
Table 1. Comparison on more architectures. # Re-Init refers to the
number of re-initializations. We use RIFLE-A for most architec-
tures except for DenseNet-169.

Inception-v3
Datasets Fine-tuning RIFLE # Re-Init
Stanford-Dogs 77.07±0.37 77.75±0.26 3
FGVC-Aircraft 82.80±0.49 84.31±0.35 3
Indoor-67 68.63±0.37 70.47±0.62 3
DTD 61.31±0.54 63.32±0.52 3

MobileNet-v2
Datasets Fine-tuning RIFLE # Re-Init
Stanford-Dogs 75.42±0.27 76.03±0.26 3
FGVC-Aircraft 83.34±0.18 84.66±0.25 3
Indoor-67 72.68±0.26 73.34±0.47 3
DTD 62.98±0.36 64.42±0.24 3

DenseNet-169
Datasets Fine-tuning RIFLE # Re-Init
Stanford-Dogs 80.71±0.37 80.98±0.28 2
FGVC-Aircraft 84.86±0.19 85.44±0.35 2
Indoor-67 76.59±0.55 77.36±0.37 2
DTD 64.52±0.25 67.15±0.19 2

EfficientNet-v3
Datasets Fine-tuning RIFLE # Re-Init
Stanford-Dogs 86.22±0.29 86.41±0.01 2
FGVC-Aircraft 84.49±0.36 86.14±0.22 3
Indoor-67 77.31±0.28 77.86±0.20 2
DTD 69.54±0.19 71.36±0.68 3

Table 2. Comparison over more tasks. # Re-Init refers to the num-
ber of re-initializations.

Object Detection
Datasets Fine-tuning RIFLE # Re-Init
Sheep (mAP) 0.5279 0.5309 3
Chair (mAP) 0.3658 0.3699 3
TV-Monitor (mAP) 0.6102 0.6135 3

Semantic Segmentation
Datasets Fine-tuning RIFLE # Re-Init
CrackForest (AUROC) 0.8270 0.8360 2
Penn-Fudan (F1-Score) 0.7699 0.7764 2

1. Analysis of the Period of Random
Re-initialization

We do additional ablation analysis with various settings on
the period of random re-initialization. The analysis is car-
ried out using CUB-200-2011 dataset with a training proce-
dure of 48 epochs. We find that, performing RIFLE in the
early or middle stages of the training procedure would be
better than doing random re-initialization in the latter stage.
In detail, for the first case we re-initialize the FC layer with
an exponential increasing number of re-initialization peri-
ods. That is, the FC layer is re-initialized at epoch 3, 6, 12
and 24 if the total number of re-initializations is 4. Anal-
ogously, we re-initialize the FC layer at epoch 24, 36, 42
and 45 for evaluating the second case. Results show that,
we obtain the top-1 accuracy of 80.99%(-0.14%) for the
case of increased period, slightly worse than original RI-

FLE (81.13%). However, if we re-initialize the FC layer
only twice, using an increased period gets the accuracy of
81.25%(+0.12%), slightly better than the original version.
This indicates that there may exist an optimal selection of
the re-initialization periods. However, using the decreased
period usually hurts the performance, especially when an
increased number of re-initializations are performed. For
example, the top-1 accuracy of using decreased period is
80.65%(-0.48%) and 79.22%(-1.91%) if we re-initialize 2
and 3 times, respectively. If the number of re-initializations
increases to 4, the accuracy dramatically drops to 49.36%,
because the FC layer is not able to converge (only 3 epochs
left) after the last re-initialization.

We also evaluate RIFLE with adaptive re-initialization,
with respect to the number of epochs and the loss. We find
that, regardless of the RIFLE procedures (adaptively trig-
gered or predefined), the more often re-initialization takes
place in the late stage of training, the lower top-1 accuracy
will be. In detail, we design Ada-RIFLE, which adaptively
determines the opportune moment of re-initialization ac-
cording to the training loss. Specifically, we empirically
set a threshold value Lt of the training loss computed using
the standard cross entropy loss function. The FC layer is re-
initialized when the current training loss is lower than Lt.
In order to prevent the FC layer from under-fitting, we set
a closing time Ec, meaning that no re-initialization will be
performed after Ec epochs. Ec is set to 0.75 times the total
number of epochs, that is 36 in our experiment. Results on
the CUB-200-2011 dataset show that further improvements
are obtained by a proper selection of Lt. We test choices of
Lt from [0.02, 0.05, 0.1, 0.2]. The top-1 accuracy of these
settings are 81.36%(+0.26%), 81.44%(+0.31%), 81.01%(-
0.12%) and 80.95%(-0.18%). We investigate the internal
heuristic process of these experiments. When using the
best choice of 0.05, the FC layer is re-initialized 3 times,
at epoch 18, 24 and 30 respectively. This result indicates
that a better choice to re-initialize FC may be at the mid-
dle stage of the training process. We also show the detail
of Lt = 0.2. Since the loss threshold is larger, more re-
initializations are performed in this case, at epoch 15, 19,
22, 25, 28, 31 and 34. Despite the fact that the FC layer
is easy to converge, this may bring negative effects to the
learning of the feature extractor.

2. Experiments on More Architectures
We further evaluate RIFLE on more modern architectures
including Inception-v3, MobileNet-v2, DenseNet-169 and
EfficientNet-b3, over four datasets covering animals, ob-
jects, textures and scenes. We run all experiments three
times and report the average accuracy. As shown in Ta-
ble 1, most of the tasks significantly benefit from RIFLE.

We also implement additional experiments for object de-



tection with Fast-RCNN using ResNet-50+FPN as back-
bone and semantic segmentation with the DeepLab-V3
model. We used L2+RIFLE for transfer learning and
COCO datasets as the source dataset to obtain the pre-
trained weights. As shown in Table 2, for both object detec-
tion and semantic segmentation tasks, L2+RIFLE performs
better.

3. Advanced Simulation Experiments
For the asymptotic studies, we evaluate RIFLE and fine-
tuning approach with noise on W1 (as the oracle to gener-
ate target datasets). The noise scale is set to 5% of the av-
erage scale of W1. We run the same simulation experiment
as in the main paper and get similar result that, OT(W ∗

1 ,
W1)=0.1257 ≤ OT(W

′

1,W1)=0.1489.


