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Abstract

We propose a modeling framework for event data
and aim to answer questions such as when and
why the next event would happen. Our proposed
model excels in small data regime with the ability
to incorporate domain knowledge in terms of logic
rules. We model the dynamics of the event starts
and ends via intensity function with the structures
informed by a set of first-order temporal logic
rules. Using the softened representation of tem-
poral relations, and a weighted combination of
logic rules, our probabilistic model can deal with
uncertainty in events. Furthermore, many well-
known point processes (e.g., Hawkes process, self-
correcting point process) can be interpreted as
special cases of our model given simple tempo-
ral logic rules. Our model, therefore, riches the
family of point processes. We derive a maximum
likelihood estimation procedure for the proposed
temporal logic model and show that it can lead
to accurate predictions when data are sparse and
domain knowledge is critical.

1. Introduction
A diverse range of application domains, such as health-
care (Reynaud-Bouret et al., 2010), finance (Bacry et al.,
2015), smart city, and information networks (Zhao et al.,
2015; Farajtabar et al., 2015; 2014), generate discrete events
in continuous time. For instance, the occurrences of dis-
eases on patients are event data; credit card uses are event
data; the arrivals of passengers in subway systems are event
data; the posting and sharing of articles in online social plat-
forms are also event data. Modeling these continuous-time
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event data becomes increasingly important to understand
the underlying systems, to make accurate predictions, and
to regulate these systems towards desired states. Recently,
sophisticated models such as recurrent Marked point pro-
cesses (Du et al., 2016), neural Hawkes processes (Mei &
Eisner, 2017) and policy-like generative point processes (Li
et al., 2018) have been proposed, allowing us to model
increasingly complex phenomena.

Although these models are flexible, they require lots of data
to properly fit the models, making them perform poorly in
the regime of small data. Furthermore, these models are
notorious for their difficult-to-interpret prediction results
and have been branded as “black boxes" (Doshi-Velez &
Kim, 2017) – it is difficult to clearly explain or identify the
logic behind the predictions. In some cases, interpretabil-
ity is more important than predictions. For example, in
medicine, people are more interested in understanding what
treatments contribute to the occurrences and cures of dis-
eases than merely predicting the patients’ health status in
real time (Lee & Yoon, 2017).

Very often, there already exists a rich collection of prior
knowledge from a particular domain, and we want to in-
corporate them to improve the interpretability and gener-
alizability of the event models. For instance, in medical
areas and for patients with sepsis, we may leverage prior
knowledge such as “if sepsis progresses to septic shock,
the blood pressure may drop dramatically" or “if use drug
Norepinephrine, the blood pressure may be controlled" to
predict the appearance or disappearance of some symptoms
in terms of when and why. We want to utilize knowledge
like this rather than reinvent the wheel and purely relying
on data to come up with the rules. When the amount of data
is small and noisy, it will also be challenging to accurately
recover these rules via data-driven models.

Our interest lies in interpretable event models. We aim to
propose a unified framework for modeling the generative
mechanism of the events by incorporating temporal logic
rules (Smullyan, 2012). The occurrence time of events
often exhibits complicated patterns. Our proposed temporal
logic point processes explicitly model the occurrence rate
of events in continuous time. More specifically, we use
(transition) intensity functions to model the start and end of
the events, and these intensity functions will be informed
via a set of temporal logic rules involving both other types
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of events and temporal constraints.

In addition to the interpretability, our modeling framework
has the following characteristics and advantages:

(i) Tolerance of uncertainty. Data are noisy in the real
world, and time information is often imprecisely recorded.
Our model uses a weighted combination of temporal logic
rules as soft constraints rather than hard constraints. These
designs allow for uncertainties in data and the impreciseness
of the incorporated logic rules.

(ii) Temporal relation constraints. Our model can con-
sider logic rules with temporal relation constraints, such as
“A happens before B”, “If A happens, and after 5 mins, B
can happen”, and “If A and B happen simultaneously, then
at the same time C can happen”. Our model uses a softened
parametrization of the temporal relation constraints as part
of the logic functions.

(iii) Continuous-time reasoning process. Our model cap-
tures the dynamics of a continuous-time reasoning process
and can naturally deal with asynchronous events.

(iv) Small data and knowledge transfer. Our model bet-
ter utilizes domain knowledge and, as a result, will work
well on small datasets. Different datasets in similar con-
cepts might share similar logic rules. We might leverage
the learned logic weights in one dataset to warm-start the
learning process on a different dataset. Our model makes it
possible to transfer knowledge among different datasets.

Furthermore, we show that many existing point process
models (Ogata, 1988; Ogata & Vere-Jones, 1984; Achab
et al., 2017) can be recovered as special cases of our frame-
work by specifying simple temporal logic rules. We derive
a maximum likelihood estimation procedure for our model
parameters (i.e., importance weights of logic rules), and
show that the learned model can lead to interpretable and
accurate predictions in the regime of small data.

2. Related Work
The seminal work Markov logic networks (MLNs) (Richard-
son & Domingos, 2006) and the extension (Singla & Domin-
gos, 2008) propose to model the joint distribution of a set
of predicates (i.e., variables) via Markov random field. The
logic rules can be viewed as a template for constructing
Markov networks and a weight is attached to each logic rule.
This model elegantly incorporates domain knowledge and
softens logic constraints. However, it is a static model and
cannot be directly adapted to events or sequential data that
usually exhibit complex temporal dependency.

To handle temporal relations, dynamic MLNs (Papai et al.,
2012) adds a temporal dimension to MLNs and models in-
fluences between variables within a discretized time interval.
The dynamic MLNs do not assume a causal direction (i.e.,

only the history can influence the future), in contrast with
directed models, such as dynamic Bayesian networks (Ker-
sting & De Raedt, 2001; Nachimuthu et al., 2010) and logic
hidden Markov models (Kersting et al., 2006; Natarajan
& Nevatia, 2007; Natarajan et al., 2008), which represent
the conditional dependence in a directed graph. Specific
for event data, probabilistic event logic for interval-based
events (Tran & Davis, 2008; Brendel et al., 2011) has been
proposed, which can allow for latent variables and model
the joint probability of the events.

