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Abstract
We give the first input-sparsity time algorithms
for the rank-k low rank approximation problem
in every Schatten norm. Specifically, for a given
m×n (m ≥ n) matrixA, our algorithm computes
Y ∈ Rm×k, Z ∈ Rn×k, which, with high proba-
bility, satisfy ‖A−Y ZT ‖p ≤ (1 +ε)‖A−Ak‖p,
where ‖M‖p = (

∑n
i=1 σi(M)p)

1/p is the Schat-
ten p-norm of a matrix M with singular values
σ1(M), . . . , σn(M), and where Ak is the best
rank-k approximation to A. Our algorithm runs
in time Õ(nnz(A) + mnαp poly(k/ε)), where
αp = 0 for p ∈ [1, 2) and αp = (ω− 1)(1− 2/p)
for p > 2 and ω ≈ 2.374 is the exponent of matrix
multiplication. For the important case of p = 1,
which corresponds to the more “robust” nuclear
norm, we obtain Õ(nnz(A)+m·poly(k/ε)) time,
which was previously only known for the Frobe-
nius norm (p = 2). Moreover, since αp < ω − 1
for every p, our algorithm has a better dependence
on n than that in the singular value decomposition
for every p. Crucial to our analysis is the use of
dimensionality reduction for Ky-Fan p-norms.

1. Introduction
A common task in processing or analyzing large-scale
datasets is to approximate a large matrix A ∈ Rm×n
(m ≥ n) with a low-rank matrix. Often this is done with
respect to the Frobenius norm, that is, the objective function
is to minimize the error ‖A−X‖F over all rank-k matrices
X ∈ Rm×n for a rank parameter k. It is well-known that
the optimal solution is Ak = PLA = APR, where PL is the
orthogonal projection onto the top k left singular vectors of
A, and PR is the orthogonal projection onto the top k right
singular vectors of A. Typically this is found via the singu-
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lar value decomposition (SVD) of A, which is an expensive
operation.

For large matrices A this is too slow, so we instead allow for
randomized approximation algorithms in the hope of achiev-
ing a much faster running time. Formally, given an approx-
imation parameter ε > 0, we would like to find a rank-k
matrix X for which ‖A−X‖F ≤ (1 + ε) ‖A−Ak‖F
with large probability. For this relaxed problem, a num-
ber of efficient methods are known, which are based on
dimensionality reduction techniques such as random projec-
tions, importance sampling, and other sketching methods,
with running times1,2 Õ(nnz(A) + m poly(k/ε)), where
nnz(A) denotes the number of non-zero entries of A. This
is significantly faster than the SVD, which takes Θ̃(mnω−1)
time, where ω is the exponent of matrix multiplication. See
(Woodruff, 2014) for a survey.

In this work, we consider approximation error with respect
to general matrix norms, i.e., to the Schatten p-norm. The
Schatten p-norm, denoted by ‖ · ‖p, is defined to be the
`p-norm of the singular values of the matrix. Below is the
formal definition of the problem.

Definition 1.1 (Low-rank Approximation). Let p ≥ 1.
Given a matrix A ∈ Rm×n, find a rank-k matrix X̂ ∈
Rm×n for which∥∥∥A− X̂∥∥∥

p
≤ (1 + ε) min

X:rank(X)=k
‖A−X‖p . (1)

It is a well-known fact (Mirsky’s Theorem) that the optimal
solution for general Schatten norms coincides with the op-
timal rank-k matrix Ak for the Frobenius norm, given by
the SVD. However, approximate solutions for the Frobenius
norm loss function may give horrible approximations for
other Schatten p-norms.

Of particular importance is the Schatten 1-norm, also called
the nuclear norm or the trace norm, which is the sum of the
singular values of a matrix. It is typically considered to be
more robust than the Frobenius norm (Schatten 2-norm) and
has been used in robust PCA applications (see, e.g., (Xu
et al., 2010; Candès et al., 2011; Yi et al., 2016)).

1We use the notation Õ(f) to hide the polylogarithmic factors
in O(f poly(log f)).

2Since outputting X takes O(mn) time, these algorithms usu-
ally output X in factored form, where each factor has rank k.
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For example, suppose the top singular value of an n × n
matrix A is 1, the next 2k singular values are 1/

√
k, and

the remaining singular values are 0. A Frobenius norm
rank-k approximation could just choose the top singular
direction and pay a cost of

√
2k · 1/k =

√
2. Since the

Frobenius norm of the bottom n − k singular values is
(k + 1) · 1k , this is a

√
2-approximation. On the other hand,

if a Schatten 1-norm rank-k approximation algorithm were
to only output the top singular direction, it would pay a
cost of 2k · 1/

√
k = 2

√
k. The bottom n − k singular

values have Schatten 1-norm (k + 1) · 1√
k

. Consequently,
the approximation factor would be 2(1 − o(1)), and one
can show if we insisted on a

√
2-approximation or better, a

Schatten 1-norm algorithm would need to capture a constant
fraction of the top k directions, and thus capture more of the
underlying data than a Frobenius norm solution.

Consider another example where the top k singular values
are all 1s and the (k + i)-th singular value is 1/i. When
k = o(log n), capturing only the top singular direction
gives a (1 + o(1))-approximation for the Schatten 1-norm
but a Θ(

√
k)-approximation for the Frobenius norm. This

example, together with the preceding one, shows that the
Schatten norm is a genuinely a different error metric.

