xfi(x)>u+ σ3ui∇u>∇2

xfi(x̃)u

+ 2σ2fi(x)∇fi(x) + 2σ3fi(x)∇∇xfi(x̂)>u+ 2σ3∇x
(
fi(x̂)>u

)
∇fi(x) + 2σ4∇x

(
fi(x̂)>u

)
∇∇xfi(x̂)>u.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

With some regularity conditions (DOM-style assumptions), marginalizing out u and taking σ to be arbitrarily small yield

Eu[∆] =
∑
i

2σ2∇ ∂

∂xi
fi(x) + 2σ2fi(x)∇fi(x) + o(σ2)

= 2σ2∇
(
tr(∇xf(x)) +

1

2
||f(x)||2

)
+ o(σ2).

In fact, we note that the first term is the stochastic gradient of the implicit score matching objective (Theorem 1, Hyvärinen
(2005)), but it vanishes at a rate O(σ2) as σ2 → 0.

For the second moment, similarly,

Eu[∆∆>] = 4σ2
∑
i

∇fi(x)∇fi(x)> + o(σ2).

As a result,
E[∆]√
Var(∆)

=
E[∆]√

E(∆∆>)− E(∆)E(∆)>
=

O(σ2)√
O(σ2)−O(σ4)

= O(σ).

D. Experiment: Error analysis
D.1. Main experiments

Figure S1. Left: Density function of mixture of Gaussians. Right: gradient of the log density function (dotdash line) and gradient
approximations using optimal DAE with different σ values (solid lines).

Dataset and optimal gradient approximator As we have described in Section 4.2, we use the mixture of two Gaussians
to analyze the approximation error (see Figure S1 (left)). Formally, we define p(x) = 0.5N (x; 2, 0.25)+0.5N (x;−2, 0.25).
For notational convenience, we let p1 and p2 be the density functions of these two Gaussians, respectively. We obtain
∇x log p(x) by differentiating log p(x) wrt x using auto-differentiation library such as PyTorch (Paszke et al., 2017). With
some elementary calculation, we can expand the formula of the optimal gradient approximator f∗ as,

f∗(x;σ) =
−Eu[p(x− σu)u]

σ Eu[p(x− σu)]
=
−
∑2
i=1 S

′
iµ
′
i

σ
∑2
i=1 S

′
i

,

where S′i = 1/
√

2π(0.52+12) exp
(
−(µi+x/σ)2/2(0.52+12)

)
for i ∈ 1, 2, µ1 = −2, and µ1 = 2.

Proof. The numerator Eu[Eu[p(x− σu)u](x− σu)u] can be rewritten as follows:

E
u

[p(x− σu)u] =

∫
(0.5p1(x− σu) + 0.5p2(x− σu)) p(u)u du =

0.5

σ

2∑
i=1

S′i

∫
N (u;µ′i, σ

′
i)u du =

0.5

σ

2∑
i=1

S′iµ
′
i,

where S′i = 1/
√

2π(0.52+12) exp
(
−(µi+x/σ)2/2(0.52+12)

)
for i ∈ 1, 2, µ1 = −2, and µ1 = 2.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

The second equality comes from the fact that all p1, p2, and p(u) are normal distributions, and thus we have

pi(x− σu)p(u) =
1

σ
pi (u− x/σ) p(u) =

1

σ
S′iN (u;µ′i, σ

′
i).

Similarly, we can rewrite the denominator as Eu[p(x− σu)] = 0.5
σ

∑2
i=1 S

′
i.

Experiments For AR-DAE, we indirectly parameterize it as the gradient of some scalar-function (which can be thought
of as an unnormalized log-density function); i.e. we define a scalar function and use its gradient wrt the input vector. The
same trick has also been employed in recent work by Saremi et al. (2018); Saremi & Hyvarinen (2019). We use the network
architecture with the following configuration4: [2 + 1, 256] + [256, 256] × 2 + [256, 1], with the Softplus activation
function. We use the same network architecture for resDAE except it doesn’t condition on σ. For regDAE, the network is set
to reconstruct input.

All models are trained for 10k iterations with a minibatch size of 256. We use the Adam optimizer for both AR-DAE and
the generator, with the default β1 = 0.9 and β2 = 0.999. For all models, the learning rate is initially set to 0.001 and is
reduced by half every 1k iterations during training.

For regDAE and resDAE, we train models individually for every σ value in Figure 3. For regDAEannealed and resDAEannealed,
we anneal σ from 1 to the target value.For AR-DAE, δ is set to 0.05 and we sample 10 σ’s from N(0, δ2) for each iteration.
We train all models five times and present the mean and its standard error in the figures.

D.2. Symmetrizing the distribution of σ

In Section 4.1, we argue that neural networks are not suitable for extrapolation (vs. interpolation), to motivate the use
of a symmetric prior over σ. To contrast the difference, we sample σ ∼ N(0, δ2) and compare two different types of
σ-conditioning: (1) conditioning on σ, and (2) conditioning on |σ|. We use the same experiment settings in the previous
section, but we use a hypernetwork (Ha et al., 2017) that takes σ (resp. |σ|) as input and outputs the parameters of AR-DAE,
to force AR-DAE to be more dependent on the value of σ (resp. |σ|). The results are shown in Figure S2.

