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Abstract

In this work, we propose a robust test for the mul-
tivariate two-sample problem through projective
ensemble, which is a generalization of the Cramér-
von Mises statistic. The proposed test statistic has
a simple closed-form expression without any tun-
ing parameters involved, it is easy to implement
and can be computed in quadratic time. More-
over, our test is insensitive to the dimension and
consistent against all fixed alternatives, it does
not require the moment assumption and is robust
to the presence of outliers. We study the asymp-
totic behaviors of the test statistic under the null
and two kinds of alternative hypotheses. We also
suggest a permutation procedure to approximate
critical values and establish its consistency. We
demonstrate the effectiveness of our test through
extensive simulation studies and a real data appli-
cation.

1. Introduction
We study the problem of testing for homogeneity of two
random samples, i.e., testing whether two samples come
from the same population, which is one of the most fun-
damental problems in statistics and has applications in
a wide range of areas (see, e.g., Lehmann & Romano,
2006). Specifically, suppose x = (X1, . . . , Xp)

T ∈ Rp and
y = (Y1, . . . , Yp)

T ∈ Rp are two p-dimensional random
vectors whose distribution functions are F and G, respec-
tively. {xi, i = 1, . . . ,m} and {yi, i = 1, . . . , n} are two
mutually independent random samples drawn from F and
G, with sample size m and n, respectively. The problem of
testing for whether x and y are homogeneous amounts to
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testing for the equality of two distributions, i.e.,

H0 : F = G versus H1 : F 6= G.

In the past decades, the problem of distribution testing has
received much attention in the literature. Under the nor-
mality assumption, it suffices to compare the differences
in mean vectors, or covariance matrices, or both. For ex-
ample, the Student’s t test and Hotelling’s T 2 test are the
most well-known tests in this circumstance. Other examples
include Bai & Saranadasa (1996); Li & Chen (2012); Cai
et al. (2014); Cai & Liu (2016), etc. However, it is common-
ly known that the first two moments are not sufficient to
characterize the distribution and these kinds of methods may
be inconsistent when the normality assumption violates.

To overcome this issue, several nonparametric approach-
es have been developed in the literature. It is natural to
use a measure of difference between Fm and Gn as the
test statistic, where Fm and Gn are the empirical distribu-
tion functions of F and G, respectively. For example, the
Kolmogorov-Smirnov test statistic (Smirnov, 1939) is given
by
√
nm/(n+m) supt∈R |Fm(t) − Gn(t)|, Cramér-von

Mises (CvM) test statistic (Anderson, 1962) and Anderson-
Darling statistic (Darling, 1957) can both be written in the
following formula,

mn

m+ n

∫ ∞
−∞
{Fm(t)−Gn(t)}2 ω {Hm+n(t)} dHm,n(t),

with different choices of the weight function ω(·), where
Hm+n is the pooled empirical distribution function. Al-
though these methods have several advantages when p = 1,
i.e., consistent against any fixed alternatives, distribution
free under the null, no moment conditions are required, and
free of tuning parameters, it may be difficult to generalize
them to multivariate cases (Kim et al., 2020). For exam-
ple, Darling (1957) generalized the Kolmogorov-Smirnov
test by directly using the multivariate empirical distribution
function, which suffers from significant power loss when
p increases. In the multivariate case, i.e., p ≥ 2, there
is a number of literature about two-sample testing proce-
dures. We roughly classify them into two classes. The first
category is graph-based tests. For example, Friedman &
Rafsky (1979) constructed k minimum spanning tree graphs
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while Henze (1988) used k nearest neighbor graphs. Chen &
Friedman (2017) and Chen et al. (2018) improve the test pro-
posed by Henze (1988) to enhance the power performance
under scale alternatives and imbalanced samples, respective-
ly. Bhattacharya (2019) established a general framework
for graph-based two-sample tests. However, these graph
based tests are either inconsistent or rely on selecting tun-
ing parameters delicately. The other class can be described
as using reproducing kernel Hilbert space (RKHS) embed-
dings of probability distributions. For example, Gretton et al.
(2012) proposed a class of maximum mean discrepancy (M-
MD) test statistic based on a reproducing kernel Hilbert
approach. Székely & Rizzo (2004) introduced a class of en-
ergy statistic for testing equal distributions, and is shown to
be a special case of the MMD (Sejdinovic et al., 2013). One
may refer to Harchaoui et al. (2013) for a comprehensive
review.