All these above-mentioned models are built upon the frame-
work of probabilistic graphical models, which allow for par-
tial and noisy observations. However, graphical models are
also known for computationally expensive in inference. In
contrast, our model is proposed based on two assumptions:
(1) we assume a causal direction; and (2) we assume that the
states of predicates are fully observed (we tolerate the noise
in state transition times by introducing softened temporal
relation predicates). Under these assumptions, we model
temporal predicates as continuous-time stochastic processes
and leverage the theory of point process (Jacobsen, 2006)
to directly model the distribution of the inter-event time,
which is characterized by the occurrence intensity function.
We use the first-order logic rules to inform the intensity
function design. A direct benefit is that the joint likelihood
of the events has a much simpler expression in terms of the
intensity function, which makes our model relatively easy
in inference and more scalable with samples and variables.

In comparison with the state-of-the-art point process mod-
els (Du et al., 2016; Mei & Eisner, 2017; Qian et al., 2020;
Jarrett et al., 2019), our model constructs the intensity func-
tion in a more structured way – the introduced first-order
temporal logic rules serve as templates to collectively gather
evidence from history to infer future events, which is more
data-efficient.

3. Temporal Logic
First-order Logic. A predicate such as Smokes(c) or
Friend(c, c0), denoted as x(·), is a logic function defined
over a set of entities C = {c1, c2, . . . , c|C|}, i.e.,

x(·) : C ⇥ C · · ·⇥ C 7! {0, 1}.

The predicates indicate the property or relation of entities.
A first-order logic rule is a logical connectives of predicates,
such as
f1 : 8c Cancer(c) Smokes(c);

f2 : 8c 8c0 Smokes(c0) Friend(c, c0) ^ Smokes(c).

Table 1. Logic Rule in Clausal Form.
xA, xB xB  xA ¬xA _ xB

0, 0 1 1
0, 1 1 1
1, 0 0 0
1, 1 1 1

Commonly used logi-
cal connectives are: ^
for conjunction, _ for
disjunction, for im-
plication, and ¬ for
negation. It is often
convenient to convert
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logic rules to a clausal form, which is a conjunction or dis-
junction of predicates. Table 1 demonstrates the fact that
logic rule xB  xA is logically equivalent to the clausal
form ¬xA _ xB .
Temporal logic predicate. A temporal predicate is a
logic function x(·, ·) defined over the set of entities C =
{c1, c2, . . . , c|C|} and time t 2 [0,1), i.e.,

x(c, t) : C ⇥ C · · ·⇥ C ⇥ [0,1) 7! {0, 1}.

The trajectory of a grounded temporal predicate {x(c, t)}t�0

can also be viewed as a continuous-time two-state
stochastic process. For example, temporal predicate
{NormalBloodPressure(c, t)}t�0 where c is the patient ID
will take values 1 or 0 at any time t to indicate whether blood
pressure is normal or abnormal, and the state transition time
is stochastic.

For simplicity of notation, we will focus on the case with
one entity, and drop the dependency of predicates on the
entity. Hence, we will write x(c, t) as x(t) instead. Given a
sample path (i.e., grounded temporal predicate) of {x(t)}t�0

up to time t, {x(t)}t�0 will stay in state 0 or state 1 for some
time interval. For example, in Fig. 1 (top), the grounded
predicate is recorded as x(t) = 0 for t 2 [0, t1), x(t) = 1 for
t 2 [t1, t2), and so on, where t1, t2, · · · are state transition
times. In some cases, the grounded predicate x(t) is instan-
taneous in state 0 or 1, and we will obtain a point-based
predicate process. Here, we regard point as a degenerate
time interval. As in Fig. 1 (bottom), the predicates will be
triggered to be 1 at the event times, and we record x(t1) = 1,
x(t2) = 1, and so on. For other time, x(t) = 0.

time0 0
!" !#

$ ! 1 1

!% !

!" !#
time0 0 0 0

!%

$ !

Figure 1. Illustration of grounded two-state (top) and point-based
(bottom) temporal predicates.
Temporal relation. Allen’s original paper (Allen, 1990)
defined 13 types of temporal relations between two time
intervals, denoted as {r1, r2, . . . , r13}, which are mutually
exclusive. Specifically, let two time intervals for predicate
xA and predicate xB be ⌧A = [tA1 , tA2 ] and ⌧B = [tB1 , tB2 ]
respectively, where tA1 and tB1 are the interval starting
times, and tA2 and tB2 are the interval ending times. Then a
temporal relation is a logic function defined as

r(·) : (tA1 , tA2 , tB1 , tB2) 7! {0, 1}

which can be mathematically evaluated by a step function
g(s) and an indicator function (s) defined as

step function: g(s) =

(
1 s � 0

0 s < 0
, (1)

indicator function: (s) =

(
1 s = 0

0 o.w.
, (2)

to enforce hard temporal constraints. We will discuss the

softened approximation functions for step function g(s) and
delta function (s) in section 4.3 to tolerate uncertainties in
data, and using the softened temporal constraints, we will
have r(·) 2 [0, 1]. Function forms of these 13 temporal rela-
tions can be founded in Table 2. Considering the inverses
of relation r1 � r6 plus the symmetric relation r7 “equal”,
there are a total of 13 relations. If there are no temporal
relation constraints on xA and xB , then their temporal re-
lations can take any of the 13 types, and r0 = rno() returns
the disjunction of these relations and is always “True" (i.e.,
1).

Table 2. Interval-based temporal relation constraints and their il-
lustrative figures.