We see that the two conditioning methods result in two distinct approximation behaviors. First, when AR-DAE only observes
positive values, it fails to extrapolate to the σ values close to 0. When a symmetric σ distribution is used, the approximation
error of AR-DAE is more smooth. Second, we notice that the symmetric σ distribution bias far to focus more on small
σ values. Finally, the asymmetric distribution helps AR-DAE reduce the approximation error for some σ. We speculate
that AR-DAE with the asymmetric σ distribution has two times higher to observe small σ-values during training, and thus
improves the approximation. In general, we observe that the stability of the approximation is important for our applications,
in which case AR-DAE need to adapt constantly in the face of non-stationary distributions.

Figure S2. Comparison of two σ-conditioning methods to approximate log density gradient of 1D-MOG. AR-DAE: conditioning on σ.
AR-DAE (|σ|): conditioning on |σ|. σ is sampled from N(0, δ) for all experiments.

4[dinput, doutput] denotes a fully-connected layer whose input and output feature sizes are dinput and doutput, respectively.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

E. Experiment: Energy Fitting

Potential U(z)

1: 1
2

(
‖z‖−2

0.4

)2

− ln
(
e−

1
2 [z1−2

0.6]
2

+ e−
1
2 [z1+2

0.6]
2)

2: 1
2

(
z2−w1(z)

0.4

)2

3: − ln

(
e
− 1

2

[
z2−w1(z)

0.35

]2
+ e
− 1

2

[
z2−w1(z)+w2(z)

0.35

]2)
4: − ln

(
e
− 1

2

[
z2−w1(z)

0.4

]2
+ e
− 1

2

[
z2−w1(z)+w3(z)

0.35

]2)
where w1(z) = sin

(
2πz1

4

)
, w2(z) = 3e−

1
2 [z1−1

0.6]
2

, w3(z) = 3σ
(
z1−1
0.3

)
, σ(x) = 1

1+e−x .

Table 4. The target energy functions introduced in Rezende & Mohamed (2015).

E.1. Main experiments

Parametric densities trained by minimizing the reverse KL divergence tend to avoid “false positive”, a well known problem
known as the zero-forcing property (Minka et al., 2005). To deal with this issue, we minimize a modified objective:

DKLα(pg(x)||ptarget(x)) = −H(pg(x))− α E
x∼pg(x)

[
log ptarget(x)

]
, (10)

where α is annealed from a small value to 1.0 throughout training. This slight modification of the objective function
“convexifies” the loss landscape and makes it easier for the parametric densities to search for the lower energy regions. For
AR-DAE training, we use Equation (2) with a fixed prior variance δ = 0.1.

For all experiments, we use a three-hidden-layer MLP for both hierarchical distribution as well as implicit distribution. More
specifically, the generator network for the hierarchical distribution has the following configuration: [dz, 256] + [256, 256]×2
+ [256, 2]× 2. dz indicates the dimension of the prior distribution p(z) and is set to 2. The last two layers are for mean and
log-variance5 of the conditional distribution pg(x|z). For the auxiliary variational method, the same network architecture
is used for h(z|x) in Equation (5). When we train the hierarchical distribution with AR-DAE, we additionally clamp the
log-variance to be higher than -4. Similar to the hierarchical distribution, the generator of the implicit distribution is defined
as, [dz, 256] + [256, 256] × 2 + [256, 2]. Unlike the hierarchical distribution, dz is set to 10. ReLU activation function is
used for all but the final output layer.

For AR-DAE, we directly parameterize the residual function far. We use the following network architecture: [2, 256] +
[256, 256]× 2 + [256, 2]. Softplus activation function is used.

Each model is trained for 100,000 iterations with a minibatch size of 1024. We update AR-DAE Nd times per generator
update. For the main results, we set Nd = 5. We use the Adam optimizer for both the generator and AR-DAE, where
β1 = 0.5 and β2 = 0.999. The learning rate for the generator is initially set to 0.001 and is reduced by 0.5 for every 5000
iterations during training. AR-DAE’s learning rate is set to 0.001. To generate the figure, we draw 1M samples from each
model to fill up 256 equal-width bins of the 2D histogram.

E.2. Effect of the number of updates (Nd) of the gradient approximator

In addition to the main results, we also analyze how the number of updates of AR-DAE per generator update affects the
quality of the generator. We use the same implicit generator and AR-DAE described in the main paper, but vary Nd from 1
to 5. The result is illustrated in Figure S3. In principle, the more often we update AR-DAE, the more accurate (or up-to-date)
the gradient approximation will be. This is corroborated by the improved quality of the trained generator.

5diagonal elements of the covariance matrix in log-scale

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

1

2

3

4

1
Z
e−U(x)

(a)

Nd = 1 Nd = 2 Nd = 5

(b)

dz = 2 dz = 3 dz = 10

(c)
Figure S3. Fitting energy functions with implicit model using AR-DAE. (a) Target energy functions. (b) Varying number of AR-DAE
updates per model update. (c) Varying the dimensionality of the noise source dz .