Surprisingly, no algorithms for low-rank approximation in
the Schatten p-norm were known to run in time Õ(nnz(A)+
m poly(k/ε)) prior to this work, except for the special case
of p = 2. We note that the case of p = 2 has special
geometric structure that is not shared by other Schatten
p-norms. Indeed, a common technique for the p = 2 set-
ting is to first find a poly(k/ε)-dimensional subspace V
containing a rank-k subspace inside of it which is a (1 + ε)-
approximate subspace to project the rows of A on. Then,
by the Pythagorean theorem, one can first project the rows
of A onto V , and then find the best rank-k subspace of the
projected points inside of V . For other Schatten p-norms,
the Pythagorean theorem does not hold, and it is not hard to
construct counterexamples to this procedure for p 6= 2.

To summarize, the SVD runs in time Θ(mnω−1), which is
much slower than nnz(A) ≤ mn. It is also not clear how to
adapt existing fast Frobenius-norm algorithms to generate
(1 + ε)-factor approximations with respect to other Schatten
p-norms.

Our Contributions In this paper we obtain the first
provably efficient algorithms for the rank-k (1 + ε)-
approximation problem with respect to the Schatten p-norm
for every p ≥ 1.

Theorem 1.1 (informal, combination of Theorems 3.6 and
4.4). Suppose that m ≥ n and A ∈ Rm×n. There is a
randomized algorithm which outputs two matrices Y ∈
Rm×k and Z ∈ Rn×k for which X̂ = Y ZT satisfies (1)
with probability at least 0.9. The algorithm runs in time

O(nnz(A) log n) + Õ(mnαp poly(k/ε)), where

αp =

{
0, 1 ≤ p ≤ 2;

(ω − 1)(1− 2
p ), p > 2,

and the hidden constants depend only on p.

In the particular case of p = 1, and more generally for
all p ∈ [1, 2], our algorithm achieves a running time of
O(nnz(A) log n + m poly(k/ε)), which was previously
known to be possible for p = 2 only. When p > 2, the
running time begins to depend polynomially onm and n but
the dependence remains o(mnω) for all larger p. Thus, even
for larger values of p, when k is subpolynomial in n, our
algorithm runs substantially faster than the SVD. Empirical
evaluations are also conducted to demonstrate our improved
algorithm when p = 1 in Section 5.

It was shown by Musco & Woodruff (2017) that computing
a constant-factor low-rank approximation to ATA, given
onlyA, requires Ω(nnz(A) ·k) time. Given that the squared
singular values of A are the singular values of ATA, it
is natural to suspect that obtaining a constant-factor low
rank approximation to the Schatten 4-norm low-rank ap-
proximation would therefore require Ω(nnz(A) · k) time.
Surprisingly, we show this is not the case, and obtain an
Õ(nnz(A) +mn(ω−1)/2 poly(k/ε)) time algorithm.

In addition, we generalize the error metric from matrix
norms to a wide family of general loss functions, see Sec-
tion 6 for details. Thus, we considerably broaden the class
of loss functions for which input sparsity time algorithms
were previously known for.

Technical Overview. We illustrate our ideas for p = 1.
Our goal is to find an orthogonal projection Q̂′ for which∥∥A(I − Q̂′)

∥∥
1
≤ (1 + O(ε)) ‖A−Ak‖1. The crucial

idea in the analysis is to split ‖ · ‖1 into a head part
‖ · ‖(r), which, known as the Ky-Fan norm, equals the
sum of the top r singular values, and a tail part ‖ · ‖(−r)
(this is just a notation—the tail part is not a norm), which
equals the sum of all the remaining singular values. Ob-
serve that for r ≥ k/ε it holds that

∥∥A(I − Q̂′)
∥∥
(−r) ≤

‖A‖(−r) ≤ ‖A−Ak‖(−r) + ε ‖A−Ak‖1 for any rank-

k orthogonal projection Q̂′ and it thus suffices to find Q̂′

for which
∥∥A(I − Q̂′)

∥∥
(r)
≤ (1 + ε) ‖A−Ak‖(r). To

do this, we sketch A(I − Q) on the left by a projection-
cost preserving matrix S by Cohen et al. (2017) such that
‖SA(I −Q)‖(r) = (1± ε) ‖A(I −Q)‖(r) ± ε‖A−Ak‖1
for all rank-k projections Q. Then we solve minQ ‖SA(I−
Q)‖(r) over all rank-k projections Q and obtain a (1 + ε)-
approximate projection Q̂′, which, intuitively, is close to
the best projection PR for minQ ‖A(I −Q)‖(r), and can
be shown to satisfy the desired property above.
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The last step is to approximate AQ̂′, which could be expen-
sive if done trivially, so we reformulate it as a regression
problem minY

∥∥A− Y ZT∥∥
1

over Y ∈ Rn×k, where Z is
an n× k matrix whose columns form an orthonormal basis
of the target space of the projection Q̂′. This latter idea has
been applied successfully for Frobenius-norm low-rank ap-
proximation (see, e.g., (Clarkson & Woodruff, 2017)). Here
we need to argue that the solution to the Frobenius-norm
regression minY

∥∥A− Y ZT∥∥
F

problem gives a good solu-
tion to the Schatten 1-norm regression problem. Finally we
output Y and Z.