Temporal Relation Logic Function r(·) Illustration

rb: A before B g(tB1 � tA2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

rm: A meets B (tA2 � tB1)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

ro: A overlaps B g(tB1 � tA1) · g(tB1 � tA2) · g(tB2 � tA2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

rs: A starts B (tA1 � tB1) · g(tB2 � tA2) !"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

rc: A contains B g(tB1 � tA1) · g(tA2 � tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

rf : A finished-by B g(tB1 � tA1) · (tA2 � tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%
re: A equals B (tA1 � tB1) · (tA2 � tB2)

!"# !$%= !$# !"%

!"# !"% !$# !$%

!"# !$%!"# = !$#

!"# !$%!$# !"%

!"# !$%!$# !"%

!"# !$%!$# = !"%

!"# !$%= !$# = !"%

More complex temporal relations can be decomposed as the
composition of these 13 types of two way relations. For
example, “(A and B) before C" can be decomposed as “(A
before C) and (B before C)".

For degenerate point-based predicate process, where tA1 =

tA2 = tA, and tB1 = tB2 = tB , we will have a total of 3
types of temporal relations with function forms,

Before(tA, tB): g(tB � tA),

After(tA, tB): g(tA � tB),

Equal(tA, tB): (tA � tB).

(3)

Temporal logic formula. A temporal logic formula is a log-
ical composition of temporal logic predicates and temporal
relations, f(Xf , Tf ) 2 {0, 1}, where

• Xf = {xu(t)} is a set of temporal predicates used to
define the formula f ,

• Tf = {⌧u} is a set of time intervals, with each xu 2 Xf

associated with a time interval ⌧u = [tu1 , tu2 ] (1 and 2 in
the subscript indicate interval start and end respectively).
We require that within time interval ⌧u, the value of the
temporal logic predicate xu(t) remains fixed.

Then a temporal logic formula has a generic form
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f(Xf , Tf ) :=

✓✓_
xu2X

+
f

xu(tu)

◆_✓_
xv2X

�
f

¬xv(tv)

◆◆

^✓^
xu,xv2Xf

ri(⌧u, ⌧v)

◆
(4)

where X
�

f is the set of predicates used as negation in the
formula f , X+

f = Xf \X
�

f , tu 2 ⌧u, tv 2 ⌧v, and {ri(⌧u, ⌧v)}

is the set of prespecified temporal relations between pairs of
predicates where ri can take any of the 13 types of temporal
relation. Note that if we use the soft temporal relation
constraints as in section 4.3, then the temporal logic formula
f(Xf , Tf ) 2 [0, 1].

4. Temporal Logic Point Processes
Suppose we define a collection of d temporal logic pred-
icates X(t) = {x1(t), x2(t), . . . , xd(t)}, which is a com-
pact representation of temporal knowledge base and can
be grounded at any time t. An example of {X(t)}t�0

in healthcare context is illustrated in Fig. 2. Each tem-
poral predicate xu(t) 2 {0, 1}, such as UseDrug1(t),
NormalBloodPressure(t) and so on, represent the proper-
ties, medical treatments, and health status of a patient at
time t and can be grounded from data.

A set of prespecified temporal logic formulae F =

{f1, f2, · · · } express our prior belief on how these
temporal predicates are related. For example in
Fig. 2, a first-order temporal logic rule is defined as
“(GoodSurvivalCondition(t00)  NormalBloodPressure(t) ^
NormalHeartBeat(t0))^Before(t, t00)^Before(t0, t00)”. We
want to incorporate these temporal logic formulae to our
point process model to explain the generative mechanism of
the events. More details are provided as follows.Informed Transition Intensity Design

Given a set of first-order temporal logic 
rules  ℱ = {$%, $', … }
q $%:   (NormalBloodPressure (t’) ←
UseDrug1(t)) ∧ Before ,, ,-
q $':    (¬ GoodSurvivalCondition(t’’) ←
UseDrug1(t) ∧ UseDrug2(t’) ∧
Equals ,, ,- )∧Before ,, ,-′ ∧Before ,′, ,-′
q$0:    (GoodSurvivalCondition(t’’) ←
NormalBloodPressure(t) ∧
NormalHeartBeat(t’))∧ Before ,, ,-′ ∧
Before ,′, ,-′
q· · ·

UseDrug1 , time

11

0

1

0 0 0

time

11

0 0UseDrug2 , 0

0

0

time
1

0
1

0
NormalBloodPressure ,

NormalHeartBeat , 0 time
1

GoodSurvivalCondiEon ,
time

,ℋ2

Temporal logic rules define a ``template”, as how to collect evidence from historical data 
ℋ2 , to infer the transition intensity of the temporal predicate of interest. 

1

Figure 2. Running example in healthcare context.

4.1. Intensity model for temporal predicate
We note that, for a temporal predicate, the positive and
negative values will occur in an alternating fashion, dividing
the time axis into segments. To facilitate later exposition, we
will denote Hu(t) as the sequence of time intervals for each
temporal predicate xu(t). More specifically, if we observe a
sequence of transition times {t1, t2, . . . , tn} and the states at
transition times between [0, t), then we define

Hu(t) := {xu(0), xu(t1), xu(t2), . . . , xu(tn), xu(t)} (5)

where values of the temporal predicate remain fixed within
each time interval [0, t1), [t1, t2), . . . , [tn�1, tn), [tn, t). And
the length of each interval ti+1 � ti > 0 is the dwell time of
a particular fixed state.

Given the set of H = {Hu}u=1,...,d for all temporal pred-
icates, we can model the sequence of events for a partic-
ular temporal predicate using two intensity functions as
illustrated in Fig. 3(a). More specifically, define �⇤

u(t) :=

�(t|H(t)) as the conditional transition intensity for “xu(t)
transits from 0 to 1”, and µ⇤

u(t) := µ(t|H(t)) as the con-
ditional transition intensity for “xu(t) transits from 1 to
0”.

!"