E.3. Effect of the noise dimension of implicit model

In this section, we study the effect of varying the dimensionality of the noise source of the implicit distribution. We use the
same experiment settings in the previous section. In Figure S3 (right panel), we see that the generator has a degenerate
distribution when dz = 2, and the degeneracy can be remedied by increasing dz .

F. Experiment: variational autoencoders
F.1. VAE with the entropy gradient approximator

Let pω(x|z) be the conditional likelihood function parameterized by ω and p(z) be the the prior distribution. We let p(z) be
the standard normal. As described in Section 6.2, we would like to maximize the ELBO (denoted as LELBO) by jointly
training pω and the amortized variational posterior qφ(z|x). Similar to Appendix A, the posterior qφ(z|x) can be induced
by a mapping gφ : ε, x 7→ z with a prior q(ε) that does not depend on the parameter φ. The gradient of LELBO wrt the
parameters of the posterior can be written as,

∇φLELBO(q) = E
z∼qφ(z|x)
x∼pdata(x)

[[∇z log pω(x, z)−∇z log qφ(z|x)]
ᵀ
Jφgφ(ε, x)] . (11)

We plug in AR-DAE to approximate the gradient of the log-density, and draw a Monte-Carlo sample of the following
quantity to estimate the gradient of the ELBO

∇̂φLELBO(q)
.
= E

z∼qφ(z|x)
x∼pdata(x)

[[∇z log pω(x, z)− far,θ(z;x, σ)|σ=0]
ᵀ
Jφgφ(ε, x)] , (12)

F.2. AR-DAE

To approximate∇z log qφ(z|x), we condition AR-DAE on both the input x as well as the noise scale σ. We also adaptively
choose the prior variance δ2 for different data points instead of fixing it to be a single value.

In addition, we make the following observations. (1) The posteriors qφ are usually not centered, but the entropy gradient
approximator only needs to model the dispersion of the distribution. (2) The variance of the approximate posterior can
be very small during training, which might pose a challenge for optimization. To remedy these, we modify the input of
AR-DAE to be z̃ .

= s(z − b(x)), where s is a scaling factor and b(x) is a pseudo mean. Ideally, we would like to set b(x) to
be Eq(z|x)[z]. Instead, we let b(x)

.
= g(0, x), as 0 is the mode/mean of the noise source. The induced distribution of z̃ will

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

be denoted by qφ(z̃|x). By the change-of-variable density formula, we have ∇z log q(z|x) = s∇z̃ log q(z̃|x). This allows
us to train AR-DAE with a better-conditioned distribution and the original gradient can be recovered by rescaling.

In summary, we optimize the following objective

Lar (far) = E
x∼p(x)
z̃∼q(z̃|x)
u∼N(0,I)

σ|x∼N(0,δ(x)2)

[
‖u+ σfar(z̃ + σu;x, σ)‖2

]
. (13)

where δ(x)
.
= δscaleSz|x and Sz|x is sample standard deviation of z given x. We use nz samples per data to estimate Sz|x.

δscale is chosen as hyperparameter.

In the experiments, we either directly parameterize the residual function of AR-DAE or indirectly parameterize it as the
gradient of some scalar-function. We parameterize far(z̃;x, σ) as a multi-layer perceptron (MLP). Latent z and input x
are encoded separately and then concatenated with σ (denoted by "mlp-concat" in Table 8). The MLP encoders have menc

hidden layers. The concatenated representation is fed into a fully-connected neural network with mfc hidden layers. Instead
of encoding the input x directly, we either use a hidden representation of the variational posterior q or b(x). We use dh
hidden units for all MLPs. We stress that the learning signal from Lar (far) is not backpropagated to the posterior.

Algorithm 1 VAE AR-DAE

Input: Dataset D; mini-batch size ndata; sample size nz;prior variance δ2; learning rates αθ and αφ,ω
Initialize encoder and decoder pω(x|z) and qφ(z|x)
Initialize AR-DAE far,θ(z|x)
repeat

Draw ndata datapoints from D
for k = 0 . . . Nd do

Draw nz latents per datapoint from z ∼ qφ(z|x)
δi ← δscaleSz|xi for i = 1, . . . , ndata
Draw nσ number of σis per z from σi ∼ N(0, δ2

i)
Draw ndatanznσ number of us from u ∼ N(0, I)
Update θ using gradient ∇θLfar with learning rate αθ

end for
z ∼ qφ(z|x)
Update ω using gradient∇ωLELBO with learning rate αφ,ω
Update φ using gradient ∇̂φLELBO with learning rate αφ,ω , whose entropy gradient is approximated using far,θ(z|x).

until Until some stopping criteria

F.3. Experiments

We summarize the architecture details and hyperparameters in Table 7 and 8, respectively.

