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Abstract 
The goal of text generation models is to ft the 
underlying real probability distribution of text. 
For performance evaluation, quality and diversity 
metrics are usually applied. However, it is still 
not clear to what extend can the quality-diversity 
evaluation refect the distribution-ftting goal. In 
this paper, we try to reveal such relation in a the-
oretical approach. We prove that under certain 
conditions, a linear combination of quality and 
diversity constitutes a divergence metric between 
the generated distribution and the real distribution. 
We also show that the commonly used BLEU/Self-
BLEU metric pair fails to match any divergence 
metric, thus propose CR/NRR as a substitute for 
quality/diversity metric pair. 

1. Introduction 
Text generation is an essential task for many NLP applica-
tions, such as machine writing (Zhang et al., 2017a), ma-
chine translation (Bahdanau et al., 2014), image captioning 
(Rennie et al., 2017) and dialogue system (Li et al., 2017). 
Text generation models work by either explicitly modeling 
the probability distribution of text (Mikolov et al., 2010; 
Yu et al., 2017), or implicitly learning a generator which 
maps noise data to text (Zhang et al., 2017b; Chen et al., 
2018). Both approaches aim at generating text with the 
same distribution of given text data. 

To achieve the distribution-ftting goal, divergence metrics 
are usually applied as the training objective for text genera-
tion models, which take minimal value 0 if and only if the 
model distribution exactly recover the real text distribution. 
Typical choices include the Kullback-Leibler divergence 
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by maximum likelihood estimation (MLE) (Mikolov et al., 
2010), and Jensen-Shannon divergence or Wasserstein dis-
tance by adversarial training (Yu et al., 2017; Gulrajani et al., 
2017). However during evaluation, divergence-based met-
rics fails to distinguish two under-ftting cases from each 
other: the low-quality case that generate unrealistic text, 
and the low-diversity case that generates dull and repeated 
text. As such, quality and diversity metrics are introduces 
to help the model diagnosis, such as BLEU (Papineni et al., 
2002) and Self-BLEU (Zhu et al., 2018). High generation 
quality requires the model to generate realistic samples, i.e. 
generated samples are free of grammatical or logical errors. 
High generation diversity requires the model to generate 
diverse samples, i.e. generated samples are less likely to be 
duplicate and contain diverse unique patterns. 

Despite popular application of quality-diversity metrics in 
evaluation of text generation models (Chen et al., 2018; Lu 
et al., 2018b; Fedus et al., 2018; Alihosseini et al., 2019), the 
relationship between such evaluation and the distribution-
ftting goal is still not clear. It seems to be a tacit consensus 
in recent works that a model with both higher quality and 
higher diversity also better ft the real text distribution (Cac-
cia et al., 2018; Li et al., 2019; d’Autume et al., 2019). 
However, such assumption is yet to be verifed. This is criti-
cal since a potential inequivalence may result in misleading 
evaluation conclusions. In this paper, we try to answer this 
question under the unconditional text generation setting by 
a theoretical approach. 

To bridge the gap between distribution-ftting goal and 
quality-diversity evaluation, we require the optimal solu-
tions from divergence minimization to be consistent with 
that of quality-diversity maximization. As such, we frst 
give a general defnition of quality and diversity. Then, we s-
tudy a Multi-Objective Programming (MOP) problem which 
maximizes quality and diversity simultaneously. We prove 
there exists a family of Pareto-optimal solutions for this 
MOP problem, i.e. solutions which cannot be outperformed 
in terms of both quality and diversity. Then we prove the 
real distribution belongs to this Pareto-optimal family if 
and only if quality-diversity metrics are used in pairs with 
strong restrictions. Under such condition, a linear combina-
tion of quality and diversity constitutes a divergence metric 
between the generated distribution and the real distribution. 
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For quality-diversity metrics used in practice, we show that 
the widely applied BLEU/Self-BLEU metric pair fails to 
match any divergence metric. This is highlighted by a 
counter-intuitive observation that real text samples are sig-
nifcantly outperformed by manually constructed models 
over both BLEU and Self-BLEU. Therefore, we further 
propose Coverage Rate (CR) and Negative Repetition Rate 
(NRR) as substitute based on above theoretical analysis. Ex-
periments show that CR/NRR act well as quality/diveristy 
metrics respectively, while a linear combination of CR/NRR 
acts well as divergence metric. 

2. Related Work 
To evaluate the performance of text generation models, 
many evaluation metrics are designed from different per-
spectives. Early neural text generation models use Perplexi-
ty (PPL) to show how well a language model ft the training 
data (Mikolov et al., 2010). This is a divergence-based met-
ric, and is still adopted in recent works (Fedus et al., 2018; 
Lu et al., 2018a; Subramanian et al., 2018). Calculation 
of PPL may be intractable for implicit models, so other 
divergence-based metrics are also practical choices, such 
as Kernel Density Estimation (Zhang et al., 2017b), Word 
Mover Distance (Lu et al., 2018a), MS-Jaccard (Alihosseini 
et al., 2019), and Frechet Distance (Semeniuta et al., 2018; 
Alihosseini et al., 2019; d’Autume et al., 2019). However, 
divergence metrics provide limited information for model 
diagnosis, and may not correlate well with task performance 
(Chen et al., 1998; Fedus et al., 2018). Therefore, the quali-
ty and diversity of generated text are further considered as 
complementary metrics, which are also practical require-
ments in real applications (Zhang et al., 2018; Hashimoto 
et al., 2019; Gao et al., 2019). 

