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Abstract

Fine-tuning the deep convolution neural network

(CNN) using a pre–trained model helps trans-

fer knowledge learned from larger datasets to

the target task. While the accuracy could be

largely improved even when the training dataset

is small, the transfer learning outcome is usu-

ally constrained by the pre-trained model with

close CNN weights (Liu et al., 2019), as the

backpropagation here brings smaller updates to

deeper CNN layers. In this work, we propose RI-

FLE– a simple yet effective strategy that deep-

ens backpropagation in transfer learning settings,

through periodically Re-Initializing the Fully-

connected LayEr with random scratch during the

fine-tuning procedure. RIFLE brings meaning-

ful updates to the weights of deep CNN layers

and improves low-level feature learning, while

the effects of randomization can be easily con-

verged throughout the overall learning proce-

dure. The experiments show that the use of RI-

FLE significantly improves deep transfer learn-

ing accuracy on a wide range of datasets, out-

performing known tricks for the similar pur-

pose, such as Dropout, DropConnect, Stochastic

Depth, Disturb Label and Cyclic Learning Rate,

under the same settings with 0.5%–2% higher

testing accuracy. Empirical cases and ablation

studies further indicate RIFLE brings meaning-

ful updates to deep CNN layers with accuracy

improved.
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1. Introduction

Blessed by tons of labeled datasets that are open to the pub-

lic, deep learning (LeCun et al., 2015) has shown enor-

mous success for image classification and object detec-

tion tasks in the past few years. In addition to training a

deep convolution neural network (CNN) from scratch with

empty or random initialization, a more effective way might

be fine-tuning a deep CNN using the weights of a pre–

trained model, e.g., ResNet-50 trained using ImageNet, as

the starting point (Kornblith et al., 2019), since the learning

dynamics would converge to a local minima of loss that is

close to its starting point (Neyshabur et al., 2015; Soudry

et al., 2018; Liu et al., 2019). To the end, such deep trans-

fer learning paradigms reuse convolutional filters of well-

trained models (Yosinski et al., 2014; Long et al., 2015),

and are capable of extracting useful features from the tar-

get dataset for better classification after a short fine-tuning

procedure.

While above fine-tuning practice greatly enhances the ac-

curacy of image classification even when the training

dataset is small (Bengio, 2012; Kornblith et al., 2019),

the room for further enhancement still exists. Due to

the use of well-trained filters, the fine-tuning procedure

frequently converges very quickly, while most of CNN

weights have not been updated sufficiently. Although the

fully-connected (FC) layer would be fine tuned with supe-

rior performance to classify the training datasets (Zhang

et al., 2017), the features learned for classifications might

still be largely based on the source datasets of transfer

learning rather than the target one (Yosinski et al., 2014;

Long et al., 2015). From the error backpropagation’s per-

spectives (Rumelhart et al.; LeCun et al., 1988), the fast

convergence of the FC layer leads to trivial weight up-

dates to CNN (Liu et al., 2019), while the updates would

become smaller and smaller with the depth of CNN lay-

ers (Srivastava et al., 2015). In such way, compared to

the CNN weights learned from the target training dataset

directly, the fine-tuning procedure seldom changes or im-

proves the deep CNN layers (Liu et al., 2019). Our re-

search hereby assumes that the in-depth backpropagation

could further improve the performance of transfer learning

based on pre–trained models.
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To achieve the goal, tons of tricks, including Dropout (Gal

& Ghahramani, 2016), Dropconnect (Wan et al., 2013),

Stochastic depth (Huang et al., 2016), Cyclic learning

rate (Smith, 2017), Disturb label (Xie et al., 2016) and etc.,

have been proposed in supervised learning settings, espe-

cially to train very deep neural networks (Srivastava et al.,

2015). Our research, however, finds these efforts still might

not work in-depth for transfer learning, as the FC layer con-

verges so fast and overfits to the target training dataset with

features extracted by the pre–trained CNN filers (Li et al.,

2019). We thus aim at proposing a novel backpropaga-

tion strategy that appropriately updates deep CNN layers,

in transfer learning settings, against the fast convergence of

FC.

In this way, we propose a simple yet effective strategy,

namely RIFLE, which makes backpropagation in-depth

for deep transfer learning through Re-Initializing the Fully-

connected LayEr. More specifically, we equally divide

the whole fine-tuning epochs into several periods, and re-

initialize weights of the fully connected layer with ran-

dom weights at the beginning of each period. Further-

more, cyclic learning rate in the same pace has been used

to update the FC layer to ensure the final convergence. To

verify the performance of RIFLE, we carry out extensive

experiments based on various popular image classification

datasets with diverse types of visual objects. RIFLE sta-

bly improve the fine-tuning procedures and outperforms the

aforementioned strategies under the same settings. In sum-

mary, our contributions are as follows:

• This work is the first attempt to improve deep trans-

fer learning through pushing meaningful updates to

the deep CNN layers, through the error backpropaga-

tion with the target training datasets. In a micro per-

spective, RIFLE re-initializes the FC layer with ran-

dom weights and enlarges the fitting error for deeper

backpropagation. From a macro perspective, RIFLE

periodically incorporates non-trivial perturbation to

the fine-tuning procedures and helps training proce-

dure to escape the “attraction” of pre–trained CNN

weights (Zhou et al., 2019). Furthermore, RIFLE is

designed to randomly re-initialized the FC layer only

and might not hurt the convergence of overall CNN.