Mixture of Gaussian experiment For the MoG experiment, we use 25 Gaussians centered on an evenly spaced 5 by 5
grid on [−4, 4]× [−4, 4] with a variance of 0.1. Each model is trained for 16 epochs: approximately 4000 updates with a
minibatch size of 512.

For all experiments, we use a two-hidden-layer MLP to parameterize the conditional diagonal Gaussian p(x|z). For the
implicit posterior q, the input x and the dε-dimensional noise are separately encoded with one fully-connected layer, and
then the concatenation of their features will be fed into a two-hidden-layer MLP to generate the 2-dimensional latent z. The
size of the noise source ε in the implicit posterior, i.e. dε, is set to 10.

MNIST We first describe the details of the network architectures and then continue to explain training settings. For the
MLP experiments, we use a one-hidden-layer MLP for the diagonal Gaussian decoder p(x|z). For the diagonal Gaussian
posterior q(z|x). aka vanilla VAE, input x is fed into a fully-connected layer and then the feature is later used to predict
the mean and diagonal component of the covariance matrix of the multivariate Gaussian distribution. For the hierarchical

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

posterior, both q(z0|x) and q(z|z0, x) are one-hidden-layer MLPs with diagonal Gaussian similar to the vanilla VAE. For
the implicit posterior, the input is first encoded and then concatenated with noise before being fed into another MLP to
generate z.

For Conv, the decoder starts with a one-fully connected layer followed by three deconvolutional layers. The encoder has
three convolutional layers and is modified depending on the types of the variational posteriors, similar to MLP. For ResConv,
five convolutional or deconvolutional layers with residual connection are used for the encoder and the decoder respectively.

Following Maaløe et al. (2016); Ranganath et al. (2016), when the auxiliary variational method (HVI aux) is used to train
the hierarchical posterior, the variational lower bound is defined as, we maximize the following lower bound to train the
hierarchical variational posterior with auxiliary variable (HVI aux)

log p(x) ≥ E
z∼q(z|x)

[log p(x, z)− log q(z|x)] ≥ E
z0∼q(z0|x)
z∼q(z|z0,x)

[log p(x, z)− log q(z0|x)− log q(z|z0, x) + log h(z0|z, x)] .

For the dynamically binarized MNIST dataset, we adopt the experiment settings of Mescheder et al. (2017). The MNIST
data consists of 50k train, 10k validation, and 10k test images. In addition to the original training images, randomly selected
5k validation images are added to the training set. Early stopping is performed based on the evaluation on the remaining 5k
validation data points. The maximum number of iterations for the training is set to 4M.

For the statically binarized MNIST dataset, we use the original data split. Early stopping as well as hyperparameter
search are performed based on the estimated log marginal probability on the validation set. We retrain the model with the
selected hyperparameters with the same number of updates on the combination of the train+valid sets, and report the test set
likelihood. We also apply polyak averaging (Polyak & Juditsky, 1992).

We evaluate log p(x) of the learned models using importance sampling (Burda et al., 2016) (with neval samples). For the
baseline methods, we use the learned posteriors as proposal distributions to estimate the log probability. When a posterior
is trained with AR-DAE, we first draw neval z’s from the posterior given the input x, and then use the sample mean and
covariance matrix to construct a multivariate Gaussian distribution. We then use this Gaussian distribution as the proposal.

G. Experiment: entropy-regularized reinforcement learning
G.1. Soft actor-critic

Notation We consider an infinite-horizon Markov decision process (MDP) defined as a tuple (S,A,R, penv, γ) (Sutton
et al., 1998), where S , A,R are the spaces of state, action and reward, respectively, penv(st+1|st, at) and penv(s0) represent
the transition probability and the initial state distribution, r(st, at) is a bounded reward function, and γ is a discount factor.
We write τ as a trajectory resulting from interacting with the environment under some policy π(at|st).

The entropy-regularized reinforcement learning (Ziebart, 2010) is to learn a policy π(at|st) that maximizes the following
objective;

L(π) = E
τ∼π,penv

[∞∑
t=0

γt (r(st, at) + αH(π(·|st)))

]
, (14)

where α is an entropy regularization coefficient. We define a soft state value function V π and s soft Q-function Qπ as
follows,

V π(s) = E
τ∼π,penv

[∞∑
t=0

γt (r(st, at) + αH(π(·|st)))

∣∣∣∣∣s0 = s

]

Qπ(s, a) = E
τ∼π,penv

[
r(st, at) +

∞∑
t=1

γt (r(st, at) + αH(π(·|st)))

∣∣∣∣∣s0 = s, a0 = a

]
.

By using these definitions, we can rewrite V π and Qπ as V π(s) = Ea∼π [Qπ(s, a)] + αH(π(·|s)) and Qπ(s) =
[r(s, a) + Es′∼penv γV π(s′)].