For quality metrics, the evaluation is closely related to 
the ground truth distribution. Yu et al. (2017) propose 
to use Negative Log-Likelihood where the real distribu-
tion is known in advance, which measures the average log-
probability of generated samples over the real distribution. 
If the real distribution is not explicitly given, BLEU (Pa-
pineni et al., 2002) and ROUGE (Lin & Och, 2004) are 
usually applied, which measure the n-gram overlap between 
generated samples and a set of reference ground truth sam-
ples. For diversity metrics, the evaluation is performed 
within the model itself. Li et al. (2015) proposed Distinct-
n as diversity metric, which calculates the ratio of unique 
n-grams in generated samples. Zhu et al. (2018) proposed 
Self-BLEU, which is similar to BLEU but use generated 
samples as reference set. 

There was a time in the past that only quality metrics are ap-
plied for evaluation, such as in works of SeqGAN (Yu et al., 
2017), RankGAN (Lin et al., 2017), and LeakGAN (Guo 
et al., 2017). However after an observation of the quality-

diversity tradeoff problem, Zhu et al. (2018) suggest to use a 
hybrid of both quality and diversity metrics, such as BLEU 
and Self-BLEU. This suggestion is widely adopted by many 
analytical works (Lu et al., 2018b; Caccia et al., 2018; Se-
meniuta et al., 2018; Alihosseini et al., 2019), as well as 
newly proposed methods, such as FM-GAN (Chen et al., 
2018), DDR (Li et al., 2019), and ScratchGAN (d’Autume 
et al., 2019). Despite the prevailing application of quality-
diversity evaluation, its relationship with divergence metrics 
remains unclear, which poses great uncertainty for eval-
uation conclusions. Our work will help to build bridges 
between quality-diversity and divergence, and provide guid-
ance for choosing appropriate quality-diversity metrics. 

3. Defnition of Quality and Diversity 
Currently there is no unifed defnition for quality and di-
versity in text generation, which brings great challenges for 
further theoretical studies. In fact, it is not easy to defne a 
general form of quality and diversity due to various under-
standings of these two aspects. Thus before moving on to 
further analysis, we frst try to give a general form of quality 
and diversity in a mathematical view, though it may not be 
comprehensive enough to cover all possible understandings. 

3.1. A General Form of Quality and Diversity 

Text data is usually discrete, so we make the following 
notations. Assume the vocabulary size is |V |, and the 
maximum length is L, then the distribution of text data 
can be described by a categorical distribution with size 
N = |V |L . We denote the real distribution and the gener-
ated model distribution as P (x) = (P1, P2, · · · , PN ) and 
Q(x) = (Q1, Q2, · · · , QN ), respectively. 

In general, the Quality of a text generation model measures 
how likely the generated text are to be realistic text in hu-
man’s view. Since the value of real probability P (x) can 
be viewed as refecting the realistic degree of a text x, the 
expectation of some function over P (x) could be used to 
quantify quality. For example, in works of Yu et al. (2017) 
and Nie et al. (2018), Log-Likelihood (LL) is used as the 
quality metric, where LL(Q; P ) = Ex∼Q log P (x). Fol-
lowing this idea, we propose a general form of quality, i.e., 
U(Q; P ) = Ex∼Qfu[P (x)], where fu is a function over 
P (x). 

Similarly, the Diversity of a text generation model mea-
sures how much difference there are among generated 
texts. From the viewpoint of information, Shannon-Entropy 
(SE) of Q(x) can be used as a natural diversity metric, 
where SE(Q) = −Ex∼Q log Q(x). From another under-
standing view, a text x should be less likely to be gen-
erated again if the diversity is high. This idea has been 
adopted in biology to evaluate the diversity of biocoeno-
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sis, named as the Simpson’s Diversity Index (SDI), where 
SDI(Q) = 1 − Ex∼QQ(x). Summarizing these two differ-
ent understandings, we obtain a general form of diversity, 
i.e. V (Q) = −Ex∼Qfv[Q(x)]. 

To this end, we propose a general form of quality and diver-
sity metrics as follows: 

NX 
U(Q) = U(Q; P ) = Ex∼Qfu[P (x)] = Qi · f(Pi), 

i=1 

NX 
V (Q) = −Ex∼Qfv [Q(x)] = g(Qi), 

i=1 

where fu(x) is denoted as f(x) and −x · fv(x) as g(x). 