#∗(&)

(∗(&)

(a) (b)

!"
#∗(&) (∗(&)

" !#∗(&)

Figure 3. (a) Two-state transition diagram of a temporal predicate.
(b) Unrolled conditional process.
We can unroll the transition diagram and obtain a conditional
process, with a unique sample path. All the transition inten-
sities are time and history dependent. Suppose xu(t) = 0 at
t = 0, we will have the conditional process as displayed in
Fig. 3(b).

4.2. Intensity design guided by temporal logic rules

We now discuss how to design the conditional transition
intensity for temporal predicates by fusing a set of temporal
logic formulae F = {f1, f2, . . . , fn} from domain knowl-
edge. We especially focus on how to utilize first-order
temporal logic rules to construct features from history.
We will take a simple first-order temporal logic rule with
temporal relation constraints as our running example. In
plain language, a temporal reasoning rule for deducing event
of type C is
f1 : (C  A ^B) ^ (A before B) ^ (A and B before C),

(6)
which has the corresponding logical form as “if predicate
xA is true and predicate xB is true, then predicate xC is
true; furthermore, xA has to occur before xB , and both have
to occur before xC”.
Write the temporal logic formula in clausal form as Eq. (4)
and we have

f1(xA, xB , xC , tA 2 ⌧A, tB 2 ⌧B , tC 2 ⌧C) (7)
= (¬xA(tA) _ ¬xB(tB) _ xC(tC))

^ rbe(⌧A, ⌧B) ^ rbe(⌧B , ⌧C)

where the temporal logic function f1 can be evaluated based
on the states of xA(tA) at time tA, xB(tB) at time tB , and
xC(tC) at time tC , where tA, tB and tC can be any time.
The temporal relation constraints, which are part of the
logic formula, will be evaluated based on the corresponding
time intervals ⌧A, ⌧B and ⌧C , with tA 2 ⌧A, tB 2 ⌧B and
tC 2 ⌧C . Within these time intervals, predicates xA(t), xB(t)
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and xC(t) all maintain fixed values, which may be different
from each other.

We are interested in forward reasoning where we model
the conditional transition intensity of deduced predicate
xC and treat the histories of xA and xB as evidence. For
predicate xC(t), at any time t, it has two potential outcomes
0 or 1. One can observe only one, but not both, of the two
potential outcomes. The unobserved outcome is called the
“counterfactual” outcome. The grounded predicate state
xC(t) is always the “observed" outcome at time t, and 1�

xC(t) is always the “counterfactual" outcome at time t.
To incorporate the knowledge from formula f1 in construct-
ing the transition intensity for xC at any time t, we define a
formula effect (FE) term, denoted as �f1 as

FE = �f1(t | tA 2 ⌧A, tB 2 ⌧B) (8)
:= f1(xA, xB , 1� xC , tA 2 ⌧A, tB 2 ⌧B , tC = t)

� f1(xA, xB , xC , tA 2 ⌧A, tB 2 ⌧B , tC = t)

where the logic formula f1 is evaluated as in Eq. (7), tA
and tB can take any time (but only before t will make the
logic function non-zero), and xC is evaluated at time t.
FE answers the question “what would happen if xC transits
its state given logic formula f1 is satisfied". Note that the
sign of FE can be 1, -1 or 0, which can be interpreted as

sgn(FE) =

8
><

>:

1 Positive effect to transit,
�1 Negative effect to transit,
0 No effect to transit.

If we use the soft temporal constraints as in section 4.3, then
f1 2 [0, 1] and therefore �f1 2 [�1, 1]. The magnitude of
the formula effect will quantify the strength of the influence
that is time-dependent. We can aggregate the formula effect
from history to construct features. These features further
play a role to construct the conditional intensity functions.
Inspired by this, the conditional transition intensity for xC

from state 0 to 1, contributed by logic formula f1 is modeled
as
�⇤

C(t) = exp{wf1 ·

X

⌧A2HA(t)

X

⌧B2HB(t)

�f1(t | tA1 2 ⌧A, tB1 2 ⌧B)

| {z }
feature �f1

(t)

}

(9)
where the sign of the formula effect �f1(t | tA, tB) indi-

cates whether logic f1 exerts a positive or negative effect
provided the history HA(t) and HB(t), and the magnitude
of �f1(tA, tB , t) quantifies the strength of the influence. The
double summation takes into account all combinations of
temporal intervals in HA(t) and HB(t). Since within each
time interval ⌧A and ⌧B , predicates xA(t) and xB(t) main-
tain fixed values, we can simply evaluate the states of xA

and xB at the starting point of each intervals tA1 and tB1 .
The valid combinations (i.e., combination of the evidence
that induces a nonzero formula effect) defined by f1 are
illustrated in Fig. 4(a). We also have a weight parameter,
wf1 , associated with the logic rule f1. One can think of the
formula weight as the confidence level on the formula. The

higher the weight, the more influence the formula has on
the intensity of �⇤

C(t).

The conditional transition intensity µ⇤

C(t) has the same ex-
pression as Eq. (9). The only difference is that when we
compute �⇤

C(t), we have xC(t) = 0, whereas when we com-
pute µ⇤

C(t), we have xC(t) = 1. As illustrated in Fig. 4(b),
the valid combinations that yield nonzero formula effects
correspond to xA(tA) = 1, xB(tB) = 1, and xA(tA) happens
before xB(tB) and both before t. The feature can be eval-
uated from grounding �f1(t|tA, tB) using Eq. (7) and (8).

time0 0

10 0 1 0

1 10!" #
#

!$ # time

ℋ&

0 time10!' # 1 100

1time0 0

10 0 1 0

1 10!" #

#

!$ # time

ℋ&

0 time10!' # 1 100

(a) (b)

Figure 4. Combinations of A, B informed by f1 to infer transition
intensity of C. Different combinations can have different weights
due to the temporal relation kernel introduced by the soft temporal
relation constraints.