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

Soft actor-critic One way to maximize (14) is to minimize the following KL divergence,

πnew = arg min
π

DKL

(
π(·|st)

∥∥∥∥exp (Qπold(st, ·))
Zπold(st)

)
,

where Zπold(st) is the normalizing constant
∫

exp (Qπold(st, a)) da. Haarnoja et al. (2018) show that for finite state space
the entropy-regularized expected return will be non-decreasing if the policy is updated by the above update rule. In practice,
however, we do not have access to the value functions, so Haarnoja et al. (2018) propose to update the policy by first
approximating Qπold and V πold by some parametric functions Qω and Vν , and training the policy by minimizing

L(π) = E
st∼D

[
DKL

(
π(at|st)

∥∥∥∥exp (Qω(st, ·))
Zω(st)

)]
,

where D is a replay buffer that stores all the past experience. The soft Q-function and soft state value function will be trained
by minimizing the following objectives,

L(Vν) = E
st∼D

[
1

2

(
Vν(st)− E

at∼π
[Qω(st, at)− α log π(at|st)]

)2
]

L(Qω) = E
st,at∼D

[
1

2

(
Qω(st, at)− Q̂(st, at)

)2
]
,

where Q̂(st, at)
.
= r(st, at) + γ Est+1∼penv [Vν̄(st+1)] and Vν̄ is a target value network. For the target value network, SAC

follows Mnih et al. (2015): Vν̄ is defined as a polyak-averaged model (Polyak & Juditsky, 1992) of Vν . Note that Vν is
inferred from Qω via Monte Carlo, i.e. Vν(st)

.
= Qω(st, at)− α log π(at|st) where at ∼ π(at|st). Moreover, we follow

the common practice to use the clipped double Q-functions (Hasselt, 2010; Fujimoto et al., 2018) in our implementations.

G.2. SAC-AR-DAE and its implementations

Main algorithm Our goal is to train an arbitrarily parameterized policy within the SAC framework. We apply AR-DAE
to approximate the training signal for policy. Similar to the implicit posterior distributions in the VAE experiments, the
policy consists of a simple tractable noise distribution π(ε) and a mapping gφ : ε, s 7→ a. The gradient of L(π) wrt the
policy parameters can be written as

∇φL(π) = E
st∼D
ε∼π

[[
∇a log πφ(a|st)|a=gφ(ε,st) −∇aQω(st, a)|a=gφ(ε,st)

]ᵀ
Jφgφ(ε, st)

]
.

Let far,θ be AR-DAE which approximates∇a log πφ(a|s) trained using Equation (13). Specifically for the SAC experiment,
AR-DAE is indirectly parameterized as the gradient of an unnormalized log-density function ψar,θ : a, s, σ 7→ R as in,

far,θ(a; s, σ)
.
= ∇aψar,θ(a; s, σ).

As a result, log π(a|s) can also be approximated by using ψar,θ: log π(a|s) ≈ ψar,θ(a; s, σ)|σ=0 − logZθ(s), where
Zθ(s) =

∫
exp (ψar,θ(a; s, σ)|σ=0) da.

Using AR-DAE, we can modify the objective function L(Vν) to be

L̂(Vν) = E
st∼D

[
1

2

(
Vν(st)− E

at∼π
[Qω(st, at)− ψar,θ(at; st, σ)|σ=0]− logZθ(st)

)2
]
.

The same applies to L(Qω). We also use the polyak-averaged target value network and one-sample Monte-Carlo estimate as
done in SAC. Finally, the gradient signal for the policy can be approximated using AR-DAE:

∇̂φL(π)
.
= E
st∼D
ε∼π

[[
far,θ(gφ(ε, st); st, σ)|σ=0 −∇aQω(st, a)|a=gφ(ε,st)

]ᵀ
Jφgφ(ε, st)

]
.

We summarize all the details in Algorithm 2.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

Algorithm 2 SAC-AR-DAE

Input: Mini-batch size ndata; replay buffer D; number of epoch T ; learning rates αθ, αφ, αω, αν
Initialize value function Vν(s), critic Qω(s, a), policy πφ(a|s), and AR-DAE far,θ(a|s)
Initialize replay buffer D ← ∅
for epoch = 1, ..., T do

Initialize a state from s0 ∼ penv(s0)
for t = 0 . . . do
a ∼ πφ(.|st)
(rt, st+1) ∼ penv(·|st, at)
D ← D ∪ {(st, at, rt, st+1)}
for each learning step do

Draw ndata number of (st, at, rt, st+1)s from D
for k = 0 . . . Nd do

Draw na actions per state from a ∼ πφ(a|s)
δi ← δscaleSa|si for i = 1, . . . , ndata
Draw nσ number of σis per a from σi ∼ N(0, δ2

i)
Draw ndatananσ number of us from u ∼ N(0, I)
Update θ using gradient∇θLfar with learning rate αθ

end for
Update ν using gradient∇νL̂V with learning rate αν
Update ω using gradient∇ωL̂Q with learning rate αω
Update φ using gradient ∇̂φLπ which is approximated with far,θ(a|s)
ν̄ ← τν + (1− τ)ν̄

end for
end for

end for

Bounded action space The action space of all of our environments is an open cube (−1, 1)da , where da is the dimen-
sionality of the action. To implement the policy, we apply the hyperbolic tangent function. That is, a := tanh(gφ(ε, st)),
where the output of gφ (denoted as ã) is in (−∞,∞). Let ãi be the i-th element of ã. By the change of variable formula,
log π(a|s) = log π(ã|s)−

∑da
i=1 log(1− tanh2(ãi)).