3.2. The Rationality of Quality and Diversity 

To guarantee U and V are rational quality and diversity 
metrics, we need to discuss about the conditions of f and 
g. Without loss of generality, we frst assume that f is 
differentiable and g is twice differentiable. Further, the 
following requirements are necessary for rational quality 
and diversity: 

1. Generating more samples with higher real probability 
yields higher overall quality; 

2. Distributing the probability more equally yields higher 
overall diversity. 

Mathematically, these two requirements can be formalized 
as the following two properties: 

1. If Pi > Pj , then for Q0 = (Q1, . . . , Qi + �, . . . , Qj − 
�, . . . ), there is U(Q0) > U(Q) for any � ∈ (0, Qj ). 

2. If Qi ≥ Qj , then for Q0 = (Q1, . . . , Qi + �, . . . , Qj − 
�, . . . ), there is V (Q0) < V (Q) for any � ∈ (0, Qj ). 

Then we can obtain the conditions of f and g by the follow-
ing theorem: 

Theorem 1. The following conditions are both suffcient 
and necessary to satisfy the properties 1-2: For any x1, x2 

s.t. x1 > x2 > 0 and x1 + x2 ≤ 1, we have f(x1) > f(x2) 
and g0(x1) < g0(x2). 

According to Theorem 1, it is necessary for f(x) to be 
strictly monotonically increasing and g(x) to be strictly 

1concave for x ∈ (0, ). For simplicity, we only consider the 2 
cases where such properties hold for x ∈ (0, 1), thus get a 
suffcient condition: 

1. f(x) is strictly monotonically increasing for x ∈ 
(0, 1); 

2. g(x) is strictly concave for x ∈ (0, 1). 

Under this condition, we can see that a model with highest 
quality will distribute all its density to text with highest 
real probability, and a model with highest diversity will be 
uniform, which are consistent with human understandings. 

4. Analysis of Quality-Diversity Evaluation 
In this section, we show how and to what extent can the 
quality-diversity evaluation refect the distribution-ftting 
goal. The key idea is to solve the Multi-Objective Program-
ming (MOP) problem which tries to maximize quality and 
diversity simultaneously. We give the structure of all the 
Pareto-optima of this MOP problem, which constitutes the 
Pareto-frontier. Then we prove the ground truth distribu-
tion lies in this frontier if and only if f and g are paired 
according to a given rule. Under such condition, a linear 
combination of quality and diversity constitutes a diver-
gence metric, which means the quality-diversity evaluation 
is suffcient to refect the distribution-ftting goal. 

4.1. The MOP Problem 

We consider the following MOP problem: 

max (U(Q),V (Q)) 
Q 

NX 
s.t. Qi = 1 

i=1 

∀i, Qi ≥ 0 

The goal is to maximize both quality and diversity, while 
keeping Q a legal distribution. The optimal solutions of a 
MOP problem are called Pareto-optima, which means no 
other solution can beat them consistently over all objectives. 

We give defnitions of the terminologies of Pareto-optimality 
below: 

Defnition 1. For two distributions Q and Q0, if one of the 
following conditions are satisfed, we say that Q is dominat-
ed by Q0 . 

1. U(Q0) > U(Q) and V (Q0) ≥ V (Q); 

2. U(Q0) ≥ U(Q) and V (Q0) > V (Q). 

A solution Q is called a Pareto-optimum if it is not dominat-
ed by any Q0 . The set containing all the Pareto-optima is 
called the Pareto-frontier. 

Intuitively, a Pareto-optimum is a solution that there is no 
distribution can achieve both higher quality and higher di-
versity than it. And all the Pareto-optima constitutes the 
Pareto-frontier. The Pareto-frontier may collapse into one 
solution which leads to a global optimum, e.g. if P is unifor-
m, the unique optimal solution would be Q∗ = P . However 
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Figure 1. Illustration of the Pareto-frontier of LL-SE metric pair 
on a toy categorical distribution, which contains 20 categories and 
probabilities are sampled from uniform distribution with normal-
ization. 

it is often the case where the objectives in MOP problem 
cannot reach their optima consistently, which results in a 
family of optimal solutions. Therefore, the structure of 
the Pareto-frontier under a non-uniform P is what we care 
about. 

4.2. The Pareto-frontier 

We show the structure of the Pareto-frontier by giving the 
following theorem: 

Theorem 2. For a distribution Q, if P is not uniform, then: 

(1) The following condition is both suffcient and necessary 
for Q to be a Pareto-optimum: there exist real value w ≤ 0 
and b that for any i = 1, . . . , N , there is 

Qi = ĝ0−1[w · f(Pi) + b], 

where � 
0−1(x) = 

g0−1(x) if x < g0(0), 
ĝ 

0 if x ≥ g0(0), 

(2) b is correspondent to w, i.e. b is fxed once w is fxed. If 
f(x) < 0 for all x ∈ [0, 1], then b is strictly monotonically 
increasing w.r.t. w. If f(x) > 0 for all x ∈ [0, 1], then b is 
strictly monotonically decreasing w.r.t. w. 