More recently, Kim et al. (2020) generalized the univari-
ate CvM statistic to arbitrary dimension through the novel
projection-averaging. Specifically, the proposed test statis-
tic is the sample version of the squared multivariate CvM
distance defined as:∫∫

{Fβ(t)−Gβ(t)}2dHβ(t)dλ(β), (1)

where β ∈ Rp, Fβ(t) = P(βTx ≤ t), and Gβ(t) =
P(βTy ≤ t), Hβ(t) is chosen to be τFβ(t)+(1− τ)Gβ(t),
τ is the limit value of m/(m + n) as min(m,n) → ∞,
and λ(β) is the uniform probability measure on the p-
dimensional unit sphere Sp−1 def

= {β ∈ Rp : ‖β‖ = 1}.
By choosing Hβ(t) = t, the corresponding test statistic is
shown to be proportional to the energy statistic (Baringhaus
& Franz, 2004). Given the advantages of the Cramér-von
Mises test statistic when p = 1, it is supposed that these
two kinds of generalizations have similar properties. For
example, they are both nonnegative and equal to zero if
and only if F = G, the integrations have a simple closed-
form expression and the resulting test statistic can be easily
calculated and are both free of tuning parameters. Further-
more, the projection-averaging approach proposed by Kim
et al. (2020) is also robust to heavy-tailed distributions or
outliers, while the energy distance is only well-defined un-
der the moment condition (finite first moment). That is,
when potential outliers exist, the energy statistic becomes
unstable and the power performance of the resulting test
might become very poor, while the projection-averaging
statistic maintains good power. However, as a side-effect,
the projection-averaging approach incorporated higher com-
putational costs, i.e., cubic computations, which greatly
diminishes the computational efficiency, especially when
the sample size is large. Moreover, they focused on the case
that βTx and βTy have continuous distribution functions
for all β ∈ Sp−1, whereas we are targeting on a more gen-

eral case and we do not need such continuous distribution
assumption.

In this paper, we apply the idea of projections and develop
a new projective ensemble approach for testing equality of
distributions. Similar to Baringhaus & Franz (2004) and
Kim et al. (2020), our proposal generalizes the Cramér-von
Mises test through projection ensemble. We show that, with
different choices of the ensemble approaches, i.e., Hβ(t)
and λ(β) in (1), the integration also has a simple closed-
form expression. Besides, the corresponding test statistic
shares all the aforementioned appealing properties. Specifi-
cally, the explicit closed-form expression does not require
any tuning parameters, making our proposed test easy to
implement and insensitive to the dimension. It is robust to
the presence of potential extreme values or heavily tailed ob-
servations because it does not require the moment condition.
It is also a member of the MMD, nonnegative and equal to
zero if and only if F = G, which guarantees that our test
is consistent against all fixed alternatives. Moreover, our
test statistic has a very simple closed-form expression and
can be computed in quadratic time without the continuity
assumption.

The rest of this paper is organized as follows. We give the
motivation of the projective ensemble based test, suggest
an index to measure the departure from the equality of dis-
tributions, and provide several appealing properties of the
index at the population level in section 2.1. We use the
sample version of the index as the test statistic and study
the asymptotic properties of this statistic in detail in Section
2.2. In Section 3, we provide extensive numerical results
to compare the finite-sample performance of our proposed
tests with existing competitors. We conclude this paper with
a brief discussion in Section 4. All technical proofs are
provided in the Supplementary Material.