In our experiments, we train AR-DAE on the pre-tanh action ã. This implies that AR-DAE approximate∇ã log π(ã|s). We
correct the change of volume induced by the tanh using

∇ã log π(a|s) = ∇ã log π(ã|s) + 2 tanh(ã).

To sum up, the update of the policy follows the approximated gradient

∇̂φL(π)
.
= E
st∼D
ε∼π

[[
far,θ(gφ(ε, st); st, σ)|σ=0 + 2 tanh(gφ(ε, st))−∇ãQω(st, tanh(ã))|ã=gφ(ε,st)

]ᵀ
Jφgφ(ε, st)

]
.

Estimating normalizing constant In order to train SAC-AR-DAE in practice, efficient computation of logZθ(s) is
required. We propose to estimate the normalizing constant (Geyer, 1991) using importance sampling. Let h(a|s) be the
proposal distribution. We compute the following (using the log-sum-exp trick to ensure numerical stability)

logZθ(s) = log

∫
exp (ψar,θ(a; s, σ)|σ=0) da

= log E
a∼h

[exp (ψar,θ(a; s, σ)|σ=0 − log h(a|s))]

≈ log
1

NZ

NZ∑
j

[exp (ψar,θ(aj ; s, σ)|σ=0 − log h(aj |s)−A)] +A,

where aj is the j-th action sample from h and A := maxaj exp (ψar,θ(aj ; s, σ)|σ=0 − log h(aj |s)). For the proposal
distribution, we use h(a|s) .

= N(µ(s), cI), where µ(s)
.
= ψar,θ(gφ(ε, s); s, σ)|ε=0,σ=0 and c is some constant. We set c to

be log c = −1.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

Figure S4. Additional results on SAC-AR-DAE, ablating Jacobian clamping regularization on implicit policy distributions in comparison
with the rest.

Target value calibration In order to train the Q-function more efficiently, we calibrate its target values. Training the
policy only requires estimating the gradient of the Q-function wrt the action, not the value of the Q-function itself. This
means that while optimizing Qω (and Vν), we can subtract some constant from the true target to center it. In our experiment,
this calibration is applied when we use one-sample Monte-Carlo estimate and the polyak-averaged Q-network Qω̄ . That is,
L(Qω) can be rewritten as,

L(Qω) = E
st,at,st+1∼D
at+1∼π

[
1

2
(Qω(st, at) +B − r(st, at)− γ (Qω̄(st+1, at+1)− α log π(at+1|st+1)))

2

]
.

where B is a running average of the expected value of γα log π(a|s) throughout training.

Jacobian clamping In addition, we found that the implicit policies can potentially collapse to point masses. To mitigate
this, we regularize the implicit distributions by controlling the Jacobian matrix of the policy wrt the noise source as in Odena
et al. (2018); Kumar et al. (2020), aka Jacobian clamping. The goal is to ensure all singular values of Jacobian matrix of
pushforward mapping to be higher than some constant. In our experiments, we follow the implementation of Kumar et al.
(2020): (1) stochastic estimation of the singular values of Jacobian matrix at every noise, and the Jacobian is estimated by
finite difference approximation, and (2) use of the penalty method (Bertsekas, 2016) to enforce the constraint. The resulting
regularization term is

Lreg(π) = E
st∼D
ε∼π

v∼N(0,I)

[
min

(
‖gφ(ε+ ξv, st)− gφ(ε, st)‖22

ξ2‖v‖2
− η, 0

)2
]
,

where η, ξ > 0, and nperturb number of the perturbation vector v is sampled. We then update policy π with ∇̂φL(π) +
λ∇φLreg(π) where λ is increased throughout training. We set λ = 1 + iν/1000 at i-th iteration and ν ∈ [1.1, 1.3].

G.3. Experiments

For the SAC-AR-DAE experiments, aside from the common practice for SAC, we follow the experiment settings from
Mazoure et al. (2019) and sample from a uniform policy for a fixed number of initial interactions (denoted as warm-up). We
also adopt the same network architecture for the Q-network, discounting factor γ, entropy regularization coefficient α, and
target smoothing coefficient τ . For AR-DAE, we use the same network architecture as VAE. We also rescale the unbounded
action ã by s for better conditioning. The details of hyperparameters are described in Table 9.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

We run five experiments for each environment without fixing the random seed. For every 10k steps of environment interaction,
the average return of the policy is evaluated with 10 independent runs. For visual clarify, the learning curves are smoothed
by second-order polynomial filter with a window size of 7 (Savitzky & Golay, 1964). For each method, we evaluate the
maximum average return: we take the maximum of the average return for each experiment and the average of the maximums
over the five random seeds. We also report ‘normalized average return’, approximately area under the learning curves:
we obtain the numerical mean of the ‘average returns’ over iterates. We run SAC and SAC-NF with the hyperparameters
reported in Mazoure et al. (2019).