(3) Denote a Pareto-optimum Q as Q(w), then for any 
w1 < w2: if w1, w2 ∈ [B, 0], there is Q(w1) 6= Q(w2) 
and U(Q(w1)) > U(Q(w2)), V (Q(w1)) < V (Q(w2)); 
if w1, w2 ∈ (−∞, B], there is Q(w1) = Q(w2); where 

0 0 g ( 1 )−g (0)MB = , and Pm1 = maxi Pi, Pm2 = f (Pm1 )−f(Pm2 ) 

maxPi 6 Pi, M = #{i|Pi = Pm1 }, # denotes the car-=Pm1 

dinality of a set. 

According to Theorem 2, different ws lead to different dis-
tributions, so we can change w from 0 to B and get a family 

of optimal solutions with different quality and diversity. As 
such, for a non-uniform P , the Pareto-frontier is a family of 
distributions. 

We can see quality and diversity act as a tradeoff if we want 
to maximize them at the same time. Since all distributions in 
the Pareto-frontier are Pareto-optima, trying to improve one 
metric for an optimum will lead to another optimum at most, 
thus inevitably causing another metric to drop. This result 
provides support for the quality-diversity tradeoff problem 
observed in previous works (Zhu et al., 2018; Caccia et al., 
2018). 

We show the result of Theorem 2 here on a special case. We 
pair Log-Likelihood (LL) with Shannon-Entropy (SE), the 
corresponding Pareto-optima can be written as 

β N 
β = 

Pi , Z = 
X 

P , β ≥ 0,Qi iZ 
i=1 

we have w = −β, and b = 1 + log Z. These Pareto-optima 
are formerly used as quality-diversity tradeoff solutions by 
Li et al. (2019). 

An illustration of the Pareto-frontier on a toy distribution 
is shown in Figure 1. We can see that quality and diversity 
are negatively correlated for solutions in the Pareto-frontier. 
Note that the ground truth distribution lies exactly on the 
frontier in this LL-SE case, which can be checked by setting 
β = 1. We will then show this is the key to the relation 
between quality-diversity metrics and divergence metrics. 

4.3. Relationship with Divergence 

To bridge the gap between the distribution-ftting goal and 
quality-diversity evaluation, it is necessary for the optimal 
solutions from divergence minimization to be consistent 
with that from quality-diversity maximization. Since Q = P 
is the optimal solution with minimum divergence and the 
above Pareto-frontier is the set of optimal solutions with 
maximal quality and diversity, we require Q = P to be 
in the Pareto-frontier. Theoretical results are shown in the 
following Theorem: 
Theorem 3. The following condition is both suffcient and 
necessary for Q = P to be a Pareto-optimum for any P : 
there exist w0 ≤ 0 and b0 that Z x 

g(x) = w0 f(u)du + b0x. 
0 

If the above condition is satisfed, then Q = P corresponds 
to a Pareto-optimum with w = w0 and b = b0, and it 
is the only distribution that maximize Ψ(Q) = αU(Q) + 

w0(1 − α)V (Q) with α = ∈ [0, 1), and D(P ||Q) = w0−1 
Ψ(P ) − Ψ(Q) becomes a divergence metric. 

We fnd that if quality and diversity metrics are carefully 
chosen, namely g is the integral of an affne transformation 
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of f , we can get a divergence metric by a linear combination 
of these two metrics. 

The LL-SE case satisfes the condition in Theorem 3. Under 
1this special case, there is Ψ(Q) = LL(Q) + 1 SE(Q), and 2 2 

NX1 Qi
D(P ||Q) = Qi · log ,

2 Pii=1 

which is exactly the Reverse KL divergence if the constant 
1 is ignored. This linearly combined divergence metric can2 
be viewed as a tangent line of the Pareto-frontier curve in 
Figure 1, and the real distribution is the tangent point. 

Since such condition is also necessary, the real distribution 
is unlikely to be a Pareto-optima if we use casually chosen 
metrics. This means, there would be one distribution achiev-
ing both higher quality and higher diversity than the ground 
truth, which is implausible. Therefore, if the condition in 
Theorem 3 is not satisfed, it would be unlikely to measure 
the divergence using a combination of quality and diversity. 

Now we can conclude that, it is suffcient to refect the 
distribution-ftting goal by a hybrid of quality-diversity e-
valuation. However, specifc metrics should be chosen care-
fully, in order to avoid the potential violation of such prop-
erty. Suppose such property is violated severely, featured 
by a huge gap between the ground truth distribution and 
the Pareto-frontier, then a model which perfectly fts the 
real distribution would be signifcantly outperformed by 
another model over both quality and diversity, resulting in 
misleading conclusions. 

Therefore in the next section, we will examine the existence 
of the gap for quality-diversity metrics used in practice, 
and provide suggestions on the choice of quality-diversity 
metrics. 