2. Projective Ensemble Test
2.1. Motivation

In this section, we develop a new projective ensemble
Cramér-von Mises test for equality of distributions. We
start with the rationales. It is straightforward that x and y
are equally distributed if and only if (βTx) and (βTy) are
homogeneous, for all β ∈ Rp. Therefore, with suitable
weight functions, it is additionally equivalent to∫∫

{Fβ(t)−Gβ(t)}2dH(β, t) = 0. (2)

When dH(β, t) = dHβ(t)dλ(β), Hβ(t) is chosen to be
τFβ(t) + (1 − τ)Gβ(t), and λ(β) is the uniform proba-
bility measure on the p-dimensional unit sphere Sp−1 def

=
{β ∈ Rp : ‖β‖ = 1}, the integration has a closed form
and corresponds to the projection-averaging approach pro-
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posed by Kim et al. (2020). Similar techniques to obtain a
closed-form expression are also used by Escanciano (2006)
and Zhu et al. (2017). However, the pooled distribution
function Hβ(t) is typically unknown and needs to be es-
timated from the sample in practice, which incorporates
heavy computational burdens and greatly limits its applica-
tion in practice. When Hβ(t) = t, the integration also has a
closed form and coincides with the energy statistic (Székely
& Rizzo, 2004; Baringhaus & Franz, 2004). However, in or-
der to ensure the integration is finite, the moment condition
should be imposed, which makes the resulting test sensitive
to heavy-tailed distributions. These observations motivate
us to carefully choose other weight functions such that

1. The integration in (2) equals zero if and only if x and
y are equally distributed;

2. The choice of H(β, t) does not depend on unknown
functions which are difficult to estimate;

3. The integration in (2) has a closed-form expression,
and is finite without any moment conditions.

To achieve these goals simultaneously, we note that Fβ(t) =
P(βTx ≤ t) and Gβ(t) = P(βTy ≤ t), the integration in
(2) can be rewritten as∫∫

F 2
β(t)dH(β, t)− 2

∫∫
Fβ(t)Gβ(t)dH(β, t)

+

∫∫
G2

β(t)dH(β, t)

=

∫∫
E
{
I(βTx1 ≤ t,βTx2 ≤ t)

}
dH(β, t)

−2
∫∫

E
{
I(βTx1 ≤ t,βTy2 ≤ t)

}
dH(β, t)

+

∫∫
E
{
I(βTy1 ≤ t,βTy2 ≤ t)

}
dH(β, t),

where x1,x2 and y1,y2 are two independent copies of x
and y, respectively. In order to obtain a closed-form ex-
pression, we need to evaluate the three integrations in the
above display. We take the first integration for example. By
adopting Fubini’s theorem, it suffices to find H(β, t) such
that the following integration∫∫

I(βTx1 ≤ t,βTx2 ≤ t)dH(β, t)

has a closed form for given x1 and x2. The following lemma
implicitly shows that, by taking H(β, t) as the cumulative
distribution function of a p + 1 dimensional multivariate
joint normal random vector with mean 0 and covariance
Ip+1, the above integration can be explicitly calculated.
Lemma 1. (Gupta, 1963) Let (Z1, Z2)

T be bivariate normal
with mean 0. The correlation between Z1 and Z2 is ρ, then

P(Z1 ≥ 0, Z2 ≥ 0) =
1

4
+

1

2π
arcsin(ρ).

According to Lemma 1, by treating x1 and x2 as constants,
(β, t)T as a p+ 1 dimensional multivariate joint normal ran-
dom vector with cumulative distribution function H(β, t),
the integration can be expressed as∫∫

I(βTx1 ≤ t,βTx2 ≤ t)dH(β, t)

= P
(
t− βTx1 ≥ 0, t− βTx2 ≥ 0

∣∣∣∣ x1,x2

)
=

1

4
+

1

2π
arcsin

(
1 + xT

1x2√
1 + xT

1x1

√
1 + xT

2x2

)
.

Consequently, the integration in (2) can be expressed in a
closed form, which is shown in the following Theorem.