2. Preliminaries
Notation For an m× n matrix A, let σ1(A) ≥ σ2(A) ≥
· · · ≥ σs(A) denote its singular values, where s =
min{m,n}. The Schatten p-norm (p ≥ 1) of A is defined
to be ‖A‖p :=

∑s
i=1(σi(A)p)1/p and the singular (p, r)-

norm (r ≤ s) to be ‖A‖(p,r) =
∑r
i=1(σi(A)p)1/p. It is

clear that ‖A‖p = ‖A‖(p,s). When p = 2, the Schatten
p-norm coincides with the Frobenius norm and we shall use
the notation ‖·‖F in preference to ‖·‖2.

Suppose that A has the singular value decomposition
A = UΣV T , where Σ is a diagonal matrix of the sin-
gular values. For k ≤ min{m,n}, let Σk denote the
diagonal matrix for the largest k singular values only,
i.e., Σk = diag{σ1(A), . . . , σk(A), 0, . . . , 0}. We define
Ak = UΣkV

T . The famous Mirsky’s theorem states that
Ak is the best rank-k approximation to A for any rotation-
ally invariant matrix norm.

For a subspace E ⊆ Rn, we define PE to be an n×dim(E)
matrix whose columns form an orthonormal basis of E.

Toolkit There has been extensive research on randomized
numerical linear algebra in recent years. Below are several
existing results upon which our algorithm will be built.

Definition 2.1 (Sparse Embedding Matrix). Let ε > 0 be
an error parameter. The (n, ε)-sparse embedding matrix R
of dimension n× r is constructed as follows, where r is to
be specified later. Let h : [n] → [r] be a random function
and σ : [n] → {−1, 1} be a random function. The matrix
R has only n nonzero entries: Ri,h(i) = σ(i) for all i ∈ [n].
The value of r is chosen to be r = Θ(1/ε2) such that
PrR{

∥∥ATRRTB −ATB∥∥2
F
≤ ε2 ‖A‖2F ‖B‖

2
F } ≥ 0.99

for all A with orthonormal columns. This is indeed possible
by (Clarkson & Woodruff, 2017; Meng & Mahoney, 2013;
Nelson & Nguyen, 2013).

It is clear that, for a matrix A with n columns and an (n, ε)-
sparse embedding matrix R, the matrix product AR can be
computed in O(nnz(A)) time.

Lemma 2.1 (Thin SVD (Demmel et al., 2007)). Suppose

that A ∈ Rm×n with m ≥ n and the (thin) singular value
decomposition is A = UΣV T , where U ∈ Rm×n and
Σ, V ∈ Rn×n. Computing the full thin SVD takes time
Õ(mnω−1).

Lemma 2.2 (Multiplicative Spectral Approximation (Co-
hen et al., 2015b)). Suppose that A ∈ Rm×n (n ≤
m ≤ poly(n)) has rank r. There exists a sampling ma-
trix R of O(ε−2r log r) rows such that (1 − ε)ATA �
(RA)T (RA) � (1 + ε)ATA with probability at least 0.9
and R can be computed in O(nnz(A) log n + nω log2 n +
n2ε−2) time, where θ is an arbitrary constant in (0, 1].

Lemma 2.3 (Additive-Multiplicative Spectral Approxima-
tion (Cohen et al., 2017; Musco, 2018)). Suppose that A ∈
Rm×n with m ≥ n, error parameters ε ≥ η ≥ 1/ poly(n).
Let K = k + ε/η. There exists a randomized algorithm
which runs inO(nnz(A) log n)+Õ(mKω−1) time and out-
puts a matrix C of t = Θ(ε−2K logK) columns, which are
rescaled column samples of A without replacement, such
that with probability at least 0.99,

(1− ε)AAT − η ‖A−Ak‖2F I � CC
T

� (1 + ε)AAT + η ‖A−Ak‖2F I. (2)

We also need an elementary inequality.

Lemma 2.4. Suppose that p ≥ 1 and ε ∈ (0, 1]. LetCp,ε =
p(1 + 1/ε)p−1. It holds for x ∈ [ε, 1] that (1 + x)p ≤
1 + Cp,εx

p and that (1− x)p ≥ 1− Cp,εxp.

Proof. It is easy to see that for x ∈ [ε, 1], (1 + x)p ≤
1+ (1+ε)p−1

εp xp and (1−x)p ≥ 1− 1−(1+ε)p
εp xp. Then note

that p
(
1 + 1

ε

)p−1 ≥ (1+ε)p−1
εp ≥ 1−(1+ε)p

εp .

3. Case p < 2

The algorithm is presented in Algorithm 1. In this section
we shall prove the correctness and analyze the running time
for a constant p ∈ [1, 2). Throughout this section we set
r = k/ε.

Lemma 3.1. Suppose that p ∈ (0, 2) and S satisfies (3). It
then holds for all rank-k orthogonal projections Q that

(1− ε) ‖A(I −Q)‖p(p,r) − rη
p
2
1 ‖A−Ak‖

p
p

≤ ‖SA(I −Q)‖p(p,r)
≤ (1 + ε) ‖A(I −Q)‖p(p,r) + rη

p
2
1 ‖A−Ak‖

p
p .