• The existing regularizers for deep transfer learning,

such as L2 (weight decay) (Bengio, 2012), L2-SP (Li

et al., 2018)), and DELTA (Li et al., 2019), intend

to improve the knowledge transfer through ensuring

the consistency between the pre–trained model and

the target one from weights and/or parameter perspec-

tives. Our research, however, assumes such regular-

ization reduces the effect of error backpropagation and

might bring less meaningful modifications to the net-

work, especially the deep CNN layers. On the other

hand, when such regularization for knowledge transfer

is disabled or weakened, the deep transfer learning al-

gorithm might overfit to the training dataset with poor

generalization performance. To balance the these two

issues, RIFLE is proposed. RIFLE avoids overfitting

through incorporating additional noise by random re-

initialization while improving the knowledge transfer

through backpropagation in-depth.

• Through extensive experiments covering various

transfer learning datasets for image classification, we

demonstrate that, on top of two deep transfer learn-

ing paradigms (i.e., the vanilla fine-tuning and the

one with L2-SP (Li et al., 2018)), RIFLE could

achieve stable accuracy improvement with 0.5%-2%

higher testing accuracy. It also outperforms exist-

ing strategies, including Dropout (Gal & Ghahramani,

2016) (on both CNN layers and FC layers), Dropcon-

nect (Wan et al., 2013), Stochastic depth (Huang et al.,

2016), Cyclic learning rate (Smith, 2017) and Disturb

label (Xie et al., 2016), which have been proposed for

similar purposes, under the same settings. We also

conducted extensive empirical studies and an ablation

study to show that (1) RIFLE can make backpropaga-

tion in-depth and bring significant modifications to the

weights of deeper layer; and (2) the weight modifica-

tion brought by RIFLE benefits to the generalization

performance through enhancing the capacity of lower-

level feature learning.

In addition to above contributions, to the best of our knowl-

edge, RIFLE is also yet the first algorithmic regulariza-

tion (Allen-Zhu et al., 2019) designed for deep transfer

learning purposes through weights randomization. RIFLE

can work together with an explicit deep transfer learning

regularizer, such as (Li et al., 2018), and makes a comple-

mentary contribution by further improving the generaliza-

tion performance.

2. Related Work

In this section, we first introduce the related work of deep

transfer learning with the most relevant work to our study.

2.1. Deep Transfer Learning in General

Transfer learning refers to a type of machine learning

paradigms that aim at transferring knowledge obtained in

the source task to a (maybe irrelevant) target task (Pan

et al., 2010; Caruana, 1997), where the source and target

tasks can share either the same or different label spaces. In

our research, we primarily consider the inductive transfer

learning with a different target label space for deep neural

networks. As early as in 2014, authors in (Donahue et al.,

2014) reported their observation of significant performance
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improvement through directly reusing weights of the pre-

trained source network to the target task, when training a

large CNN with a tremendous number of filters and param-

eters.

However, in the interim, while reusing all pre-trained

weights, the target network might be overloaded by learn-

ing tons of inappropriate features (that cannot be used for

classification in the target task), while the key features of

the target task have been probably ignored. In this way,

Yosinki et al. (Yosinski et al., 2014) proposed to understand

whether a feature can be transferred to the target network,

through quantifying the “transferability” of features from

each layer considering the performance gain. Furthermore,

Huh et al. (Huh et al., 2016) made an empirical study on

analyzing features that CNN learned from the ImageNet

dataset to other computer vision tasks, so as to detail the

factors affecting deep transfer learning accuracy. (Ge & Yu,

2017) use a framework of multi-task learning by incorpo-

rating examples from the source domain which are simi-

lar to examples of the target task. In recent days, this line

of research has been further developed with an increasing

number of algorithms and tools that can improve the perfor-

mance of deep transfer learning, including subset selection

(Ge & Yu, 2017; Cui et al., 2018), sparse transfer (Liu et al.,

2017), filter distribution constraining (Aygun et al., 2017),

and parameter transfer (Zhang et al., 2018).