Theorem 1. Suppose x = (X1, . . . , Xp)
T ∈ Rp and

y = (Y1, . . . , Yp)
T ∈ Rp are two p-dimensional random

vectors whose distribution functions are F and G, respec-
tively. x1,x2 and y1,y2 are two independent copies of x
and y, respectively. Let H(β, t) be the cumulative distri-
bution function of a p + 1 dimensional multivariate joint
normal random vector with mean 0 and covariance Ip+1.
Then

T = 2π

∫∫
{Fβ(t)−Gβ(t)}2dH(β, t)

= T1 − 2T2 + T3, (3)

where T1, T2 and T3 are defined as

T1
def
= E arcsin

(
1 + xT

1x2√
1 + xT

1x1

√
1 + xT

2x2

)
,

T2
def
= E arcsin

(
1 + xT

1y2√
1 + xT

1x1

√
1 + yT

2y2

)
,

T3
def
= E arcsin

(
1 + yT

1y2√
1 + yT

1y1

√
1 + yT

2y2

)
.

In addition, T is nonnegative and equals zero if and only if
F = G.

Theorem 1 clearly indicates that T defined in (3) can be
served as an index to distinguish whether two random vec-
tors, x and y, are equally distributed without moment condi-
tion or continuity assumption. It is nonnegative and equals
zero if and only if x and y are equally distributed.

2.2. Asymptotic Properties

According to Theorem 1, it is natural to use the sample
version of T as the test statistic when testing for equal-
ity of distributions. Suppose {xi, i = 1, . . . ,m} and
{yi, i = 1, . . . , n} are two mutually independent random
samples drawn from F and G, with sample size m and n,
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respectively. At the sample level, we estimate T1, T2, and
T3 by

T̂1
def
=

1

m2

m∑
i=1

m∑
j=1

arcsin

 1 + xT
ixj√

1 + xT
ixi

√
1 + xT

jxj

 ,

T̂2
def
=

1

mn

m∑
i=1

n∑
j=1

arcsin

 1 + xT
iyj√

1 + xT
ixi

√
1 + yT

jyj

 ,

T̂3
def
=

1

n2

n∑
i=1

n∑
j=1

arcsin

 1 + yT
iyj√

1 + yT
iyi

√
1 + yT

jyj

 .

Then, the test statistic is given by

T̂ = T̂1 − 2T̂2 + T̂3.

Because T̂1, T̂2, and T̂3 are all standard V statistics, T̂
can be calculated directly with computational complexity
O{(m + n)2}, whereas the computational cost for Kim
et al. (2020) is of order O{(m + n)3}. We now give the
asymptotic properties of the test statistic under the null
hypothesis in Theorem 2.
Theorem 2. Under the null hypothesis, that is, F = G, as
min(m,n)→∞, mn

m+n T̂ converges in distribution to

2π

∫∫
{ζ(β, t)}2dH(β, t),

where ζ(β, t) is a gaussian random process with mean zero
and covariance function, cov {ζ(β, t), ζ(α, s)}, is given by

P
(
βTx ≤ t,αTx ≤ s

)
− P

(
βTx ≤ t

)
P
(
αTx ≤ s

)
. (4)

Note that mn/(m+ n)2 → τ(1− τ) as min(m,n)→∞,
where τ is the limit value of m/(m + n). Theorem 2 in-
dicates that our test statistic is (m + n) consistent under
the null hypothesis without requiring moment condition or
continuity assumption. However, the covariance function
defined in (4) is typically distribution dependent, which
makes the limiting null distribution intractable. In practice,
we propose the permutation procedure to approximate the
null distribution. Before that, we study the asymptotic prop-
erties of T̂ under two kinds of alternative hypotheses, i.e.,
the global alternative and the local alternative.

Under the global alternative, F 6= G and the difference
between the two distribution functions does not vary with
the sample size. In this case, the proposed test statistic is
asymptotic normal, which is stated in the following Theo-
rem.
Theorem 3. Under the global alternative hypothesis, as
min(m,n)→∞, (m+ n)1/2(T̂ − T ) converges in distri-
bution to

N
{
0,

4(1− τ)var(Z1) + 4τvar(Z2)

τ(1− τ)

}

where τ ∈ (0, 1) is the limit value of m/(m+ n), Z1 and
Z2 are defined in (S.3.1) and (S.3.2) in the Supplementary
Material, respectively.