5. Options for Quality-Diversity Metrics 
It is yet to be examined that whether existing quality-
diversity metrics are suffcient to refect the distribution-
ftting goal. For metrics satisfying our defned general form 
in Section 3.1, conclusions can be drawn directly by apply-
ing Theorem 3. For example, the Log-likelihood (LL) is 
widely used as quality metric, which is correspondent to 
NLL-oracle (Yu et al., 2017) and Reverse PPL (Subramani-
an et al., 2018). As proved above, LL satisfes the condition 
in Theorem 3 if it’s paired with Shannon Entropy (SE). Con-
sequently, it is safe to use LL-SE together as in the work of 
Alihosseini et al. (2019). 

However for most scenarios with real text data, the calcula-
tion is intractable for the general form of quality-diversity 
in Section 3.1 as the ground truth distribution is unknown, 
including the LL-SE pair. Practical metrics (e.g. BLEU 
and Self-BLEU) thus usually fall out of this framework, and 

Theorem 3 cannot be applied directly. In order to make a 
judgement on such metrics, we suggest to consider the com-
patibility between divergence and quality-diversity metric 
pair. We say a pair of quality-diversity metrics is divergence-
compatible if the real distribution is a Pareto-optimum under 
the MOP problem maximizing both metrics. Such compati-
bility is a necessary condition for the existence of a corre-
sponding divergence metric which is strictly monotonically 
decreasing w.r.t. both quality and diversity. 

5.1. BLEU and Self-BLEU 

BLEU (Papineni et al., 2002) and Self-BLEU (Zhu et al., 
2018) are common metrics for quality and diversity evalua-
tion, respectively. Intuitively, BLEU measures the n-gram 
overlap between a candidate set of generated text and a 
reference set of real text, while Self-BLEU is the average 
BLEU score of each generated text with other candidates as 
reference. High BLEU score means that n-grams in gener-
ated text are more likely to appear in real text, thus BLEU 
can be used as quality metric. Similarly, high Self-BLEU 
score means that generated text are similar to each other in 
terms of n-gram, thus Negative Self-BLEU (NSBLEU as 
abbreviation) can be used as diversity metric. 

The expression of BLEU on a candidate set C is: 

MX1 
BLEU = BP · exp( log pn),

M P P n=1 

Countclip(gramn)c∈C gramn∈c 
pn = P P , 

0 0 Count(gram0 )c0∈C gram ∈c n 
n 

where BP is the Brevity Penalty which penalizes short 
sentences, and M denotes the maximum n-gram order. pn is 
a precision term, which measures the proportion of grams in 
the candidate set that also appear in the reference set. BLEU 
is the geometric mean of pn for all n ≤ M , multiplied by a 
penalty term. 

The expression of BLEU does not seem to satisfy the gener-
al form of quality/diversity defned in Section 3.1. However 
on some special case, the general form is still satisfed, upon 
which we show some symptoms indicating the incompatibil-
ity of BLEU-NSBLEU. Assume the lengths of text are all 1, 
so that M = 1 and BP ≡ 1. In this case, BLEU contains 
only one term, i.e. BLEU = p1. Then for candidate set C 
and reference set R, the expectation of BLEU and NSBLEU 
over generated distribution Q and real distribution P would 
be 

NX 
E BLEU(C, R) = Qi · [1 − (1 − Pi)

|R|], 
C∼Q,R∼P 

i=1 

NX 
E NSBLEU(C) = − Qi · [1 − (1 − Qi)

|C|−1]. 
C∼Q 

i=1 
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Such expressions satisfy the general form with 

f(x) = 1 − (1 − x)|R|, g(x) = −x + x · (1 − x)|C|−1 . 

The condition in Theorem 3 would be satisfed if and only if 
|R| = 1 and |C| = 2, which becomes f(x) = x and g(x) = 
−x . However, the size of reference set |R| is usually far 
more than 1, under which cases the BLEU-NSBLEU metric 
pair would be divergence-incompatible. 

Though above analysis is done on a special case, such re-
sults imply a potential incompatibility for general BLEU-
NSBLEU metric pairs. We will confrm this incompatibility 
by an empirical approach in Section 6. 

5.2. The Proposed Metric Pair 

To avoid possible misleading conclusions in practice, we 
suggest to use diversity-compatible quality-diversity metric 
pair. 

Since the real probability P (x) is required in U(Q; P ) un-
der the general form in Section 3.1, calculation of most 
quality metrics are intractable on real text data. The only ex-

2ception is the case with f(x) = x, paired with g(x) = −x . 
The linearity of f can avoid the explicit form of P (x) by 
sampling from real data, i.e. U(Q) = Ex∈P Q(x). We 
name the corresponding quality metric as Coverage Rate 
(CR), and diversity metric as Negative Repetition Rate (NR-
R). Even so, we observe a large variance while estimating 
CR and NRR on real text data. This is mainly because of 
the extremely large space of text of N = |V |L . Therefore, 
estimations of CR/NRR are highly inaccurate in the text 
space. 