2.2. Regularization for Deep Transfer Learning

Here, we review the knowledge transfer techniques that

reuse pre-trained weights through the regularization. The

square Euclidean distance between the weights of source

and target networks is frequently used as the regularizer

for deep transfer learning (Li et al., 2018). Specifically,

(Li et al., 2018) studied how to accelerate deep transfer

learning while preventing fine-tuning from over-fitting, us-

ing a simple L2-norm regularization on top of the “Start-

ing Point as a Reference” optimization. Such method,

namely L2-SP, can significantly outperform a wide range of

deep transfer learning algorithms, such as the standard L2-

norm regularization. Yet another way to regularize the deep

transfer learning is “knowledge distillation” (Hinton et al.,

2015; Romero et al., 2014). In terms of methodologies, the

knowledge distillation was originally proposed to compress

deep neural networks (Hinton et al., 2015; Romero et al.,

2014) through teacher-student network training, where the

teacher and student networks are usually based on the same

task (Hinton et al., 2015). In terms of inductive transfer

learning, authors in (Yim et al., 2017) were first to inves-

tigate the possibility of using the distance of intermediate

results (e.g., feature maps generated by the same layers) of

source and target networks as the regularization term. Fur-

ther, (Zagoruyko & Komodakis, 2016) proposed to use the

regularization of the divergence between activation maps

for “attention transfer”.

In addition to the above explicit regularization, the implicit

regularization or algorithmic regularization has been fre-

quently discussed in deep learning settings (Soudry et al.,

2018). Generating and controlling the noise in the stochas-

tic learning process, such as Dropout, cyclic learning rate

and so on (Gal & Ghahramani, 2016; Huang et al., 2016;

Smith, 2017), has been considered as a way to improve

deep learning under the over-parameterization through im-

plicit/algorithmic regularization. However, the perfor-

mance improvement caused by these implicit/algorithmic

regularizers has not been discussed in the context of deep

transfer learning.

2.3. Connection to Our Work

Compared to above work and other transfer learning stud-

ies, our work aims at providing a in-depth backpropaga-

tion strategy that improves the performance of deep trans-

fer learning. The intuition of RIFLE is to periodically re-

initialize the FC layer of CNN with random weights while

ensuring the final convergence of the overall fine-tuning

procedure with cyclical learning rate (Smith, 2017) applied

on the FC layer. In our work, we demonstrated the ca-

pacity of RIFLE working with two deep transfer learning

paradigms — i.e., vanilla fine-tuning and the one with L2-

SP (Li et al., 2018) regularization, using a wide range of

transfer learning tasks. The performance boosts with RI-

FLE in all cases of experiments suggests that RIFLE im-

proves deep transfer learning with higher accuracy.

In terms of methodologies, the most relevant studies to our

work are (Hinton et al., 2012; Wan et al., 2013; Huang

et al., 2016; Smith, 2017), where all these methods intend

to deepen the backpropagation through incorporating per-

turbation in the supervised learning procedure. More spe-

cific, Dropout (Hinton et al., 2012) randomly omits parts

of neurons of input or hidden layers during learning to

regularize the backpropagation. Furthermore, DropCon-

nect (Wan et al., 2013) generalizes the idea of Dropout

by randomly dropping some connections between neurons.

Stochastic depth (Huang et al., 2016) incorporates layer-

wise random shortcuts to train short networks with suffi-

cient backpropagation while inferring over the complete

one. Disturb label (Xie et al., 2016) randomly perturbs

labels of the training batch in certain proportions and in-

volves randomness in the loss layer. Furthermore, the use

of cyclical learning rates (Smith, 2017) incorporates ran-

domness over the training procedure to escape shallow and

sharp local minima while achieving decent convergence.

Our methodology follows this line of research, where peri-

odical random re-initialization of the FC layer makes back-

propagation in depth while ensuring convergence of the

overall fine-tuning procedure.
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3. Deep Transfer Learning with RIFLE

In this section, we first introduced the common algorithms

used for deep transfer learning, then present the design of

RIFLE based on randomized regularization.

3.1. Deep Transfer Learning with Regularization

The general deep transfer learning problem based on the

pre–trained model is usually formulated as follow.

Definition 1 (Deep Transfer Learning) First of all, let’s

denote the training dataset for the desired task as D =
{(x1, y1), (x2, y2), (x3, y3) . . . , (xn, yn)}, where totally n
tuples are offered and each tuple (xi, yi) refers to the input

image and its label in the dataset. We then denote ω ∈
R

d be the d-dimensional parameter vector containing all

d parameters of the target model. Further, given a pre-

trained network with parameter ωs based on an extremely

large dataset as the source, one can estimate the parameter

of target network through the transfer learning paradigms.

The optimization object with based deep transfer learning

is to obtain the minimizer of L(ω)

min
w
L(ω) =

{

1

n

n
∑

i=1

L(z(xi, ω), yi) + λ · Ω(ω, ωs)

}

(1)

where (i) the first term
∑n

i=1 L(z(xi, ω), yi) refers to the

empirical loss of data fitting while (ii) the second term

Ω(ω, ωs) characterizes the differences between the param-

eters of target and source network. The tuning parameter

λ > 0 balances the trade-off between the empirical loss

and the regularization term.