Proof. Since S satisfies (3), it holds for any rank-k orthog-
onal projection Q that

(1− ε)(I −Q)ATA(I −Q)− η1 ‖A−Ak‖2F I
� (I −Q)ATSTSA(I −Q)
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Algorithm 1 Outline of the algorithm for finding a low-rank
approximation

1: if p < 2 then
2: η1 ← O((ε2/k)2/p), η2 ← O(ε2/k2/p−1)
3: else
4: η1←O(ε1+2/p/k2/pn1−2/p), η2←O(ε2/n1−2/p)
5: end if
6: Use Lemma 2.3 to obtain a sampling matrix S of s rows

such that
(1− ε)ATA− η1 ‖A−Ak‖2F I
� ATSTSA

� (1 + ε)ATA+ η1 ‖A−Ak‖2F I.

(3)

7: T ← subspace embedding matrix for s-dimensional
subspaces with error O(ε)

8: W ′ ← projection onto the top k left singular vectors of
SAT

9: Z ← matrix whose columns are an orthonormal basis
of the row space of W ′SA

10: R← (n,Θ(
√
η2/k))-sparse embedding matrix

11: Ŷ ← ARProwspace(ZTR)

12: return Ŷ , Z

� (1 + ε)(I −Q)ATA(I −Q) + η1 ‖A−Ak‖2F I.

The following relationship between singular values of
SA(I − Q) and A(I − Q) is an immediate corollary via
the max-min characterization of singular values (cf., e.g.,
Lemma 7.2 of (Li et al., 2019))

(1− ε)σ2
i (A(I −Q))− η1 ‖A−Ak‖2F

≤ σ2
i (SA(I −Q))

≤ (1 + ε)σ2
i (A(I −Q)) + η1 ‖A−Ak‖2F

(4)

Since p < 2 and thus ‖·‖F ≤ ‖·‖p, we have from (4) that

(1− ε)σpi (A(I −Q))− η
p
2
1 ‖A−Ak‖

p
p

≤ σpi (SA(I −Q))

≤ (1 + ε)σpi (A(I −Q)) + η
p
2
1 ‖A−Ak‖

p
p .

Passing to the (p, r)-singular norm yields the desired result.

Lemma 3.2. When p ∈ (0, 2) is a constant and ε ∈
(0, 1/2], let Q̂′ = ZZT be the projection onto the column
space of Z, where Z is as defined in Line 9 of Algorithm 1.
With probability at least 0.99, it holds that∥∥∥SA(I − Q̂′)

∥∥∥
(p,r)
≤ (1 + ε) min

Q
‖SA(I −Q)‖(p,r) ,

(5)
where the minimization on the right-hand side is over all
rank-k orthogonal projections Q.

Proof. Observe that

min
Q
‖SA− SAQ‖(p,r) = min

W
‖SA−WSA‖(p,r) ,

where the minimizations are over all rank-k orthogonal
projections Q and all rank-k orthogonal projections W , and
the equality is achieved when Q is the projection onto the
right top k singular vectors of SA and W the left top k
singular vectors.

Since T is an oblivious subspace embedding matrix and
preserves all singular values of (I −W )SA up to a factor
of (1± ε), we have

min
W
‖SAT−WSAT‖(p,r) =(1±ε) min

W
‖SA−WSA‖(p,r) .

The minimization on the left-hand side above is easy to
solve: the minimizer W ′ is exactly the projection onto the
top k singular vectors of SAT , as computed in Line 8 of
Algorithm 1. Since Q̂′ is the projection onto the row space
of W ′SA, it holds that the row space of SAQ̂′ is the closest
space to that of SA in the row space of W ′SA. Hence∥∥∥SA− SAQ̂′∥∥∥

(p,r)
≤ ‖SA−W ′SA‖(p,r) .

The claimed result (5) then follows from

‖SA−W ′SA‖(p,r) ≤
1

1− ε
‖SAT −W ′SAT‖(p,r)

=
1

1− ε
min
W
‖SAT −WSAT‖(p,r)

≤ 1 + ε

1− ε
min
W
‖SA−WSA‖(p,r)

≤ (1 + 4ε) min
Q
‖SA− SAQ‖(p,r)

and rescaling ε.

Lemma 3.3. Let ε ∈ (0, 1/2]. Suppose that Q̂′ satisfies (5).
Then it holds that∥∥∥A(I − Q̂′)

∥∥∥p
(p,r)
≤ (1 + c1ε) ‖A−Ak‖p(p,r)

+ c2kη
p/2
1 ‖A−Ak‖pp .

for some absolute constants c1, c2 > 0.

Proof. Let Q̂ = arg minQ ‖SA(I −Q)‖(p,r), where the
minimization is over all rank-k projectionsQ. LetQ∗ be the
orthogonal projection onto the top k right singular vectors
of A. It follows that∥∥∥A(I − Q̂′)

∥∥∥p
(p,r)

≤ 1

1− ε

∥∥∥SA(I − Q̂′)
∥∥∥p
(p,r)

+
1

1− ε
kη

p
2
1 ‖A−Ak‖

p
p
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≤ (1 + ε)p

1− ε

∥∥∥SA(I − Q̂)
∥∥∥p
(p,r)

+
1

1− ε
kη

p
2
1 ‖A−Ak‖

p
p

≤ (1 + ε)p

1− ε
‖SA(I −Q∗)‖p(p,r) +

1

1− ε
kη

p
2
1 ‖A−Ak‖

p
p

≤ (1 + ε)p

1− ε

(
(1 + ε) ‖A(I −Q∗)‖p(p,r) + kη

p
2
1 ‖A−Ak‖

p
p

)
+

1

1− ε
kη

p
2
1 ‖A−Ak‖

p
p

=
(1+ε)p+1

1− ε
‖A−Ak‖p(p,r) +

(1+ε)p+1

1− ε
kη

p
2
1 ‖A−Ak‖

p
p ,

where the first inequality follows from Lemma 3.1, the
second inequality Lemma 3.2, the third inequality follows
from the optimality of Q̂ and the fourth inequality again
from Lemma 3.1.