We thus suggest to calculate CR-NRR in n-gram space 
rather than in text space. Derive the n-gram distribution Qg 

and Pg from text distribution Q and P , so that X 
CRn(Q; P ) = Qg (gramn) · Pg(gramn), 

gramn∈SnX 
NRRn(Q) = − Qg 

2(gramn), 
gramn ∈Sn 

where Sn denotes the set of all possible n-grams. In practice, 
Qg and Pg can be estimated by the empirical distribution, i.e. 
count the number of target n-grams and divide by the total 
number. Note that if calculated by the longest n-gram with 
n = L, CRn and NRRn would exactly recover the original 
CR and NRR metric in text space, thus can be viewed as a 
generalized form. In the rest of this paper, we use CR-NRR 
as a default notation in the n-gram space unless explicitly 
stated. 

In the n-grams space, calculation of metric pairs with other 
f /g functions also becomes possible. However, metrics such 
as LL-SE suffer from another smoothing problem on real 

text data, i.e. their values go to infnity if some n-grams do 
not appear in candidate set or reference set. Therefore, we 
still suggest to use CR-NRR as a frst choice. 

Though there is a conversion from the text space to the 
n-gram space, CR/NRR can still refect quality/diversity. 
The CRn metric measures the average probability for an 
n-gram in candidate set to appear in the reference set, thus 
is an indicator of quality. Similarly, NRRn measures the 
average probability for an n-gram to appear again in two 
consecutive sampling processes over the candidate set, thus 
is an indicator of diversity. 

We then check the divergence-compatibility of CR-NRR 
evaluation. Firstly, CR-NRR is divergence-compatible w.r.t. 
distributions in the n-gram space, according to Theorem 3. 
We name the corresponding divergence metric as CR-NRR 
Divergence (CND), where 

2 1 
Ψn(Q) = CRn(Q; P ) + NRRn(Q),

3 3 

and 

CNDn(Q; P ) = 3 · [Ψn(P ) − Ψn(Q)]X 
= [Qg(gramn) − Pg(gramn)]

2 . 
gramn ∈Sn 

Secondly, CR-NRR is also divergence-compatible w.r.t. dis-
tributions in the text space. Assume Q = P is dominated 
by Q0 under CR-NRR evaluation, which means Qg = Pg 

would also be dominated by Q0 . This cause contradictiong 
with the compatibility in n-gram space, so the compatibility 
in text space also holds. 

In addition to the divergence-compatibility property, CR-
NRR is also easy to acquire. It does not require the explicit 
value of P (x) or Q(x), thus can be applied on implicit 
models similarly to BLEU-NSBLEU. Moreover, the time 
complexity of CR-NRR algorithm is O(m + n), which is 
much lower than BLEU-NSBLEU with O(m · (m + n)), 
where m and n denote the size of candidate and reference 
set respectively. To conclude, we suggest to use CR-NRR 
in n-gram space for quality-diversity evaluation, instead of 
BLEU-NSBLEU. 

6. Experiments 
In this section, we perform compatibility analysis of BLEU-
NSBLEU, compared with CR-NRR on both synthetic da-
ta and real text data. We show that BLEU-NSBLEU is 
signifcantly divergence-incompatible, by observing a phe-
nomenon that ground truth text data are clearly outper-
formed over both BLEU and NSBLEU by some manually 
constructed model. We also show that CR/NRR are repre-
sentative for quality/diversity evaluation respectively, while 
CND is representative for divergence evaluation. 
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Table 1. Lower-bound of QDisc and DRate w.r.t. BLEU-NSBLEU on synthetic data with different σs. 

Metrics σ = 0.5 σ = 1.0 σ = 2.0 
QDisc DRate(%) QDisc DRate(%) QDisc DRate(%) 

BS-1 
BS-2 
BS-3 

0.01287 
0.02384 

2.090 ×10−8 

2.55 
9.41 
<0.01 

0.01509 
0.01699 

6.045 ×10−6 

3.29 
4.27 
0.19 

0.01063 
0.01146 

3.878 ×10−4 

3.15 
1.71 
0.05 

To measure the degree of incompatibility, we calculate 
the Quality Discrepancy (QDisc) and Discrepancy Rate 
(DRate): 

QDisc = max U(Q) − U(P ), s.t. V (Q) ≥ V (P ), 
Q 

QDisc
DRate = , Q0 = argmax V (Q). 

maxQ U(Q) − U(Q0) Q 

Intuitively, we try to fnd a model with best quality while 
its diversity is no lower than that of real distribution. Then 
QDisc measures the difference between this model and the 
real distribution in terms of quality. DRate measures the 
ratio between QDisc and the total range of quality for all 
Pareto-optima. A metric pair is divergence-compatible if 
and only if QDisc = 0. 