As was mentioned, two common deep transfer learning al-

gorithms studied in this paper are vanilla fine-tuning (Korn-

blith et al., 2019) and L2-SP (Li et al., 2018). Specifically,

these two algorithms can be implemented with the general

based deep transfer learning with different regularizers

3.1.1. REGULARIZATION FOR FINE-TUNING

The vanilla fine-tuning procedure incorporates a simple L2-

norm regularization (weight decay) of the weights to ensure

the sparsity of weights, such that

Ω(ω, ωs) = ‖ω‖
2
2. (2)

Note that such L2 regularization is indeed independent with

ωs. Fine-tuning only adopts the weights of the pre-trained

model ωs as the starting point of optimization, so as to

transfer knowledge learned from source datasets.

3.1.2. REGULARIZATION OF L2-SP

In terms of the regularizer, this algorithm(Li et al., 2018)

uses the squared-Euclidean distance between the target

weights (i.e., optimization objective ω) and the pre-trained

weights ωs of source network (listed in Eq 3) to constrain

the learning procedure.

Ω(ω, ωs) = ‖ω − ωs‖
2
2 (3)

In terms of optimization procedure, L2-SP makes the learn-

ing procedure start from the pre-trained weights (i.e., using

ωs to initialize the learning procedure).

In the rest of this work, we presented a strategy RIFLE to

improve the general form of deep transfer learning shown

in Eq. 1, then evaluated and compared RIFLE using the

above two regularizers with common deep transfer learning

benchmarks.

Algorithm 1 RIFLE with SGD Optimizer

1: procedure RIFLE(L,D, ωs, P, T, ηmax)

2: for t = 1, 2, 3..., T do

3: τ ← t mod P
4: if τ = 0 then

5: /*Randomized Re-Initialization of FC*/

6: ΩFC ∼ N (0, δ2I)
7: Ω′

t ← resetFC(Ωt,ΩFC)
8: else

9: Ω′
t ← Ωt

10: end if

11: /*Cyclical Learning Rates*/

12: ηt ←
1
2 · ηmax · cosine(2π · τ/P ) + 1

2 · ηmax

13: Bt ← mini-batch sampling from D

14: /*Backpropagation with SGD Optimizer*/

15: Ωt+1 ← Ωt− ηt ·
1

|Bt|

∑

(x,y)∈Bt

∇L(x,y)(Ω
′
t)

16: end for

17: return ΩT

18: end procedure

3.2. RIFLE Algorithm

Given the regularized loss function L(ω), weights of the

pre-trained model Ωs, the target training dataset D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, the number of iterations

P for the period of random re-initialization, the overall

number of iterations for training T , and the maximal learn-

ing rate ηmax, we propose to use Algorithm 1 to train a

deep neural network with RIFLE with SGD Optimizer.

Note that the optimizers (line 15) used for backpropaga-

tion are interchangeable with Adam, Momentum and etc.,

all based on the same settings of RIFLE. The operator

resetFC(Ωt,ΩFC) in line 7 refers to the operation that re-

places the weights of the fully-connected layer in Ωt with

the random weights ΩFC.

Specifically, for each (e.g., the tth) iteration of learning

procedure, RIFLE first checks whether a new period for

random re-initialization of FC layer starts (i.e., whether
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t mod P = 0). When a new period starts, RIFLE

draws a new random vector from the Gaussian distribu-

tionN (0, δ2I) as the weights of randomized FC layer ΩFC,

then reset the weights of the FC layer in the current model

Ωt with ΩFC to obtain Ω′
t. Please refer to lines 4–8 for

details. Later, RIFLE adopts the simple cosine curve to

adapt the cyclical learning rates (Smith, 2017) then per-

forms backpropagation based on Ω′
t and ηt accordingly.

Note that in Algorithm. 1, we present the design to incor-

porate the SGD optimizer for training. It would be appro-

priate to use other optimizers such Adam, Momentum and

etc. that also incorporate Ω′
t and ηt as inputs.

3.2.1. DISCUSSION

Note that RIFLE strategy is derived from the stochastic

gradient estimator used in stochastic gradient based learn-

ing algorithms, such as SGD, Momentum, conditioned

SGD, Adam and so on. We consider RIFLE as an alterna-

tive approach for descent direction estimation, where one

can use a natural gradient-alike method to condition the

descent direction or to adopt Momentum-alike acceleration

methods on top of RIFLE. We are not intending to com-

pare RIFLE with any gradient-based learning algorithms,

as the contributions are complementary. One can freely use

RIFLE to improve any gradient-based optimization algo-

rithms (if applicable) with new descend directions.