From Theorem 3, it is clear to see that our proposed test
statistic is root-(m+ n) consistent under any fixed alterna-
tive. Recall that the test statistic is (m+n) consistent under
the null hypothesis. Then our proposed test can consistently
detect any fixed alternatives with probability approaching
one.

Under the local alternative, F 6= G but the difference be-
tween the two distribution functions diminishes as the sam-
ple size increases. We consider a sequence of local alterna-
tives as follows:

H1l : P(βTx ≤ t) = P(βTy ≤ t) + (m+ n)−1/2`(β, t),

where `(β, t) is a function depending only on β and t such
that

∫∫
`2(β, t)dH(β, t) exists.

Theorem 4. Under the local alternative hypothesis, as
min(m,n)→∞, mn

m+n T̂ converges in distribution to

2π

∫∫
{ζ(β, t) + τ1/2(1− τ)1/2`(β, t)}2dH(β, t),

where τ is the limit value of m/(m+ n), ζ(β, t) is a gaus-
sian random process defined in Theorem 2.

Theorem 4 implicitly shows that, our proposed test asymp-
totically has nontrivial power performance when the differ-
ence between the two distribution functions is at the rate
of (m+ n)−1/2. That is, as long as the difference is larger
than O

{
(m+ n)−1/2

}
, it can be consistently detected by

our proposed test with probability tending to one.

However, it is yet unclear how to approximate the limit-
ing null distribution because it equals the weighted sum
of infinite number of chi squared variables. In addition,
the weights are distribution dependent and are typically
unknown. To address this issue, we now propose the permu-
tation procedure as follows:

1. Let {z1, z2, . . . , zm+n} = {x1, . . . ,xm,y1, . . . ,yn}
denote the pooled samples. Randomly permute the
pooled samples to obtain {z∗1, z∗2, . . . , z∗m+n}.

2. Select the first m observations from the pooled sam-
ples as {x∗1, . . . ,x∗m}, and the rest observations as
{y∗1, . . . ,y∗n}.

3. Based on the two randomly permuted samples
{x∗1, . . . ,x∗m} and {y∗1, . . . ,y∗n}, calculate the test s-
tatistic to obtain T̂ ∗.

4. Repeat steps 1 to 3 for B times to obtain T̂ ∗b , b =
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1, 2, . . . , B. The associated p-value is given by

B−1
B∑

b=1

I
(
T̂ ∗b ≥ T̂

)
,

where I(·) is an indicator function. Reject the nul-
l hypothesis if the p-value is smaller than the given
significance level.

Intuitively, since the randomly permutated samples follow
the same distribution with the pooled sample, x∗i and y∗j
are equally distributed, it is thus reasonable to use the per-
mutation procedure to approximate the null distribution.
Theorem 5 states the consistency of the above permutation
procedure.
Theorem 5. As min(m,n)→∞,

sup
t≥0

∣∣∣P{mn/(m+ n)T̂ ∗ ≤ t
∣∣ x1, . . . ,xn,y1, . . . ,yn

}
−P(T ∗∞ ≤ t)

∣∣∣
converges in probability to 0, where T ∗∞ is defined as

T ∗∞ = 2π

∫∫
{ζ∗(β, t)}2dH(β, t)

and ζ∗(β, t) is a gaussian random process with mean zero
and covariance function, cov {ζ∗(β, t), ζ∗(α, s)}, given by

τP
(
βTx ≤ t,αTx ≤ s

)
+ (1− τ)P(βTy ≤ t,αTy ≤ s)

−
{
τP(βTx ≤ t) + (1− τ)P(βTy ≤ t)

}{
τP(αTx ≤ s)

+(1− τ)P(αTy ≤ s)
}
. (5)