Predicate xC can be deduced from more than one logic
formulae. For example, xC can belong to multiple rules
f1(xA, xB , xC) and f2(xC , xD). We assume effect of tem-
poral logic formula f1 and f2 are additive in designing the
transition intensity for xC . In general, given a set of tem-
poral logic formulae FC = {f1, . . . , fn} for deducing xC(t),
the conditional transition intensity for predicate xC , is de-
signed as

�⇤

C(t) = exp

8
<

:
X

f2FC

wf · �f (t) + b(t)

9
=

; , (10)

where we introduce a base temporal function b(t) to always
allow for spontaneous transition without influence from the
logic. For instance, b(t) can either be a constant b(t) = b, or
a deterministic function of t, or a regularized but flexible
model. The intensity µ⇤

C(t) has the same expression as in
Eq. (10).

4.3. Softened temporal constraints

In practice, the temporal information usually cannot be ac-
curately recorded. It makes more sense to introduce soft
constraints for the temporal relations. We introduce soft-
ened approximation functions for step function g(s) and
delta function (s) in replacement of those used in the defi-
nitions of temporal relations in Table 2.
Step function g(s) can be softened as a triangular function
with area one or a logistic function,

g(s) = min(1,max(0,�s+ 1
2 )),

or g(s) =
1

1 + exp(��s)
. (11)

Delta function (s) can be softened as a triangular function
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with area one, or a Laplace distribution,
(s) = max(0, min( s

�2 + 1
� ,� s

�2 + 1
� )),

or (s) =
exp(�|s|/�)

�
. (12)

Parameters � and � � 1 can be either specified or treated as
unknown parameters that will be learned from data.

4.4. Likelihood
By the definition of transition intensity in Eq. (10), we can
write out the likelihood. For predicate C, given a realization
of the process up to time t, as in Fig. 3(b), the likelihood
L({xC(t)}t�0) is

�⇤

C(t1) exp

✓
�

Z t1

0

�⇤

C(s)ds

◆
· µ⇤

C(t2) exp

✓
�

Z t2

t1

µ⇤

C(s)ds

◆

· · · exp

✓
�

Z t

tn

µ⇤

C(s)ds

◆
, (13)

provided predicate xC starts in state 0 and stays in state 1 up
to time t. We give the proof of the likelihood in Appendix C.
By considering all the predicates, the likelihood for the
dataset is L =

Q
u2{1,...,d} L({xu(t)}t�0).

4.5. Inference

All the unknown parameters regarding the logic weights
(wf , b) and the temporal relations � and � will be jointly
learned by maximizing the likelihood. The likelihood func-
tion as in Eq. (13) has no closed-form expression in most
cases and the integral term involved requires numerical
approximation. But this numerical approximation is not
difficult for one dimension. Stochastic gradient descent type
of optimization algorithm can be utilized to learn model
parameters. More specifically, if we want to ensure wf > 0

for better interpretation of the results, projected gradient de-
scent (Boyd & Vandenberghe, 2004; Chorowski & Zurada,
2014) methods can be adopted to satisfy the constraints.

5. Experiments
We empirically demonstrated the interpretability, predic-
tion accuracy, and flexibility of our proposed temporal logic
point processes (TLPP) on both synthetic (including Hawkes
processes and self-correcting point process) and real data
(including healthcare application about sepsis patients mor-
tality prediction and finance application about credit card
fraud event prediction).

5.1. Recover Well-known Temporal Point Processes.

We focused on Hawkes processes and self-correcting pro-
cesses and showed they are special cases of our model via
using one logic rule to completely recover the dynamics of
these parametric point processes.

The experiments were set up as follows. We fixed the pa-
rameters of a chosen parametric point process and produced
training samples from it. Then we provided a temporal

logic rule to our model as prior knowledge. Our temporal
logic point process model was constructed by encoding the
prior knowledge in its intensity structures, and the model
parameters were learned using the training samples. For
evaluation, new samples were generated from the learned
model and were compared with the training samples. We
visually demonstrated their similarities.
(i) Nonlinear Hawkes is a self-exciting point process with
intensity function of the form

�(t) = exp(b+ ↵
X

ti<t

exp(�(t� ti))), (14)

where b > 0 and ↵ > 0, and it models the mechanism that
previous events will boost the occurrence rate of new events.
This temporal pattern can be described as a logic rule such
as “If A happens, then A will happen again afterwards”,
which can be expressed as

fHawkes : XA(t) XA(t
0) ^ Before(t0, t), (15)

where XA(t) is a degenerate temporal predicate which will
be triggered to be 1 at time t. This correctness of the rule can
be evaluated as a logic function fHawkes : (XA(t)_¬XA(t

0)) ·

g(t� t0) where g(s) is a softened temporal predicate such as
a logistic function in Eq. (11).
(ii) Self-Correcting or self-regulating point process is with
intensity function of the form

�(t) = exp

 
bt�

X

ti<t

↵

!
, (16)

where b > 0 and ↵ > 0, and it models the fact that previous
events will inhibit the occurrence rate of new events. Using
the logic language, it corresponds to “If A happens, then A
will not happen again”, which can be expressed as

fself-correcting : ¬XA(t) XA(t
0) ^ Before(t0, t). (17)

Similarly, this rule can be evaluated as a logic function
fself-correcting : (¬XA(t) _ ¬XA(t

0)) · g(t� t0).

Utilizing the hypothesized logic rules as (15) and (17), our
model successfully recovered the clustering patterns of the
targeting processes defined as Eq. (14) and Eq. (16) only
using one short sequence of events, and the cumulative
counts of the generated events and the training event are
almost the same up to any time t, as displayed in Fig. 5.