4. Experiment

In this section, we present the experiments to evaluate RI-

FLE with comparison to the existing methods.

4.1. Datasets

Eight popular transfer learning datasets are used to evaluate

the effect of our algorithm.

Stanford Dogs. The Stanford Dogs dataset is used for the

task of fine-grained image classification, containing images

of 120 breeds of dogs. Each category contains 100 training

examples. It provides bounding box annotations for the

further purpose of vision specific algorithms. We use only

classification labels during training.

Indoors 67. Indoors 67 is a scene classification task con-

taining 67 indoor scene categories, each of which consists

of 80 images for training and 20 for testing. A major prop-

erty unique to object recognition tasks is that, both spa-

tial properties and object characters are expected to be ex-

tracted to obtain discriminative features.

Caltech-UCSD Birds-200-2011. CUB-200-2011 contains

11,788 images of 200 bird species from around the world.

Each species is associated with a Wikipedia article and is

organized by scientific classification. This task is challeng-

ing because birds are small and they exhibit pose variations.

Each image is annotated with bounding box, part location,

and attribute labels though we do not use this information.

Food-101. Food-101 is a large scale data set consisting of

101 different kinds of foods. It contains more than 100k

images. Each category contains 750 training examples in

total. In this paper, we select two subsets for transfer learn-

ing evaluation, each containing 30 and 150 training exam-

ples per category, named Food-101-30 and Food-101-150

respectively.

Flower-102. Flower-102 consists of 102 flower categories.

1020 images are used for training, 1020 for validation, and

6149 images for testing. Compared with other datasets, it is

relative small since only 10 samples are provided for each

class during training.

Stanford Cars. The Stanford Cars dataset contains 16,185

images of 196 classes of cars. The data is split into 8,144

training images and 8,041 testing images, where each class

has been split roughly in a 50-50 split. Classes are typically

at the level of Make, Model, Year, e.g. 2012 Tesla Model S

or 2012 BMW M3 coupe.

FGVC-Aircraft. FGVC-Aircraft is composed of 102 dif-

ferent types of aircraft models, each of which contains 37

images for training and 37 for testing on average. It is a

benchmark dataset for the fine grained visual categoriza-

tion tasks. Bounding box annotations are not used for eval-

uation.

Describable Textures Dataset. Describable Textures

Dataset (DTD) is a texture database, consisting of 5640 im-

ages. They are organized by a list of 47 categories, accord-

ing to different perceptual properties of textures.

4.2. Settings

All experiments are implemented on the popular ResNet-

50 architecture pre-trained with the ImageNet classification

task. We use a batch size of 32. SGD with the momen-

tum of 0.9 is used for optimizing all models. The initial

learning rate is set to 0.01, using a cosine annealing learn-

ing rate policy. We train all models for 40 epochs. Nor-

mal data augmentation operations of random mirror and

random crop are used for better performance in all exper-

iments. Specifically, we first resize input images with the

shorter edge being 256, in order to keep the original aspect

ratio, following with normal data augmentation operations

of random mirror and random crop to 224*224. Then in-

puts are normalized to zero mean for each channel.

We compare several important regularization algorithms in

transfer learning scenarios. 1) Dropout and DropConnect

on fully connected layers. For each method, we test the

drop probability of 0.1, 0.2, 0.5 and report the best one.
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Table 1. Comparison of regularization methods. “Original” refers to the performance of using the standard fine-tuning algorithm. “Drop-

Conn.” refers to DropConnection. “CNN-DrO.” refers to Dropout performed on CNN layers. “StochasticD.” refers to Stochastic Depth.

“CycleLR.” refers to Cyclic Learning Rate. “DisturbL.” refers to Disturb Label.

Algorithm regularizers + L
2 (Bengio, 2012)

Datasets Original Dropout DropConn. CNN-DrO. StochasticD. CyclicLR. DisturbL. RIFLE

CUB-200-2011 80.45±0.35 80.43±0.38 79.82±0.24 65.08±0.19 66.48±0.70 80.06±0.24 80.61±0.29 81.13±0.23
FGVC-Aircraft 76.58±0.36 76.52±0.58 75.76±0.71 74.83±0.37 60.94±0.74 75.63±0.43 76.65±0.33 77.82±0.41
Flower-102 92.53±0.31 92.82±0.21 91.99±0.36 89.36±0.26 67.30±1.28 92.33±0.26 91.98±0.41 93.00±0.08
DTD 64.08±0.44 64.09±0.70 62.62±0.88 63.24±0.83 56.33±0.85 63.64±0.43 66.71±0.33 64.94±0.37
Indoor-67 75.09±0.39 74.63±0.59 74.30±0.65 73.15±0.26 60.36±2.11 74.48±0.53 74.60±0.62 76.15±0.52
Stanford Cars 89.12±0.13 89.34±0.07 88.82±0.33 88.20±0.07 75.40±0.54 88.97±0.14 89.52±0.08 90.08±0.14
Stanford Dogs 79.21±0.18 79.24±0.15 78.92±0.32 78.07±0.26 67.97±1.04 78.74±0.15 79.76±0.10 80.10±0.23
Food-101-30 60.38±0.15 60.09±0.23 58.85±0.28 57.41±0.32 42.40±0.79 60.57±0.21 58.02±0.15 62.31±0.27
Food-101-150 75.81±0.14 75.71±0.19 75.45±0.15 74.53±0.29 64.11±0.33 75.31±0.05 75.35±0.08 76.36±0.16