We remark here that the covariance function of ζ∗(β, t) in
(5) coincides with that of ζ(β, t) in (4) under the null hy-
pothesis, while is different from that of ζ(β, t) in (4) under
the alternative. That is, T̂ ∗ has the same limiting distribu-
tion as T̂ based on the original samples under the null, but
has a different distribution under the alternative. However,
the permutation procedure can still provide an asymptoti-
cally valid inference for the proposed test. Specifically, it
provides asymptotically valid critical values under the null
because the limiting distribution of T̂ ∗ and T̂ are asymp-
totically the same. While under the alternative, the test is
still powerful because T̂ ∗ is (m + n) consistent while T̂
is root-(m + n) consistent in this case. This implies that
T̂ ∗ is of order Op(1) while T̂ →∞ in probability, and the
corresponding p-value converges in probability to zero.

3. Numerical Studies
3.1. Simulations

In this section, we study the finite sample performance of the
proposed method through extensive numerical analysis. We

Table 1. The empirical powers for different methods when all the
samples are generated from multivariate normal distributions at
significance level α = 0.05.

PE CVM NN MGB

LOCATION 1.000 1.000 0.999 0.996
SCALE 0.713 0.880 0.723 1.000
LOCATION-SCALE 0.966 1.000 0.997 1.000

ENERGY BG CM BALL

LOCATION 1.000 1.000 0.994 1.000
SCALE 0.989 1.000 0.169 1.000
LOCATION-SCALE 1.000 1.000 0.765 1.000

also compare the performance of the projection ensemble
based test (“PE”) with other competing nonparametric tests.
Specifically, they are the projection-averaging based Cramér-
von Mises test (Kim et al., 2020, “CvM”), the k nearest
neighbor test (Henze, 1988, “NN”), the modified k nearest
neighbor test (Mondal et al., 2015, “MGB”), the energy
statistic based test (Székely & Rizzo, 2004, “Energy”), the
inter-point distance test (Biswas & Ghosh, 2014, “BG”),
the cross-match test (Rosenbaum, 2005, “CM”), and ball
divergence test (Pan et al., 2018, “Ball”).

We generate the samples {xi,xi ∈ Rp, i = 1, . . . , nx},
{yi,yi ∈ Rp, i = 1, . . . , ny}, and {zi, zi ∈
Rp, i = 1, . . . , nz} independently from td(µx1p, σ

2
xIp),

td(µy1p, σ
2
yIp), and td(µz1p, σ

2
zIp), respectively, where

1p is a p-dimensional vector whose entries are all 1 and Ip
is a p-by-p identity matrix. Here td(µx1p, σ

2
xIp) stands for

a multivariate t distribution with location parameter µx1p

and scale matrix σ2
xIp, and the degrees of freedom is d. We

set µx = 0, σx = 1, µy = 1, σy = 1, µz = 1, and σz = 2,
so that we can inspect the power performance of location
shift by comparing the distribution of x and y, the power
performance of scale difference by comparing the distribu-
tion of y and z, and the power performance of both location
shift and scale difference by comparing the distribution of x
and z. Throughout the experiment, we set the significance
level as 0.05. We repeat each experiment 1000 times and
determine the critical values with 1000 permutations.

We first consider the case that all the samples are generated
from multivariate normal distributions. That is, we set d =
∞ in this experiment. We set all the sample size to be 20,
i.e., nx = ny = nz = 20. The dimension is set to be
p = 10. The corresponding power performances are charted
in Table 1. It can be seen clearly that, all methods except
the cross-match test perform fairly well in this normal case.
The cross-match test is not efficient in detecting the scale
difference may be mainly because it relies on some tuning
parameters.

We now consider the case that the moment conditions are



Projective Ensemble Approach to Two Sample Test

Table 2. The empirical powers for different methods when all the
samples are generated from Cauchy distributions at significance
level α = 0.05.