The next lemma is an immediate corollary of the preceding
lemma.
Lemma 3.4. Let ε ∈ (0, 1/2]. Suppose that Q̂′ satisfies (5).
Then it holds for some absolute constants c1, c2 > 0 that∥∥∥A(I − Q̂′)

∥∥∥p
p
≤ (1 + c1ε) ‖A−Ak‖pp

whenever η1 ≤ (ε2/(c2k))2/p.

Proof. Again let Q̂ = arg minQ ‖SA(I −Q)‖(p,r), where
the minimization is over all rank-k projections Q. Observe
that ∥∥∥A(I − Q̂′)

∥∥∥p
p

=
∥∥∥A(I − Q̂′)

∥∥∥p
(p,r)

+
∑
i≥r+1

σpi (A(I − Q̂′))

≤ (1 + c1ε) ‖A−Ak‖p(p,r) + c2rη
p/2
1 ‖A−Ak‖pp

+
∑
i≥r+1

σpi (A)

≤ (1 + c1ε) ‖A−Ak‖pp + c2rη
p/2
1 ‖A−Ak‖pp

+

r+k+1∑
i=r+1

σpi (A)

≤ (1 + c1ε) ‖A−Ak‖pp + c2rη
p/2
1 ‖A−Ak‖pp

+
k

r
‖A−Ak‖pp

≤ (1 + (c1 + 1)ε) ‖A−Ak‖pp + c2rη
p/2
1 ‖A−Ak‖pp

where we used the preceding lemma (Lemma 3.3) in the first
inequality and r = k/ε in the last inequality. The claimed
result holds when η ≤ (ε/(c2r))

2/p.

So far we have found a rank-k orthogonal projection Q̂′ =
ZZT such that∥∥∥A−AQ̂′∥∥∥

p
≤ (1 + c1ε) ‖A−Ak‖p

for some absolute constant c1. However, it is not clear how
to compute the matrix product AQ̂′ efficiently. Hence we
consider the regression problem

min
Y :rank(Y )=k

∥∥A− Y ZT∥∥
p
.

It is clear that the minimizer is Y = AZ, which satisfies
that

∥∥A− Y ZT∥∥
p

=
∥∥∥A−AQ̂′∥∥∥

p
, since the rowspace of

Y ZT is a k-dimensional subspace of the rowspace of ZT

and thus it is exactly the rowspace of Q. The next lemma
shows that Ŷ is an approximation to Y .

Lemma 3.5. When 1 ≤ p < 2 is a constant, the matrix Ŷ
defined in Line 11 of Algorithm 1 satisfies with probability
at least 0.99 that∥∥∥A− Ŷ ZT∥∥∥

p
≤ (1 + cε) min

Y :rank(Y )=k

∥∥A− Y ZT∥∥
p
,

for some absolute constant c > 0, whenever η2 ≤
ε2/(2k)2/p−1.

Proof. First, it is clear that the optimal solution to
minY

∥∥A− Y ZT∥∥
p

is Y = AZ, where the minimization
is over all rank-k n× k matrices Y .

Note that
Ŷ = ARProwspace(ZTR)

is the minimizer to the Frobenius-norm minimization prob-
lem minY ‖(A − Y ZT )R‖F . Since R is a sparse embed-
ding matrix of error Θ(

√
η2/k), one can show that (see,

e.g., Lemma 7.8 of (Clarkson & Woodruff, 2017)) with
probability at least 0.99,∥∥∥AZ − Ŷ ∥∥∥

F
≤ √η2

∥∥A−AZZT∥∥
F
.

It follows that∥∥∥A− Ŷ ZT∥∥∥
p

≤
∥∥A−AZZT∥∥

p
+
∥∥∥Ŷ ZT −AZZT∥∥∥

p

≤ (1 + c1ε)
∥∥A−AZZT∥∥

p
+
∥∥∥Ŷ −AZ∥∥∥

p

≤ (1 + c1ε)
∥∥A−AZZT∥∥

p
+ (2k)

1
p−

1
2

∥∥∥Ŷ −AZ∥∥∥
F

≤ (1 + c1ε)
∥∥A−AZZT∥∥

p
+ (2k)

1
p−

1
2
√
η2
∥∥A−AZZT∥∥

F

= (1 + c1ε)
∥∥A−AZZT∥∥

p
+ (2k)

1
p−

1
2
√
η2
∥∥A−AZZT∥∥

p

≤ (1 + (c1 + 1)ε)
∥∥A−AZZT∥∥

p

provided that η2 ≤ ε2/(2k)2/p−1.

Remark 1. The preceding lemma (Lemma 3.5) may be of
independent interest, as it solves Schatten p-norm regression
efficiently, which has not been discussed in the literature in
the context of dimensionality reduction before.
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In summary, we conclude the section with our main theorem.
Theorem 3.6. Let p ∈ [1, 2). Suppose thatA ∈ Rm×n with
m ≥ n. There is a randomized algorithm which outputs
Y ∈ Rm×k and Z ∈ Rn×k such that X̂ = Y ZT satisfies
(1) with probability at least 0.97. The algorithm runs in
time O(nnz(A) log n) + Õp(mk

2(ω−1)/p/ε(4/p−1)(ω−1) +
k2ω/p/ε(4/p−1)(2ω+2)).