G.4. Additional Experiments

In addition to the main results in Figure 7 and Table 3, we also compare the effect of Jacobian clamping regularization on
implicit policy distribution in SAC-AR-DAE. In each environment, the same hyperparameters are used in SAC-AR-DAEs
except for the regularization. Our results are presented in Figure S4 and Table 5, 6.

The results shows that Jacobian clamping regularization improves the performance of SAC-AR-DAE in general, especially
for Humanoid-rllab. In Humanoid-rllab, we observe that implicit policy degenerates to point masses without the Jacobian
clamping, potentially due to the error of AR-DAE. However, the Jacobian clamping helps to avoid the degenerate distributions,
and the policy facilitates AR-DAE-based entropy gradients.

SAC SAC-NF SAC-AR-DAE SAC-AR-DAE (w/o jc)

HalfCheetah-v2 9695 ± 879 9325 ± 775 10907 ± 664 10677 ± 374
Ant-v2 5345 ± 553 4861 ± 1091 6190 ± 128 6097 ± 140
Hopper-v2 3563 ± 119 3521 ± 129 3556 ± 127 3634 ± 45
Walker-v2 4612 ± 249 4760 ± 624 4793 ± 395 4843 ± 521
Humanoid-v2 5965 ± 179 5467 ± 44 6275 ± 202 6268 ± 77
Humanoid (rllab) 6099 ± 8071 3442 ± 3736 10739 ± 10335 761 ± 413

Table 5. Maximum average return. ± corresponds to one standard deviation over five random seeds.

SAC SAC-NF SAC-AR-DAE SAC-AR-DAE (w/o jc)

HalfCheetah-v2 8089 ± 567 7529 ± 596 8493 ± 602 8636 ± 307
Ant-v2 3280 ± 553 3440 ± 656 4335 ± 241 4015 ± 363
Hopper-v2 2442 ± 426 2480 ± 587 2631 ± 160 2734 ± 194
Walker-v2 3023 ± 271 3317 ± 455 3036 ± 271 3094 ± 209
Humanoid-v2 3471 ± 505 3447 ± 260 4215 ± 170 3808 ± 137
Humanoid (rllab) 664 ± 321 814 ± 630 2021 ± 1710 332 ± 136

Table 6. Normalized average return. ± corresponds to one standard deviation over five random seeds.

H. Improved techniques for training AR-DAE and implicit models
In order to improve and stabilize the training of both the generator and AR-DAE, we explore multiple heuristics.

H.1. AR-DAE

Activity function During preliminary experiments, we observe that smooth activation functions are crucial in parameter-
izing AR-DAE as well as the residual form of regular DAE. We notice that ReLU gives less reliable log probability gradient
for low density regions.

Number of samples and updates In the VAE and RL experiments, it is important to keep AR-DAE up-to-date with the
generator (i.e. posterior and policy). As discussed in Appendix E, we found that increasing the number of AR-DAE updates
helps a lot. Additionally, we notice that increasing nz is more helpful than increasing ndata given ndatanz is fixed.

Scaling-up and zero-centering data To avoid using small learning rate for AR-DAE in the face of sharp distributions
with small variance, we choose to scale up the input of AR-DAE. As discussed in Appendix F.2, we also zero-center the

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

latent samples (or action samples) to train AR-DAE. This allows AR-DAE to focus more on modeling the dispersion of the
distribution rather than where most of the probability mass resides.

H.2. Implicit distributions

Noise source dimensionality We note that the implicit density models can potentially be degenerate and do not admit a
density function. For example, in Appendix E we show that increasing the dimensionality of the noise source improves the
qualities of the implicit distributions.

Jacobian clamping Besides of increasing noise source dimensionality, we can consider Jacobian clamping distributions
to prevent implicit posteriors from collapsing to point masses. As pointed out in Appendix G.2, we observe that using this
regularization technique can prevent degenerate distributions in practice, as it at least regularizes the mapping locally if its
Jacobian is close to singular.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

p(x|z) q(z|x)
Common Gaussian HVI implicit

MLP
toy

[2, 256]
[256, 256]× 2
[256, dx]× 2

[dx, 256] - -
[256 + dε, 256]

[256, 256]
[256, dz]

MLP
dbmnist

[dz, 300]
[300, dx]

[dx, 300] [300, dz]× 2
[300, dz]× 2

(or
[
300, dz0

]
× 2)

[300 + dε, 300]
[300, dz]

Conv
dbmnist

[dz, 300]
[300, 512]

[32, 32, 5× 5, 2, 2, deconv]
[32, 16, 5× 5, 2, 2, deconv]
[16, 1, 5× 5, 2, 2, deconv]

[1, 16, 5× 5, 2, 2]
[16, 32, 5× 5, 2, 2]
[32, 32, 5× 5, 2, 2]

[512, 800]
[800, dz]× 2

[512, 800]
[800, dz]× 2

(or
[
800, d(z0)

]
× 2)

[512 + dε, 800]
[800, dz]

ResConv
dbmnist

(or sbmnist)