PE CVM NN MGB

LOCATION 1.000 1.000 0.139 0.056
SCALE 0.550 0.555 0.311 0.601
LOCATION-SCALE 0.998 1.000 0.335 0.582

ENERGY BG CM BALL

LOCATION 0.043 0.048 1.000 0.036
SCALE 0.302 0.217 0.108 0.577
LOCATION-SCALE 0.289 0.215 0.872 0.581

Table 3. The empirical powers for different methods when all the
samples are generated from Cauchy distributions and the sample
sizes are imbalanced at significance level α = 0.05.

PE CVM NN MGB

LOCATION 0.999 0.999 0.084 0.040
SCALE 0.397 0.477 0.000 0.737
LOCATION-SCALE 1.000 1.000 0.000 0.857

ENERGY BG CM BALL

LOCATION 0.055 0.052 0.996 0.037
SCALE 0.259 0.026 0.045 0.520
LOCATION-SCALE 0.372 0.089 0.943 0.728

not fulfilled. We set d = 1 in this experiment. That is,
all the elements follow Cauchy distributions. We set the
dimension to be p = 100 and the samples sizes are all set
to be 20. Table 2 summarizes the empirical powers for all
the tests, from which we can see that some methods are
not efficient in this case. For example, when detecting the
location shift, the power for the energy statistic based test
is only 0.043. This indicates that the energy statistic based
tests may not be efficient when the moment condition is not
satisfied. However, both our methods and the projection-
averaging based Cramér-von Mises test are powerful even
when extreme values exist.

We also consider the case that the sample sizes are imbal-
anced. We let d = 1 so that all the elements follow Cauchy
distributions. We also set the dimension to be p = 100 and
the samples sizes are nx = 20, ny = 10, and nz = 40,
respectively. The resultant power performances for all the
tests are summarized in Table 3. Since all the settings are
the same as that in the last experiment, we compare the
results in Table 3 with that in Table 2. We can see that the
k nearest neighbour test is sensitive to the imbalance of the
sample size, while our method performs similarly compared
with the balanced case.

Next, we inspect the execution time for different methods
when testing for the homogeneity of the samples {xi,xi ∈

Table 4. The average running time (in milliseconds) for different
methods.

n PE CVM NN MGB

20 0.16 6.11 1.00 0.98
50 0.27 37.19 3.17 2.72
100 0.63 213.69 7.46 7.36

n ENERGY BG CM BALL

20 0.11 0.11 3.69 4.49
50 0.29 0.30 6.28 20.22
100 1.17 1.06 16.20 81.56

Rp, i = 1, . . . , nx} and {yi,yi ∈ Rp, i = 1, . . . , ny}. We
set all the settings the same as that of the multivariate normal
case, except we vary the sample size n from {20, 50, 100},
where nx = ny = n. This experiment is run on a laptop
(Dell XPS 13 9360, Intel Core i7-8550U CPU @ 1.80GHz
2.00 GHz). All tests are implemented with R 3.6.1 for fair
comparison. The average running time of calculating the
test statistic for different methods are reported in Table 4.
According to Table 4, we can see that energy statistic based
test, the inter-point distance test and our projection ensem-
ble based test are superior to the others. Meanwhile, the
projection-averaging based Cramér-von Mises test suffers
from heavy computations, which may greatly limit its usage
in practice, especially when the sample size becomes large.

To sum up, our proposed projection ensemble based method
is comparable with the projection-averaging based Cramér-
von Mises test in terms of power performance, and is superi-
or to the other tests across almost all the cases, especially in
the presence of the heavy-tailed distributions. However, the
projection-averaging based Cramér-von Mises test suffers
from cubic computations, while our method is much more
computationally efficient.

3.2. An Application

In this section, we apply the proposed test with projection
ensemble to Daily Demand Forecasting Orders Data Set
(Ferreira et al., 2016) from the UCI machine learning repos-
itory. This is a real database of a Brazilian company of large
logistics, which was collected during 60 days. The original
data consists of twelve predictive attributes and a target fea-
ture. In this study, we inspect whether the demand on Friday
is significantly different from other weekdays. Specifically,
we consider the following features: Non urgent order (X1),
urgent order (X2), three order types (X3, X4, X5), fiscal
sector orders (X6), orders from the traffic controller sector
(X7), three kinds of banking orders (X8, X9, X10), total
orders (X11).