Algorithmic regularizers + L
2-SP (Li et al., 2018)

Datasets Original Dropout DropConn. CNN-DrO. StochasticD. CyclicLR. DisturbL. RIFLE

CUB-200-2011 80.65±0.10 81.17±0.28 80.35±0.27 65.41±0.40 66.47±0.90 80.74±0.13 80.71±0.08 81.73±0.20
FGVC-Aircraft 76.31±0.42 76.44±0.32 75.79±0.47 74.26±0.21 60.31±1.13 76.08±0.37 77.04±0.32 78.00±0.58
Flower-102 91.98±0.34 92.10±0.25 91.86±0.32 89.09±0.43 68.95±0.93 91.91±0.16 91.79±0.48 92.46±0.18
DTD 69.41±0.47 69.21±0.25 68.92±0.45 63.40 ±0.62 54.73±1.01 68.90±0.38 66.61±0.50 70.71±0.36
Indoor-67 75.99±0.33 75.38±0.57 75.44±0.68 73.00±0.52 62.23±0.65 75.21±0.71 74.63±0.19 77.11±0.44
Stanford Cars 89.12±0.21 89.48±0.26 88.91±0.09 88.43±0.15 75.45±0.99 89.15±0.15 89.50±0.11 90.00±0.14
Stanford Dogs 88.32±0.14 88.73±0.14 87.93±0.14 78.47±0.16 67.94±0.65 88.07±0.13 79.96±0.21 88.96±0.06
Food-101-30 61.25±0.23 61.01±0.24 59.66±0.54 57.73±0.27 42.10±1.15 61.06±0.15 57.98±0.32 62.84±0.25
Food-101-150 77.02±0.15 77.04±0.16 76.62±0.18 73.98±0.15 65.28±0.61 76.52±0.11 75.35±0.17 77.36±0.04

2) Dropout on convolutional layers. We also test typical

choices of 0.1, 0.2, 0.5 and report the best one. 3) Stochas-

tic Depth. We use linear decay of the probability of skip-

ping with stochastic depth for p0 = 1 and pL = 0.5, fol-

lowing the best setting of (Huang et al., 2016). Conceptu-

ally the first block which is the closest to the input is always

active, and the last block which is the closest to the output

is skipped with a probability of 0.5. 4) Cyclic learning rate.

We divide the training procedure into N cycles. We test

choices of 2, 3, 4 and report the best one. 5) Disturb label.

We test the perturbation probability of 0.05, 0.1, 0.2 rec-

ommended by (Xie et al., 2016) and report the best result.

We run each experiment five times and report the average

top-1 accuracy.

4.3. Overall Comparisons

We test our deep transfer learning algorithm with two

common fine-tuning algorithms (regularization), which are

standard fine-tuning (L2) and using the starting point as

reference (L2-SP ) in all cases. Through exhaustive exper-

iments, we observe that:

• Comparison to the explicit regularizers for trans-

fer learning. RIFLE stably and significantly im-

proves the performances of two common fine-tuning

algorithms, including L2 and L2-SP , under all the

cases. It demonstrates the feasibility of using algo-

rithmic regularization RIFLE to improve deep trans-

fer learning on top of existing explicit regularizers.

• Comparison to the algorithmic+explicit regulariz-

ers. RIFLE outperforms the other state-of-the-art

algorithms with similar purposes. These algorithms

includes Dropout (Gal & Ghahramani, 2016), Drop

Connect (Wan et al., 2013), Stochastic Depth (Huang

et al., 2016), Cyclic Learning Rate (Smith, 2017)

and Disturb Label (Xie et al., 2016). For both two

fine-tuning algorithms, RIFLE shows an improve-

ment over all the existing methods on most datasets.

We notice that CNN-Dropout and Stochastic Depth

show poor performances on two fine-tuning algo-

rithms. Among the compared algorithms, Dropout

and Disturb label show relatively better performances,

while performing less well than RIFLE under most

tasks.