(a): Hawkes. (b) Self-correcting.
Figure 5. Illustration of the generated events (in red) and the train-
ing events (in blue). Top: cumulative counts of the events. Bottom:
realizations of the events that occur irregularly over time.
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5.2. MIMIC-III: Predict Patient’s Survival Rate

MIMIC-III is an electronic health record dataset of patients
admitted to the intensive care unit (Johnson et al., 2016).
We gleaned patients diagnosed as sepsis (8,284 patients)
from it to construct our dataset in this experiment.

Predicates and Logic Rules. We had human experts (i.e.,
doctors) help us define the logic rules according to the patho-
genesis of sepsis (Hotchkiss & Karl, 2003). A set of first-
order temporal logic rules were defined over a collection of
predicates, which were summarized in Table 3. The predi-
cates refer to drug usage, symptoms of patients (mainly vital
signs), survival condition, and temporal relations respec-
tively. Three categories of drugs, Antibacterial, Vasoactive
drugs, and Diuretics, were included. Sepsis is caused by
the body’s response to an infection, and Antibacterials are
directly targeting the source of the infection. In our list of
Antibacterials, three drugs (i.e., Meropenem, Tobramycin,
and Vancomycin) are for severe sepsis, and the remaining
are for mild sepsis. They are required to be delivered to the
same patient following the order — Antibacterials for severe
sepsis cannot be applied before those for mild sepsis, due
to antibiotic resistance. Vasoactive drugs and Diuretics are
needed to alleviate severe clinical conditions when the septic
shock (a complication of sepsis) appears, which will reflect
in the state changes of vital signs. Among all symptoms,
low blood pressure is closely related to the mortality rate.
The complete logic rules were summarized in Appendix A,
Table 9, and they were prior knowledge of our model.

Table 3. Defined Predicates for Sepsis Patients in MIMIC-III.

Antibacterials Use-Levofloxacin(t), Use-Ceftriaxone(t),
Use-Meropenem(t), Use-Ceftazidime(t),
Use-Tobramycin(t), Use-Metronidazole(t),
Use-Vancomycin(t), Use-Azithromycin(t),
Use-Ciprofloxacin(t), Use-Piperacillin(t)

Vasoactive Drugs Use-Metoprolol(t), Use-Diltiazem(t),
Use-Norepinephrine(t)

Diuretics Use-Furosemide(t)

Symptoms NormalBloodPressure(t),
NormalHeartRate(t),
NormalRespiratoryRate(t),
NormalTemperature(t),
NormalUrineOutput(t)

Suvival Condition GoodSurvivalCondition(t)

Temporal Relation Before(t, t0), Equal(t, t0)

Data Pre-Processing. We extracted trajectories of the pred-
icates from raw data. All predicates were grounded sequen-
tially with state transition times recorded. Specifically, we
distilled the following information from data, such as

([patient ID], [predicate ID], [time], [state]) .

For drug-use predicates, treatment times were recorded with
state 1; for symptom predicates, state transition times (i.e.,
from normal state 1 to abnormal state 0 or vice versa) were
recorded; and for survival, since the predicate can only tran-

sit its states at most once, patients’ admission and discharge
times (if provided), and their final states (0 or 1) and observa-
tion times (if provided) were recorded. All these predicates
took values 0 or 1; the temporal relation predicates were
grounded by recorded times and took values in between 0
and 1 (see Appendix D for more details).

Prediction Accuracy. We first predict the survival rate of
each patient given her last recorded time in the dataset.
We compared the prediction accuracy of our temporal logic
model with four classic baseline methods, RNN (Ge et al.,
2018), LSTM (Suresh et al., 2017; Xu et al., 2018), Lo-
gistic Regression (LR), and dynamic Bayesian Networks
(BN) (Loghmanpour et al., 2015) using the same test data
consisting 100 patients. All models were trained on training
data containing 50, 500, and 4,000 patients’ trajectories, re-
spectively, with the comparison results displayed in Table 4.

The inputs of all models are preprocessed predicate states
(binary) and their recorded times1. Baseline models were
established as follows: We considered a one-layer RNN
and LSTM with 128 hidden units. One-hot embeddings of
predicates were fed into the RNN and LSTM sequentially
to predict the next-time symptoms and survival. For Lo-
gistic Regression and dynamic Bayesian Networks, time
was discretized and the features were aggregated within
a time interval to predict the current survival status. We
used the same prior knowledge (logic rules) to construct
the dependency structures for Bayesian Networks for a fair
comparison. For our model, weights of logic rules were
initialized as a small number, say, .001 (like the standard
initialization for neural networks). To ensure non-negative
weights, projected gradient descent was used in training.

Our model performed fairly well and was consistently supe-
rior to the baselines on the considered small- and medium-
sized problems, mainly due to better utilization of prior
knowledge and the ability to capture complex temporal de-
pendence in data. RNN and LSTM require more data to have
a better fit. Logistic Regression is a parsimonious model,
yet it aggregates the features in a linear and less-structured
fashion. Bayesian Networks are ready to incorporate prior
knowledge by representing conditional dependence in a
directed graph, but it was time-consuming in inference.

Table 4. Predication Results of Survival Rate
Method Train/Test: 50/100 500/100 4000/100

LSTM 0.405 0.420 0.436
RNN 0.439 0.442 0.424
LR 0.506 0.507 0.518
BN 0.530 0.570 0.540

Temp Logic 0.584 0.647 0.682

To validate continuous-time reasoning, we predicted the
time to survival, and compared with a state-of-the-art point

1We also tried to construct inputs using one-hot embeddings of
medications combined with real symptom values, but the perfor-
mance degraded
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Table 7. Effective First-order Logic Rules for Sepsis Patients in MIMIC-III

GoodSurvivalCondition(t) Use-Drug(t0) ^ Before(t0, t), where Drug = {Ceftazidime, Tobramycin,
Vancomycin, Diltiazem, Furosemide Warfarin, Ciprofloxacin}

GoodSurvivalCondition(t) Use-Drug1(t0) ^ Use-Drug2(t00) ^ Before(t0, t) ^ Before(t00, t) ^ Before(t0, t00),
where (Drug1,Drug2) = {(Ceftriaxone, Meropenem), (Ciprofloxacin,Meropenem),

(Ceftriaxone, Tobramycin), (Azithromycin, Tobramycin)
(Ciprofloxacin, Tobramycin), (Piperacillin, Tobramycin)}

NormalHeartRate(t) Use-Metoprolol(t0) ^ Before(t0, t)

NormalBloodPressure(t) Use-Norepinephrine(t0) ^ Before(t0, t)

Figure 9. Formula Graph of Fraud Credit Card Transaction.