We adopt the projection ensemble based test and other com-
peting nonparametric tests described in Section 3.1 on this
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Table 5. The empirical p-values for different methods for the daily
demand forecasting orders data set.

PE CVM NN MGB

P-VALUE 0.008 0.004 0.249 0.180

ENERGY BG CM BALL

P-VALUE 0.011 0.210 0.554 0.112

data set. The resulting p-values based on 1000 permutations
are charted in Table 5. Following Liu & Xie (2019), we
adopt the Cauchy combination test statistic as

T =
1

8

8∑
i=1

tan {(0.5− pi)π} ,

where pi is the p-value of the ith test. Because each per-
mutation p-value is approximately uniformly distributed
under the null, the test statistic T is the average of 8 stan-
dard Cauchy random variables, which also has a standard
Cauchy distribution when all pis are mutually independent.
As pointed by Liu & Xie (2019), although correlations a-
mong p-values will affect the null distribution of the Cauchy
combination test statistic, the impact on the tail is very lim-
ited. Therefore, we combine all p-values in this way and get
the final p-value as follows,

p = 1/2− π−1 arctan(T ).

The corresponding p-value is 0.0164, which indicates that
the demand on Friday is significantly different from other
weekdays at significance level α = 0.05. Meanwhile, ac-
cording to Table 5, we can see that only our method, the
projection-averaging based Cramér-von Mises test (Kim
et al., 2020), and the energy statistic based test (Székely &
Rizzo, 2004) can reject the null hypothesis at significance
level α = 0.05, which further confirms that our method is
very powerful when testing for equality of distributions.

4. Conclusion and Discussion
In this work, we apply the idea of projections and pro-
pose a robust test for the multivariate two-sample problem.
Through projection ensemble, the proposed test statistic is a
generalization of the univariate Cramér-von Mises test statis-
tic, which has similar properties with Baringhaus & Franz
(2004) and Kim et al. (2020). It is demonstrated that with a
suitable choice of the ensemble approach, the proposed test
statistic has a simple closed-form expression without any
tuning parameters. It is easy to implement, insensitive to the
dimension and robust to the presence of potential extreme
values or heavily tailed observations. Extensive numeri-
cal studies indicate that the proposed projection ensemble
based test is superior to most existing tests, especially in

the presence of the heavy-tailed distributions. Moreover, it
is comparable with the projection-averaging based Cramér-
von Mises test in terms of power performance, but much
more efficient in terms of computation.

It is notable that although the proposed test statistic is more
computationally efficient than that of Kim et al. (2020), it
still requires O{(m+ n)2} calculations and O{(m+ n)2}
memory for storing them. This may greatly limit its us-
age for large datasets, especially in the era of big data be-
cause we may encounter millions of observations in practice.
Therefore, it is also crucial to develop efficient algorithm-
s when computing the test statistic when the sample size
becomes large. In univariate cases, we can adopt AVL tree-
type implementation to develop an efficient algorithm with
complexity O{(m+ n) log(m+ n)} when calculating the
test statistic, which is also used in Huang & Huo (2017)
when computing energy statistics. In the case of multivari-
ate random variables, we can approximate the test statistic
with random projections, whose computational cost can be
reduced to O{(m + n)K log(m + n)} and memory cost
O{max(m + n,K)}, where K is the number of random
projections. It can be anticipated that the resulting test can
achieve nearly the same power as the direct test (Huang &
Huo, 2017).
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Székely, G. J. and Rizzo, M. L. Testing for equal distribu-
tions in high dimension. InterStat, 5(16.10):1249–1272,
2004.

Zhu, L., Xu, K., Li, R., and Zhong, W. Projection correlation
between two random vectors. Biometrika, 104(4):829–
843, 2017.