Proof. The correctness of the output is clear from the pre-
ceding lemmata by rescaling ε. We discuss the runtime
below.

We first examine the runtime to obtain Z. For η1 in
Lemma 3.4 we have kη1 ≤ ε and thus K = Θ(ε/η1).
Applying Lemma 2.3, we have s = Õ(K/ε2) and obtaining
the matrix S takes timeO(nnz(A) log n)+Õ(mKω−1). By
Lemma 2.2, we can obtain (SA)T in time O(nnz(SA)) +
Õ(sω/ε2) for a matrix T of Õ(s/ε2) columns and thus the
subsequent SVD of SAT , by Lemma 2.1, takes Õ(sω/ε2).
These three steps take time Õ(mKω−1) +O(nnz(SA)) +
Õ(sω/ε2) = O(nnz(A)) + Õ(mK2 +Kω/ε2ω+2), where
we used the fact that S samples the rows of A without
replacement and so nnz(SA) ≤ nnz(A). Calculating
the row span of W ′SA, which is a k-by-n matrix, takes
O(nkω−1) time. The total runtime is O(nnz(A) log n) +
Õp(mK

ω−1 + Kω/ε2ω+2). Plugging in K = ε/η1 =
Θ(k2/p/ε4/p−1) yields the runtime O(nnz(A) log n) +
Õ(mk2(ω−1)/p/ε(4/p−1)(ω−1) + k2ω/p/ε(4/p−1)(2ω+2)).

Next we examine the runtime to obtain Ŷ . Since R has
t = Θ(k/η2) rows and AR can be computed in O(nnz(A))
time, ZTR can be computed in O(nk) time, the row space
of ZTR (which is a k×tmatrix) inO(kω−1t) = Õ(kω/η2)
time, and the final matrix product (AR)Prowspace(ZTR) in
O(mtω−1) = Õ(mkω−1/η2) time. Overall, computing Ŷ
takes time O(nnz(A)) + Õ(mkω−1/η2) = O(nnz(A)) +
Õ(mkω+2/p−2/ε2).

The overall runtime follows immediately.

4. Case p > 2

The algorithm remains the same in Algorithm 1. In this sec-
tion we shall prove the correctness and analyse the runtime
for constant p > 2. The outline of the proof is the same
and we shall only highlight the differences. Again we let
r = k/ε.

In place of Lemma 3.1, we now have:
Lemma 4.1. Suppose that p > 2 and S satisfies (3). It then
holds for all rank-k orthogonal projection Q that

(1−Kpε) ‖A(I −Q)‖p(p,r) − Cp/2,εrη
p/2
1 ‖A−Ak‖pF

≤ ‖SA(I −Q)‖p(p,r)
≤ (1 +Kpε) ‖A(I −Q)‖p(p,r) + Cp/2,εrη

p/2
1 ‖A−Ak‖pF ,

where Kp ≥ 1 is some constant that depends only on p.

Proof. We now have two cases based on (4).

• When σi(A(I−Q))2 ≥ (1/ε)η1‖A−Ak‖2F , we have

(1−Op(ε))σpi (A(I −Q)) ≤ σpi (SA(I −Q))

≤ (1 +Op(ε))σ
p
i (A(I −Q))

• When σi(A(I−Q))2 < (1/ε)η1‖A−Ak‖2F , we have
from Lemma 2.4 that

(1− ε)σpi (A(I −Q))− Cp/2,εη
p/2
1 ‖A−Ak‖pF

≤ σpi (SA(I −Q))

≤ (1 + ε)σpi (A(I −Q)) + Cp/2,εη
p/2
1 ‖A−Ak‖pF

The claimed result follows in the same manner as in the
proof of Lemma 3.1.

The analogy of Lemma 3.4 is the following, where we apply
Hölder’s inequality that ‖A−Ak‖F ≤ n1/2−1/p‖A−Ak‖p.

Lemma 4.2. Let ε ∈ (0, 1/2]. Suppose that Q̂′ satisfies (5).
Then it holds for some constants cp, c′p > 0 which depend
only on p that∥∥∥A(I − Q̂′)

∥∥∥p
p
≤ (1 + cpε) ‖A−Ak‖pp ,

whenever η1 ≤ c′pε1+2/p/(k2/pn1−2/p).

Proof. Similarly we have∥∥∥A(I − Q̂′)
∥∥∥p
p
≤ (1 + cpε) ‖A−Ak‖pp

+ rCp/2,εη
p/2
1 n

p
2−1 ‖A−Ak‖pp .

The conclusion follows when

Cp/2,εη
p/2
1 np/2−1 ≤ ε

r
=
ε2

k
,

that is, (
p

2

(
1 +

1

ε

) p
2−1
)
η

p
2
1 n

p
2−1 ≤ ε2

k
.