6.1. Experiments on Synthetic Data 

We frst run experiments on synthetic data rather than real 
text data, in order to get the precise values of all metrics. 
Under this setting, the information of generated distribution 
Q and real distribution P are explicitly given in advance, 
thus eliminates the possible variance from sampling. The 
synthetic data are texts with length L using a pseudo vo-
cabulary V . We construct the real distribution using an 
oracle LSTM model as in SeqGAN (Yu et al., 2017), whose 
weights are randomly sampled from a gaussian distribution 
with µ = 0. Different standard deviation σs are applied to 
get several synthetic real distributions with different levels 
of entropy, i.e. distribution with smaller σ is more fat and 
of higher entropy, and distribution with larger σ is more 
sharp and of lower entropy. 

Calculation of QDisc and DRate can be achieved by a simple 
binary-search algorithm if the exact form of Pareto-frontier 
is known. However for BLEU-NSBLEU metric pair, the 
frontier is unknown since Theorem 2 cannot be applied in 
this case. Consequently, we opt to used an optimization-
based method for the estimation of QDisc. We try to solve 
the following optimization problem using stochastic gradi-
ent descent (SGD) with momentum: 

Q ∗ = argmax U(Q) − λ · max(0, V (P ) − V (Q)), 
Q 

where λ is a penalty term to discourage the case where 
divergence is lower than real distribution P . We set λ = 2.0 

in our experiments. So that QDisc = U(Q∗) − U(P ), and 
the denominator in DRate is also calculated through such 
optimization-based method. 

For BLEU metric with candidate set size m and reference 
set size n, the expectation can be directly calculated by 

E BLEU(C, R) = 
C∼Q,R∼P 

m nX Y Y 
Q(Ci) · P (Rj ) · BLEU(C, R). 

C∈V L·m,R∈V L·n i=1 j=1 

The time complexity (number of terms) of such calculation 
is O(|V |L·(m+n)). This is intolerable for above optimiza-
tion problem even in text space of normal size. As a result, 
we set |V | = 4, L = 3,m = 1, n = 2, and apply SGD 
under the Tensorfow framework1. 

We use CN-n and BS-n as abbreviation for CR-NRR and 
BLEU-NSBLEU with n-gram, respectively. We report the 
QDisc and DRate of BLEU-NSBLEU in Table 1. Note that 
the reported QDisc values are corresponding lower bounds, 
since the optimization-based method does not guarantee a 
global optimum. These non-zero QDisc values provide a 
clear support for the incompatibility of BLEU-NSBLEU. 
We can also see that such discrepancy is signifcant on some 
cases, e.g. QDisc > 0.02 and DRate = 9.41% for BS-2 on 
data with σ = 0.5. A QDisc value of 0.02 means that, we 
cannot surely claim that a model is better than another when 
the quality gap is below 0.02, which is already a clear gap 
for BLEU. We also run similar experiments for CR-NRR. 
However, no positive lower bound is observed, which is in 
accordance with our theory. 

6.2. Experiments on Real Text Data 

Signifcance of quality discrepancy varies on different cases, 
thus we care about the discrepancies on real text data. We 
use two public datasets, MSCOCO Image Caption dataset 
(Chen et al., 2015) and EMNLP2017 WMT News dataset2. 
We use 50,000 sentences as candidate set and another 50,000 
as reference set for each dataset 3. 

1Slight increase of any parameter will consume intolerably 
more time, and is not necessary for the conclusions. 

2http://statmt.org/wmt17/translation-task.html 
3See supplementary material for detailed confgurations. 

https://2http://statmt.org/wmt17/translation-task.html
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(a) MSCOCO dataset (b) WMT dataset 

Figure 2. Evaluation of BLEU-NSBLEU and CR-NRR on real text data. Test data are random text from reference set, mixed with noise 
with a proportion of � = [0.0, 0.2, 0.4, 0.6] from right to left. 

Table 2. Estimation of QDisc, DRate, Self-Ratio, and Ref-Ratio on real text data. 

Metrics MSCOCO WMT 
QDisc DRate(%) Self-Ratio Ref-Ratio QDisc DRate(%) Self-Ratio Ref-Ratio 

BS-2 
BS-3 
BS-4 

0.032 
0.090 
0.162 

3.2 0.034 
9.0 0.104 
16.2 0.219 

0.314 
0.814 
1.46 

0.034 
0.117 
0.211 

3.4 0.036 
11.7 0.145 
21.1 0.339 

0.26 
0.88 
1.59 

CN-2 
CN-3 
CN-4 

0.75×10−6 

1.07×10−6 

1.15×10−6 

0.013 0.0005 
0.079 0.0063 
0.163 0.0247 

0.006 
0.087 
0.421 

3.69×10−7 

3.45×10−7 

3.12×10−7 

0.016 0.0008 
0.098 0.0109 
0.220 0.0525 

0.025 
0.358 
2.092 

To provide an estimation of QDisc and DRate, we manually 
construct a family of strong models. We mix the empirical 
distribution P̃  with truncated uniform distribution M under 

˜different proportions, i.e. Q = (1 − �) · P + � · M . During 
text generation, a random text from reference set is sampled 
with probability 1 − �, otherwise a text with random tokens 
of length L0 is constructed with probability �. We try both 
L0 = 5 and L0 = L, and report the case with larger QDisc 
value. 

