
Rethinking Model Size for Efficient Training and Inference of Transformers

A. Additional Training Curves
A.1. Training Cost Using FLOPs

In Figure 10, we plot selected learning curves from the
main text as a function of FLOPs rather than seconds. We
compute FLOPs using the code provided by Clark et al.
(2020).

A.2. The Impact of Batch Size

Figure 13 shows the learning curves associated with differ-
ent batch sizes. Table 1 shows the learning rates associated
with each batch size. We use the hyperparameters from Liu
et al. (2019b) as a starting point and then lightly tune them.

Batch Size Learning Rate

256 .0002
2048 .001
4096 .00125
8192 .0015
16384 .001875

Table 1. The learning rate for each batch size in Figure 13.

A.3. The Impact of Dataset Size

Figure 14 shows the learning curves for models trained
using 5% and 1% of the training data.

B. Finetuning Models of Different Sizes
Table 2 shows that models with more parameters are not
harder to finetune.

Model Perplexity MNLI SST-2

12-layer, 768H 4.3 84.3 93.0
18-layer, 768H 4.1 85.4 92.6
24-layer, 768H 4.0 85.2 93.1

12-layer, 768H 4.3 84.3 93.0
12-layer, 1024H 3.9 85.5 93.2
12-layer, 1536H 4.3 85.1 93.8

Table 2. We train ROBERTA models of different sizes and stop
them at roughly the same pretraining perplexity (the bigger models
are trained for less wall-clock time). We then finetune each model
on MNLI and SST-2. All models reach comparable accuracies (in
fact, the big models often outperform small ones), which shows
that larger models are not harder to finetune.

C. Negative Results: Layer Sharing
Sharing weights across transformer layers can provide a
small or negligible degradation in final performance (Lan

et al., 2020; Dehghani et al., 2019) while providing a re-
duction in memory consumption. In addition, models with
shared layers are slightly faster to execute because they
require less memory movement and reduced inter-device
communication. Similar to Lan et al. (2020), we experi-
ment with two types of layer sharing: sharing all layers and
sharing only the attention layers.

Sharing layers reduces the maximum memory requirements,
especially for small batch sizes. For example, sharing all
the layers of a ROBERTA model with batch size 32 re-
duces total memory usage by 41%. However, both forms of
sharing lead to slower training convergence and thus worse
performance in the resource-constrained setting (Figure 11).
Consequently, we do not recommend sharing layers for
compute-efficient training or inference of transformers.

Figure 11. Sharing attention layers reduces the maximum memory
consumption of ROBERTA but causes slower convergence and
worse final accuracy.

D. Compression Results for SST-2
We follow Liu et al. (2019b) and report results on SST-
2 (Socher et al., 2013) in addition to MNLI. Since the
SST-2 dataset is smaller than MNLI it requires a more
significant tuning of the finetuning hyperparameters. We
tune the batch size in {16, 32, 64}, the learning rate in
{5e−4, 3e−4, 1e−4}, the seed which controls the classifier
initialization and training data shuffling in {100, 300, 500},
and the dropout in {0.1, 0.2, 0.3}. We choose the best value
using the validation set for each model size. We then per-
form quantization, pruning, and quantization and pruning
on all finetuned models. Similar to MNLI, the bigger mod-
els provide the highest accuracy for a given test budget
(Figure 12).



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 10. Floating Point Operations. We show Figures 2, 4, and 13 in terms of exaFLOPs instead of wall-clock time. Bigger models
achieve better results than smaller models using the same number of floating point operations.

Figure 12. Compression for SST-2. For most budgets (x-axis), the highest accuracy SST-2 models are the ones which are trained large and
then heavily compressed. We show results for quantization (left), pruning (center), and quantization and pruning (right).

Figure 13. Increasing the batch size and the associated learning rate accelerates convergence in terms of gradient steps. However,
increasing the batch size beyond 2048 provides only marginal improvements with respect to wall-clock time. Note that the wall-clock
time includes the cost of accumulating gradients on a single machine (see Section 2.2). In other words, beyond a certain point increasing
the batch size only provides speedups when additional hardware is available. The 256 batch size result is far to the right in the left plot.



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 14. Effect of Smaller Datasets. In our experiments on the full dataset (see main text), the largest models we trained are always faster
in terms of wall-clock time. However, when subsampling the data to 5% (top row), the biggest models do not improve on the speed of the
smaller models (e.g., compare 24 Layer ROBERTA and 12 Layer ROBERTA). When the data is subsampled to 1% (bottom row), the
bigger models are worse in terms of perplexity due to overfitting. This illustrates that the optimal model size depends on the dataset size.