Table 8. Effective First-order Logic Rules for sepsis.
Is-Fraud(t) Has-FraudHistory(t0) ^ Before(t0, t)

Is-Fraud(t) Is-ZeroAmount(t0) ^ Equal(t0, t)

Is-Fraud(t) Is-SmallAmount(t0) ^ Equal(t0, t)

Is-Fraud(t) Has-ZeroAmountHistory(t0) ^ Before(t0, t)

Is-Fraud(t) Has-MultiZip(t0) ^ Before(t0, t)

Figure 10. The transaction amount distribution of Fraud and Nor-
mal events.

fraud credit transactions on the fly. Since fraud transac-
tions are rare events, for LSTM and RNN, if we trained
the models directly using the original imbalanced training
datasets, this will lead to very low prediction accuracy in
testing; we oversampled the fraud samples in training with
ratio 1 : 2 at each batch which improved the performance.
The inputs features for all models were binary predicates for
a fair comparison. We noticed that this feature construction
has already incorporated prior knowledge and it empirically
increased the model performance than directly using the raw
attributes of transactions as features. We created a more
balanced test dataset to make the prediction accuracy rea-
sonable, with fraud and normal transactions account for 142
and 188 (fraud ratio is 0.4303). The prediction accuracy
results were demonstrated in Table 9. The performance of
our model is fairly well even using a handful of training sam-
ples. For this imbalanced example, detecting fraud is like
looking for a needle in a haystack, and the temporal logic
model provides a method to incorporate prior knowledge to
effectively search for evidence which aids prediction.

Interpretability. The discovered effective logic rules were
demonstrated in Table 11, which were the key factors in
reasoning about fraud transactions. Interestingly, the fraud
transactions are more likely to be frequent and consecutive
transactions of small amounts, rather than a transaction of
extremely large amount.

6. Discussion.
In this paper, we proposed a unified framework to integrate
first-order temporal logic rules into point processes. Our
model is easy to interpret and works well on small data. We
also introduced a softened representation of the temporal
relation constraints to tolerate uncertainty. Many existing
point processes can be recovered by defining simple logic
rules. As for future work, we aim to introduce latent predi-
cates to make our model more flexible.
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process model RMTPP (Du et al., 2016). RMTPP was im-
plemented by using LSTM to extract all predicates’ histori-
cal events (i.e., symptoms and drugs) as feature embeddings
(size = 36) and formed the conditional intensity via nonlin-
ear mappings (ReLU). All models were trained on 50, 500,
and 4,000 patients, and were tested on 100 patients. The
Mean Absolute Errors (MAE) of time to survival with the
unit is the day are displayed in Table 5.
Table 5. Prediction Results of Time to Survival: Mean Absolute
Errors (MAE) in Days

Method Train/Test: 50/100 500/100 4000/100

RMTPP 0.464 0.398 0.399
Temp Logic 0.233 0.252 0.227

Our model yields smaller MAEs than RMTPP, and the re-
sults showcase the strength of our model in reasoning about
the occurrence time for events in small data, due to incor-
porating domain knowledge to form conditional intensity,
whereas the LSTM-based conditional intensities are data-
hungry by nature.

Our model yields smaller MAEs than RMTPP, and the re-
sults showcase the strength of our model in reasoning about
the occurrence time for events in small data, due to incor-
porating domain knowledge to form conditional intensity,
whereas the LSTM-based conditional intensities are data-
hungry by nature.

Knowledge Transfer Ability. We evaluated the knowledge
transfer ability via splitting MIMIC dataset based on age
information of patients. We tested whether the knowledge
learned from a large dataset D1 (patient age: 19-44, sample
size: 300) can be transferred to a small dataset D2 (patient
age: 65-90, sample size: 100) with slightly different pat-
terns. Consider three scenarios to set up the experiments:
Benchmark (no transfer), train on dataset D3 (patient age:
65-90, sample size: 50) and test on D2; Transfer 1 (freeze
the weights), train on D1 and test on D2; and Transfer 2
(fine-tune the weights), train on D1, warm start the model on
D3, and test on D2. Table 6 shows the “prediction accuracy
of the survival rate” of the models under three scenarios.

Table 6. Prediction Results of Survival Rate via Knowledge Trans-
fer.

Method Benchmark Transfer1 Transfer2

RNN 0.511 0.507 0.517
LSTM 0.516 0.502 0.527

LP 0.519 0.514 0.522
BN 0.501 0.530 0.531

TempLogic 0.615 0.637 0.659

We also split the dataset by gender, and obtained similar
trends. The above results demonstrate a better generalization
and knowledge transfer power of our model — the learned
relatively important logic rules can be transferred across
datasets with similar tasks.

Interpretability. It is of value to understand what medical
treatments are more effective than others. Although all
introduced logic rules are likely to be true, some rules might
be satisfied (or violated) more often than others, which will
reflect in bigger (or smaller) values of the learned formula
weights. Using the entire dataset, the learned formula graph
and the picked effective logic rules (i.e., whose weights were
significantly greater than 0) were shown in Fig. 6. From
the results, we noticed that high frequent drug-usage did
not necessarily yield high logic weights. For example, drug
Heparin was of a relatively high use frequency (account for
0.128/1 of all drug usage), but the associated logic rule was
not effective. This means, when doctors prescribed these
drugs to patients, they believed the drugs will insert positive
effects; however based on patients’ data, the drug effects
were not as effective as expected. On the other hand, drug
Ceftazidime was rarely used (0.01/1) but the related rule
was effective. These discoveries are interesting.