The analogy of Lemma 3.5 is the following.
Lemma 4.3. When p > 2 is a constant, the matrix Ŷ de-
fined in Line 11 of Algorithm 1 satisfies with probability at
least 0.9 that∥∥∥A− Ŷ ZT∥∥∥

p
≤ (1 + cpε) min

Y :rank(Y )=k

∥∥A− Y ZT∥∥
p
,

for some constant that depends only on p, whenever η2 ≤
ε2/n1−2/p.
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Proof. The proof is similar to that of Lemma 3.5 except that
we have instead in the last part of the argument that∥∥∥A− Ŷ Z∥∥∥

p

≤ (1 + cpε)
∥∥A−AZZT∥∥

p
+
∥∥∥Ŷ −AZ∥∥∥

p

≤ (1 + cpε)
∥∥A−AZZT∥∥

p
+
∥∥∥Ŷ −AZ∥∥∥

F

≤ (1 + cpε)
∥∥A−AZZT∥∥

p
+
√
η2
∥∥A−AZZT∥∥

F

≤ (1 + cpε)
∥∥A−AZZT∥∥

p
+
√
η2n

1
2−

1
p

∥∥A−AZZT∥∥
p

and we would need η2 ≤ ε2/n1−
2
p .

In summary, we have the following main theorem.

Theorem 4.4. Let p > 2 be a constant. Sup-
pose that A ∈ Rm×n (m ≥ n). There is a ran-
domized algorithm which outputs Y ∈ Rm×k and
Z ∈ Rn×k such that X̂ = Y ZT satisfies (1)
with probability at least 0.97. The algorithm runs in
time O(nnz(A) log n) + Õp(n

ω(1−2/p)k2ω/p/ε2ω/p+2 +
mn(ω−1)(1−2/p)(k/ε)2(ω−1)/p).

Proof. The correctness follows from the previous lemmata
as in the proof of Theorem 3.6. Below we discuss the
running time.

First we examine the time required to obtain
Z. It is easy to verify that kη1 ≤ ε and so
K = Θ(ε/η1). Similar to the analysis in Theo-
rem 3.6, we have the total runtime O(nnz(A) log n) +
Õp(mK

ω−1 + Kω/ε2ω+2)). Note that K =
Θ(ε/η1) = Θ(n1−2/p(k/ε)2/p), so the runtime becomes
O(nnz(A) log n) + Õp(mn

(ω−1)(1−2/p)(k/ε)2(ω−1)/p +
nω(1−2/p)k2ω/p/ε2ω/p+2).

Next we examine the time required to obtain Ŷ . Again
similarly the runtime is O(nnz(A)) + Õ(mkω−1/η2) =
O(nnz(A)) + Õ(mn1−2/pkω−1/ε2).

Combining the two runtimes above yields the overall run-
time.

5. Experiments
The contribution of our work is primarily theoretical: an
input sparsity time algorithm for low-rank approximation for
any Schatten p-norm. In this section, nevertheless, we give
an empirical verification of the advantage of our algorithm
on both synthetic and real-world data. We focus on the most
important case of the nuclear norm, i.e., p = 1.

In addition to the solution provided by our algorithm,
we also consider a natural candidate for a low-rank ap-
proximation algorithm, which is the solution in Frobenius

Table 1: Performance of our algorithm on synthetic data
compared with the approximate Frobenius-norm solution
and the SVD.

k = 5 k = 10 k = 20
median of ε1 0.00372 0.00377 0.00486
median of ε2 0.00412 0.00485 0.00637

median runtime of 0.067s 0.196s 0.428s‖ · ‖1 algorithm
median runtime of 0.044s 0.073s 0.191s‖ · ‖F algorithm

median runtime of SVD 5.788s

norm, that is, a rank-k matrix X for which ‖A −X‖F ≤
(1+ε)‖A−Ak‖F . This problem admits a simple solution as
follows. Take S to be a Count-Sketch matrix and let Z be an
n× k matrix whose columns form an orthonormal basis of
the top-k right singular vectors of SA. Then X = AZZT

is a Frobenius-norm solution with high probability (Cohen
et al., 2015a).

We shall compare the quality (i.e., approximation ratio mea-
sured in Schatten 1-norm) of both solutions and the running
times3.

Synthetic Data. We adopt a simpler version of Algo-
rithm 1 by taking S to be a COUNT-SKETCH matrix of
target dimension k2 and both R and T to be identity ma-
trices of appropriate dimension. For the Frobenius-norm
solution, we also take S to be a COUNT-SKETCH matrix
of target dimension k2. We choose n = 3000 and generate
a random n × n matrix A of independent entries, each of
which is uniform in [0, 1] with probability 0.05 and 0 with
probability 0.95. Since the regime of interest is k � n, we
vary k among {5, 10, 20}. For each value of k, we run our
algorithm 50 times and record the relative approximation
error ε1 = ‖A− Y ZT ‖1/‖A−Ak‖1 − 1 with the running
time and the relative approximation error of the Frobenius-
norm solution ε2 = ‖A − X‖1/‖A − Ak‖1 − 1 with the
running time. The same matrix A is used for all tests. In
Table 1 we report the median of ε1, the median of ε2, the
median running time of both algorithms, among 50 indepen-
dent runs for each k, and the median running time of a full
SVD of A among 10 runs.

We can observe that our algorithm achieves a good (relative)
approximation error, which is less than 0.005 in all such
cases of k. Our algorithm also outperforms the approximate
Frobenius-norm solution by 10%–30% in terms of approxi-
mation error. Our algorithm also runs about 13-fold faster
than a regular SVD.