We can readily conclude that when RIFLE+L2 and RI-

FLE+L2-SP significantly outperforms the vanilla explicit

regularizers for deep transfer learning, while the simple

combination of L2 or L2-SP with other algorithmic reg-

ularizers, such as Dropout, Drop-connection and so on,

could not perform as well as RIFLE for deep transfer

learning. The comparison demonstrates the advancement

achieved by RIFLE.

4.4. Ablation Study

In order to investigate which is the most critical part in our

algorithm, we do ablation study to show how each compo-

nent affects the accuracy. First we define two modified ver-

sions of RIFLE, named RIFLE-A and RIFLE-B respec-
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Table 2. Comparison for Ablation Studies.

L
2+RIFLE and variants

Datasets RIFLE RIFLE-A RIFLE-B

CUB-200-2011 81.13±0.23 81.07±0.29 79.84±0.28
FGVC-Aircraft 77.82±0.41 77.70±0.45 75.95±0.50
Flower-102 93.00±0.08 92.17±0.19 92.44±0.16
DTD 64.94±0.37 65.12±0.53 64.11±0.84
Indoor-67 76.15±0.52 75.94±0.11 74.02±0.38
Stanford Cars 90.08±0.14 89.88±0.20 88.65±0.19
Stanford Dogs 80.10±0.23 80.67±0.10 78.79±0.20
Food-101-30 62.31±0.27 61.91±0.25 60.30±0.22
Food-101-150 76.36±0.16 76.66±0.11 75.59±0.12

L
2-SP+RIFLE and variants

Datasets RIFLE RIFLE-A RIFLE-B

CUB-200-2011 81.73±0.20 81.73±0.18 80.99±0.31
FGVC-Aircraft 78.00±0.58 77.91±0.38 75.89±0.49
Flower-102 92.46±0.18 91.68±0.28 91.53±0.21
DTD 70.71±0.36 70.22±0.44 68.84±0.52
Indoor-67 77.11±0.44 76.71±0.33 75.44±0.59
Stanford Cars 90.00±0.14 89.82±0.16 89.08±0.12
Stanford Dogs 88.96±0.06 88.90±0.11 88.00±0.07
Food-101-30 62.84±0.25 62.48±0.09 61.19±0.24
Food-101-150 77.36±0.04 77.96±0.08 76.44±0.11

tively. For RIFLE-A, we remove the cyclic learning rate

component from our RIFLE implementation and uses ran-

dom re-initialization only. Therefore, the influence of dif-

ferent learning rates is cleared away in RIFLE-A. For RI-

FLE-B, we remove the re-initialization component while

using cyclic learning rates only. Thus, the only difference

of RIFLE-B compared with vanilla L2 is the cyclic learn-

ing rate applied on the FC layer. We evaluate RIFLE-A

and RIFLE-B on all above tasks with both L2 and L2-

SP regularization. As observed in Table 2, RIFLE-A per-

forms marginally worse than RIFLE on most tasks, and

is even superior to RIFLE on particular datasets such as

Food-101-150. RIFLE-A outperforms than RIFLE-Band

vanilla L2 and L2-SP . We can conclude that re-initializing

the FC layer rather than cyclic learning rate is the founding

brick of our algorithm.

4.5. Comparisons of Learning Curves

We further analyze the effect of RIFLE by analysis of

the learning curves, through the comparison with vanilla

L2 algorithm and the one based on L2 with cyclic learn-

ing rate. As showed in Figure 1a, most tasks completely

fit the training set after about half of the total number of

epochs. For L2 with cyclic learning rate, we find extremely

sharp drops of the accuracy at the beginning of each pe-

riod, due to the learning rate resetting. We notice in Fig-

ure 1c that, the magnitude of the decline diminishes as the

number of training epochs increases. While for test set in

Figure 1d, the accuracy always decreases severely at the

first few epochs after learning rate resetting for most tasks.

The training curve of RIFLE-A in Figure 1e is similar to
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Figure 1. Comparisons of Learning Curves.

the cyclic learning rate. However, compared to training

curves in Figure 1c, the magnitude of the accuracy decline

doesn’t diminish in later training epochs for the one with

cyclic learning rates. On the test set, RIFLE-A obtains

much smoother accuracy curves compared to the one with

the cyclic learning rate, which implies more stable gener-

alization capacity. We infer that it is because the feature

extractor part is perturbed by meaningful backpropagation

brought by the re-initialized FC layer.

We can conclude that, compared to cyclic learning rate or

vanilla training procedure for deep transfer learning, RI-

FLE brings more modifications to the weights during the

learning procedure as the training curve is more unstable.

Furthermore, such modifications could improve the gener-

alization performance of deep transfer learning, as the test-

ing curve dominates in the comparison.

4.6. Empirical Studies

In this section, we intend to testify (1) Whether random

re-initialization of the FC layer makes the backpropagation

in-depth and updates the weights of deeper layers under

transfer learning settings; (2) In which way, the random re-

initialization of FC layer would improve the generalization

performance of deep transfer learning.
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(c) L2 (Flower-102)
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Figure 2. Scale of gradients corresponding to parameters of different layers.