Figure 7. Transaction amount distributions: Fraud v.s. Normal.

5.3. Credit Card Fraud Detection

We used a credit card dataset from the “UCSD-FICO Data
Mining Contest"(FICO-UCSD., 2009) to detect fraud trans-
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Figure 9. Formula Graph of Fraud Credit Card Transaction.

Table 6. Effective First-order Logic Rules for sepsis.
Is-Fraud(t) Has-FraudHistory(t0) ^ Before(t0, t)

Is-Fraud(t) Is-ZeroAmount(t0) ^ Equal(t0, t)

Is-Fraud(t) Is-SmallAmount(t0) ^ Equal(t0, t)

Is-Fraud(t) Has-ZeroAmountHistory(t0) ^ Before(t0, t)

Is-Fraud(t) Has-MultiZip(t0) ^ Before(t0, t)

Figure 10. The transaction amount distribution of Fraud and Nor-
mal events.

Interpretability. The discovered effective logic rules were
demonstrated in Table 9, which were the key factors in
reasoning about fraud transactions. Interestingly, the fraud
transactions are more likely to be frequent and consecutive
transactions of small amounts, rather than a transaction of
extremely large amount.

6. Discussion.
In this paper, we proposed a unified framework to integrate
first-order temporal logic rules into point processes. Our
model is easy to interpret and works well on small data. We
also introduced a softened representation of the temporal
relation constraints to tolerate uncertainty. Many existing
point processes can be recovered by defining simple logic
rules. As for future work, we aim to introduce latent predi-
cates to make our model more flexible.
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Figure 8. Fraud detection. Left: Learned formula graph (edge width is proportional to formula weight). Right: Effective logic rules.

Table 7. Defined Predicates for Credit Card Fraud Detection.
Signs of Fraud Is-ZeroAmount(t), Has-MultiCards(t),

Has-ZeroAmountHistory(t),
Is-LargeAmount(t), Is-SmallAmount(t),
Has-LargeTransactionTimeGap(t),
Has-MultiZip(t), Has-FraudHistory(t)

Fraud Condition Is-Fraud(t)

Temporal Relation Before(t, t0), Equal(t, t0)

actions. The dataset is labeled, anonymous and imbalanced.
It contains 100,000 (#Fraud: 2,654, #Normal: 97,346) trans-
actions of 73,729 customers over 98 days. Each transaction
has information such as account ID, transaction amount,
transaction time, corresponding email address, zip-code,
and location.

Table 8. Fraud Detection
Method Train/Test: 500/1000 5000/1000 50000/1000

LSTM 0.632 0.633 0.637
RNN 0.634 0.621 0.633
LR 0.650 0.652 0.641
BN 0.636 0.649 0.649

Temp Logic 0.728 0.754 0.762

Predicates and Logic Rules. Logic rules were defined
from domain knowledge and exploratory data analyses.
Some typical (but not absolute) signs of credit card fraud,
such as “declined purchases followed by small ones" or
“one card but multiple different addresses" (Delamaire et al.,
2009) guided us design the rules. We also did preliminary
analyses of the data, and especially focused on the distinct
properties of fraud transactions. For example, as demon-
strated in Fig. 7, fraud transactions yield an evident higher
proportion of extremely small transactions (e.g. zero trans-
action amount) and this observation was summarized as a
rule. See Table 7 for the defined predicates. The set of
first-order logic rules can be found in the Appendix B.

Data Pre-Processing. Predicates were sequentially
grounded given credit card’s transaction trajectory, with
state transition times recorded. We thus obtained a list of
events, i.e.,

([account ID], [predicate ID], [time], [state]) .

Predicates, such as Is-Fraud, or Is-ZeroAmount, are about
transaction properties; they were grounded simultaneously
once a transaction occurred. Other predicates that record
the history information, such as Has-FraudHistory, were

triggered to be 1 the first time the condition was satisfied.
Thresholds that determined small amount (i.e., >0 and <5)
and large amount (i.e., >50) were set from the exploratory
data analyses.

Prediction Accuracy. Our goal is to detect fraud credit
transactions on the fly. Similarly, we compared our model
with LSTM, RNN, Logistic Regression, and dynamic
Bayesian Networks. The baselines were set up similar to the
MIMIC-III dataset. Since fraud transactions are rare events,
we found if we trained LSTM and RNN using the original
imbalanced training datasets, they had a very low prediction
accuracy in testing; we oversampled the fraud samples in
training with ratio 1/2 at each batch which improved the
performance. The inputs features for all models were binary
predicates for a fair comparison. We noticed that this fea-
ture construction has already incorporated prior knowledge
and it empirically increased the model performance than
directly using the raw attributes of transactions as features.
We created a more balanced test dataset to make the pre-
diction accuracy reasonable, with fraud ratio 0.4303. The
prediction accuracy results were demonstrated in Table 8.
The performance of our model is fairly well even using a
handful of training samples. For this imbalanced dataset,
detecting fraud is like looking for a needle in a haystack, and
the temporal logic model provides a method to incorporate
prior knowledge to effectively search for evidence which
aids the prediction.

Interpretability. The learned formula graph and discovered
effective logic rules were demonstrated in Fig. 8, which
showed the key factors in reasoning about fraud transactions.
Interestingly, the fraud transactions are more likely to be
frequent and consecutive small amount transactions, rather
than a transaction of extremely large amount.

6. Conclusion
In this paper, we proposed a unified framework that inte-
grates first-order temporal logic rules as prior knowledge
into point processes. Our model is easy to interpret, works
well on small data, and thus has wide applications in real
domains such as healthcare and finance.
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