3All tests are run under MATLAB 2019b on a machine of Intel
Core i7-6550U CPU@2.20GHz with 2 cores.
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Table 2: Performance of our algorithm on KOS data com-
pared with the approximate Frobenius-norm solution and
the SVD.

k = 5 k = 10 k = 20
median of ε1 0.0149 0.0145 0.0132
median of ε2 0.0183 0.0216 0.0259

median runtime of 0.155s 0.204s 0.323s‖ · ‖1 algorithm
median runtime of 0.113s 0.154s 0.242s‖ · ‖F algorithm

median runtime of SVD 4.999s

KOS data. For real-world data, we use a word fre-
quency dataset, named KOS, from UC Irvine.4 The matrix
represents word frequencies in blogs and has dimension
3430 × 6906 with 353160 non-zero entries. Again we re-
port the median relative approximation error and the median
running time of our algorithm and those of the Frobenius-
norm algorithm among 50 independent runs for each value
of k ∈ {5, 10, 20}. The results are shown in Table 2.

Our algorithm achieves a good approximation error, less
than 0.015, and surpasses the approximate Frobenius-norm
solution for all such values of k. The gap between two
solutions in the approximation error widens as k increases.
When k = 10, our algorithm outperforms the approximate
Frobenius-norm by 30%; when k = 20, this increases to
almost 50%. Our algorithm, although stably slower than
the Frobenius norm algorithm by 30%–40%, still displays a
14.5-fold speed-up compared with the regular SVD.

6. Generalization
More generally, one can ask to solve the problem of low-
rank approximation with respect to some function Φ on the
matrix singular values, i.e.,

min
X:rank(X)=k

Φ(A−X) (6)

Here we consider Φ(A) =
∑
i φ(σi(A)) for some increas-

ing function φ : [0,∞)→ [0,∞). It is clear that Φ is rota-
tionally invariant and that Φ(A) ≥ Φ(B) if σi(A) ≥ σi(B)
for all i. These two properties allow us to conclude that Ak
remains an optimal solution for such general Φ.

We further assume that φ satisfies the following conditions.
(a) there exists α > 0 such that φ((1 + ε)x) ≤ (1 +

αε)φ(x) and φ((1 − ε)x) ≥ (1 − αε)φ(x) for all
sufficiently small ε.

(b) it holds that for each sufficiently small ε, K1
φ,ε =

supx>0 supy∈[εx,x](φ(x+ y)−φ(x))/φ(y) <∞ and

4https://archive.ics.uci.edu/ml/datasets/
Bag+of+Words

K2
φ,ε = supx>0 supy∈[εx,x](φ(x)−φ(x−y))/φ(y) <
∞.

(c) it holds that for each sufficiently small ε, Lφ,ε =
supx>0 φ(εx)/φ(x) <∞.

(d) there exists γ > 0 such that φ(x + y) ≤ γ(φ(x) +
φ(y)).

When the function φ is clear from the text, we also ab-
breviate Ki

φ,ε and Lφ,ε as Ki
ε and Lε, respectively. Let

Kε = max{K1
ε ,K

2
ε}.

It follows from a similar argument to Lemma 4.1 and Con-
ditions (a)–(c) that

(1− αε)φ(σi(A(I −Q)))− L√η1Kεφ(‖A−Ak‖F )

≤ φ(σi(SA(I −Q)))

≤ (1 + αε)φ(σi(A(I −Q))) + L√η1Kεφ(‖A−Ak‖F )

Note Condition (c) implies that φ
(√∑

i x
2
i

)
≤

φ
(∑

i xi
)
≤ γ

∑
i φ(xi), which further implies that

φ(‖A−Ak‖F ) ≤ γΦ(A−Ak). Therefore

(1− αε)φ(σi(A(I −Q)))− γL√η1KεΦ(A−Ak)

≤ φ(σi(SA(I −Q)))

≤ (1 + αε)φ(σi(A(I −Q))) + γL√η1KεΦ(A−Ak)

Analogously to the singular (p, r)-norm, we define
Φr(A) =

∑r
i=1 φ(σi(A)). It is easy to verify that the argu-

ment of Lemmata 3.2 to 3.4 will go through with minimal
changes, yielding that

Φk(A(I − Q̂′)) ≤ (1 + c1ε)Φk(A−Ak)

+ c2rΦ(A−Ak)

for some constants c1, c2 > 0 that depend on α, γ,Kε, Lε.
When η1 ≤ c3(ε/r)1/α we have

Φ(A(I − Q̂′)) ≤ (1 + c4ε)Φk(A−Ak).

We can then output AZ and Z in time O(nnz(A) · k + nk).
Performing a similar analysis on the running time as before,
we arrive at the following theorem.
Theorem 6.1. Suppose that φ : [0,∞) → [0,∞) is in-
creasing and satisfies Conditions (a)–(d) and that Kε =
poly(1/ε) and Lε = poly(1/ε). Let A ∈ Rn×n. There is a
randomized algorithm which outputs matrices Y, Z ∈ Rn×k
such that X = Y ZT satisfies (6) with probability at least
0.98. The algorithm runs in time O(nnz(A)(k + log n)) +
Õ(npoly(k/ε)), where the hidden constants depend on
α, γ and the polynomial exponents for Kε and Lε.

We remark that a few common loss functions satisfy our con-
ditions for φ. These include the Tukey p-norm loss function
φ(x) = xp · 1{x≤τ} + τp · 1{x>τ}, the `1-`2 loss func-
tion φ(x) = 2

√
1 + x2/2− 1 and the Huber loss function

φ(x) = x2/2 · 1{x≤τ} + τ(x− τ/2) · 1{x>τ}.

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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