4.6.1. RIFLE MAKES BACKPROPAGATION DEEPER

Our study finds RIFLE makes backpropagation deeper and

brings more modifications ton deeper layers. In order to

observe the phenomena, we measure the scale of gradi-

ents corresponding to different CNN layers during fine-

tuning. To avoid the effects of cyclic learning rate, we

perform the experiments using RIFLE-A with 4 times of

re-initialization. We select the last 3×3 convolutional mod-

ule in each of the four layers in ResNet-50. The Frobenius

norm of the gradient of each parameter is calculated at the

beginning of each training epoch. As illustrated in Fig-

ure 2, we can observe that scales of gradients in vanilla

L2 decrease rapidly during training. For example, gra-

dients of the CUB-200-2011 task almost vanish after 20

epochs when training with vanilla L2 as showed in Fig-

ure 2a. Flower-102 is even easier to convergence since gra-

dients vanish after 10 epochs as showed in Figure 2c. While

for our proposed RIFLE-A, gradients are periodicity re-

activated as demonstrated in Figure 2b and 2d, even though

we use the exact same learning rate. We notice that param-

eters of layers close to the input (e.g. layer1) have smaller

scales of gradients, which is consistent between vanilla L2

and RIFLE-A.

4.6.2. RIFLE LEARNS BETTER LOW-LEVEL FEATURES

Our study finds the low level features learned by RIFLE

are better than the vanilla deep transfer learning, through

an empirical asymptotic analysis as follows.

MLP Oracles. We proposed to use two MLPs as the ora-

cles to generate training datasets for source and target tasks

respectively. The MLPs are both with two layers and with

ReLU as activation. To make sure the knowledge trans-

fer between two tasks, we make these two MLPs share the

same first layer, such that h1(X) = W⊤
2 ReLU(W⊤

1 X)
and h2(X) = W⊤

3 ReLU(W⊤
1 X). The input of networks

X is an 100-dimension vector (i.e., X is a 100× 1 matrix),

while the dimension of the hidden layer is 50 (i.e., W1 is a

100 × 50 random matrix and W2 and W3 are two 50 × 1
random matrices).

Source/Target Tasks. We collect the datasets for source

and target tasks using h1(X) and h2(X) respectively, each

of which is with 1000 samples drawn from standard Gaus-

sian distributions. With Xi randomly drawn from a 200-

dimension Gaussian distribution as a training sample, we

obtain h1(Xi)+N (0, 0.01) as the label of xi for the source

task. With a similar approach, we also collect the datasets

for the target task using h2(X).

Transfer Learning. We first use the generated source

dataset to train an MLP with the same architecture

from scratch through vanilla SGD via regression loss,

and we obtain the teacher network model h′
1(X) =

W
′⊤
2 ReLU(W

′⊤
1 X). Note that the weights W ′

2 and W ′
1

are so different from W2 and W1 as multiple solutions ex-

ist. With the weights W ′
2 and W ′

1 and the generated target

dataset, we use L2 and L2+RIFLE for transfer learning to

obtain two networks h′
2(X) = W

′⊤
3 ReLU(W

′⊤
1 X) and

h∗
2(X) = W ∗⊤

3 ReLU(W ∗⊤
1 X) respectively.

Comparisons. We find both h′
2(X) and h∗

2(X) achieves

very good accuracy given the testing dataset generated by

h2(X), while the testing loss of h∗
2(X) (with MSE 3.98×

10−3) is significantly lower than h′
2(X) (with MSE 1.16×

10−2). Furthermore, we also observe that OT(W ∗
1 ,W1) =

0.1198 ≤ OT(W ′
1,W1) = 0.1397, where OT(·, ·) refers

to the optimal transport distance (Flamary & Courty, 2017)

between the inputs. As the weights of deep layers are closer

to the MLP oracles, we conclude that RIFLE learns better

low-level features.

5. Conclusion

In this work, we propose RIFLE– a simple yet effective

strategy that enables in-depth backpropagation in trans-

fer learning settings, through periodically Re-Initializing

the Fully-connected LayEr with random scratch during the

fine-tuning procedure. RIFLE brings significant meaning-

ful modifications to the deep layers of DNN and improves

the low-level feature learning. The experiments show that

the use of RIFLE significantly improves the accuracy of

deep transfer learning algorithms (based on explicit reg-

ularization) on a wide range of datasets. It outperforms

known algorithmic regularization tricks such as dropout

and so on, under the same settings. To the best of our

knowledge, RIFLE is yet the first algorithmic regulariza-
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tion method to improve the deep transfer learning algo-

rithms based on explicit regularization such as (Li et al.,

2018). The contribution made in this work is complemen-

tary with the previous work.
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