[dz, 450]
[450, 512]

[upscale by 2]
[32, 32, 3× 3, 1, 1, res]
[32, 32, 3× 3, 1, 1, res]

[upscale by 2]
[32, 16, 3× 3, 1, 1, res]
[16, 16, 3× 3, 1, 1, res]

[upscale by 2]
[16, 1, 3× 3, 1, 1, res]

[1, 16, 3× 3, 2, 1, res]
[16, 16, 3× 3, 1, 1, res]
[16, 32, 3× 3, 2, 1, res]
[32, 32, 3× 3, 1, 1, res]
[32, 32, 3× 3, 2, 1, res]

[512, 450, res]

[450, dz]× 2
[450, 450]

[450, dz]× 2
(or
[
450, dz0

]
× 2)

[450 + dε, 450, res]
[450, dz, res]

Table 7. Network architectures for the VAE experiments. Fully-connected layers are characterized by [input size, output size], and
convolutional layers by [input channel size, output channel size, kernel size, stride, padding]. “res” indicates skip connection, aka residual
layer (He et al., 2016). Deconvolutional layer is marked as “deconv”.

MLP Conv ResConv
toy dbmnist dbmnist dbmnist sbmnist

AR-DAE

model

parameterization gradient gradient gradient residual residual
network mlp-concat mlp-concat mlp-concat mlp-concat mlp-concat
mfc 3 5 5 5 5
menc 3 5 5 5 5

activation softplus softplus softplus softplus softplus
dh 256 256 256 512 512
s 10000 10000 10000 100 100

learning

nz 256 625 256 625 625
ndata 512 128 128 128 128
nσ 1 1 1 1 1
Nd 1 {1,2} {1,2} 2 2
δscale 0.1 {0.1, 0.2, 0.3} {0.1, 0.2, 0.3} {0.1, 0.2, 0.3} {0.1, 0.2, 0.3}

optimizer rmsprop, 0.5 rmsprop, 0.5 rmsprop, 0.9 rmsprop, 0.9 rmsprop, 0.9
learning rate αθ 0.0001 0.0001 0.0001 0.0001 0.0001

Encoder/decoder

model
network mlp mlp conv rescov rescov
dz 2 32 32 32 32

dz0 or dε 10 100 100 100 100

learning

ndata 512 128 128 128 128
optimizer adam, 0.5, 0.999 adam, 0.5, 0.999 adam, 0.5, 0.999 adam ,0.9, 0.999 adam 0.9, 0.999

learning rate αφ,ω 0.0001 0.0001 0.0001 {0.001, 0.0001} {0.001, 0.0001}
β-annealing no no no {no, 50000} {no, 50000}

e-train with train+val no no no no yes

Evaluation
polyak (decay) - no no no 0.998

polyak (start interation) - no no no {0, 1000, 5000, 10000}
neval - 40000 40000 20000 20000

Table 8. Hyperparameters for the VAE experiments. toy is the 25 Gaussian dataset. dbmnist and sbmnist are dynamically and statically
binarized MNIST, respectively.

AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

HalfCheetah-v2 Ant-v2 Hopper-v2 Walker-v2 Humanoid-v2 Humanoid (rllab)

AR-DAE

model

parameterization gradient gradient gradient gradient gradient gradient
network mlp mlp mlp mlp mlp mlp
mfc 5 5 5 5 5 5
menc 5 5 0 1 1 1

activation elu elu elu elu elu elu
dh 256 256 256 256 256 256
s 10000 10000 10000 10000 10000 10000

learning

na,dae 128 64 128 128 64 64
ndata 256 256 256 256 256 256
nσ 1 1 1 1 4 4
Nd 1 1 1 1 1 1
δscale 0.1 0.1 0.1 0.1 0.1 0.1

optimizer adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999
learning rate αθ 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

policy

model

network mlp mlp mlp mlp mlp mlp
mfc 1 1 1 2 2 2
menc 1 1 2 1 3 3

activation elu elu elu elu elu elu
dh 256 256 256 256 64 64
dε 10 10 10 10 32 100

learning

nperturb 10 10 10 10 10 10
optimizer adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999
ξ, η, ν 0.01, 0.1, 1.1 0.01, 0.01, 1.1 0.01, 0.01, 1.1 0.01, 0.01, 1.1 0.01, 0.1, 1.3 0.01, 0.1, 1.3

learning rate αφ 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Q-network
model

network mlp mlp mlp mlp mlp mlp
mfc 2 2 2 2 2 2

activation relu relu relu relu relu relu
dh 256 256 256 256 256 256

learning optimizer adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999 adam, 0.9, 0.999
learning rate αω 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

general

α 0.05 0.05 0.05 0.05 0.05 0.05
τ 0.005 0.005 0.005 0.005 0.005 0.005
γ 0.99 0.99 0.99 0.99 0.99 0.99
nZ 100 10 100 100 10 10

target calibration no no yes no no no
warm-up 10000 10000 10000 10000 10000 10000

Table 9. Hyperparameters for RL experiments.