We estimate QDisc by a linear interpolation between two 
closest points on the curve w.r.t. quality of real data. For 
the denominator of DRate in BLEU-NSBLEU, we use 1.0 
directly, since BLEU = 1 is reached for highest quality 
with � = 0.0, and BLEU ≈ 0 for highest diversity with 
� = 1.0. For CR-NRR, CR goes to 0 when diversity is 
maximized with � = 1.0. As for the maximal value of 
CR, we estimate it by using a single reference sentence as 
candidate and select the one with maximal CR value. 

For a clearer view of the signifcance of quality discrepancy, 
we introduce two additional metrics: Self-Ratio and Ref-
Ratio. Self-Ratio calculates the ratio between QDisc and 
the quality of candidate set. Ref-Ratio calculates the ratio 
between QDisc and the quality difference of � = 0.0 and 
� = 0.2. The evaluation results of BLEU-NSBLEU and 
CR-NRR with 3-gram under L0 = 5 are shown in Figure 2. 

We can see that real data stays close to the CR-NRR curve, 
while a much larger gap is observed between real data and 
the BLEU-NSBLEU curve. We give the values of QDis-
c, DRate, Self-Ratio, and Ref-Ratio in Table 2. BLEU-
NSBLEU shows a signifcant incompatibility, by QDisc 
values ranging from 0.032 to 0.211. Such huge discrepancy 
in BLEU is unbearable in real applications, e.g. we cannot 
claim a model is better than another even if it achieves high-
er NSBLEU and signifcantly higher BLEU. As a result, we 
suggest not to use BLEU-NSBLEU in order to avoid mis-
leading conclusions. CR-NRR also shows a small positive 
discrepancy, this is due to the inevitable difference between 
the empirical distributions of candidate set and reference set. 
However, discrepancy caused by such distribution differ-
ence is generally much smaller than BLEU-NSBLEU. We 
also observe that DRate grows quickly as n-gram becomes 
longer for CR-NRR, thus we suggest to use CR-NRR with 
short n-gram such as CN-2 or CN-3. 

Next we show how CR/NRR/CND behave on real text data. 
We apply temperature sweep on an RNN-based language 
model (RNNLM) pre-trained by maximum likelihood es-
timation, which is a quick way to get a family of models 
with quality-diversity tradeoff according to works of Caccia 
et al. (2018). The RNNLM consists of an embedding layer, 
an LSTM layer, and a fully-connected output layer. The 
embedding dimension and number of hidden nodes are all 
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(a) MSCOCO dataset (b) WMT dataset 

Figure 3. Evaluation of CR-NRR and CND on real text data. Test data are generated by temperature-sweep on pre-trained RNNLMs. 

set to 128. We train the model using Adam (Kingma & 
Ba, 2014) optimizer with learning rate 0.001 by 30 epochs. 
As temperature t grows, the model becomes more close to 
uniform, so that quality decreases and diversity increases, 
and minimal divergence is taken near t = 1.0. Results are 
shown in Figure 3, where we can see CR/NRR/CND are 
representative for quality/diversity/divergence respectively, 
which clearly ft our expectations. Therefore, we suggest to 
use CR-NRR for quality-diversity evaluation. 

7. Discussion 
Our above conclusions are mainly drawn under the uncon-
ditional text generation setting, however, quality-diversity 
evaluation is also getting great attentions under conditional 
text generation settings, such as dialogue system (Vijayaku-
mar et al., 2016), machine translation (Shen et al., 2019) 
and image captioning (Ippolito et al., 2019). In this section, 
we give a brief discussion about quality-diversity evaluation 
under conditional text generation settings. 

Due to different formalization of quality and diversity met-
rics, our conclusions cannot be directly transferred to con-
ditional text generation settings. Under these settings, the 
quality of text x under condition c is still defned as mono-
tonically increasing w.r.t. the real conditional probability 
P (x|c). So that the overall quality metric becomes the ex-
pectation of text quality over x and c, which is the case 
for BLEU. Meanwhile, diversity metrics have two differen-
t understandings. One is defned as the average diversity 
of conditional model distribution Q(x|c) under different 
c, such as Pairwise-BLEU (Shen et al., 2019). The other 
is defne as the diversity of marginal model distribution P 
Q(x) = P (c)Q(x|c), such as Distinct (Li et al., 2015).c 
Formalization of both quality and diversity metrics depart 
from ours in Section 3.1, and may result in different conclu-
sions, thus require further separate analysis. Though such 
analyses are not covered here, our work provides a paradigm 
for future theoretical analysis, including metric defnition, 

Pareto-optimality analysis, and divergence-compatibility 
judgement. 

Another difference lies in the point of view of task goal. 
While the goal of unconditional text generation is to design 
models that better ft the text distribution, in conditional 
text generation however, better human evaluation results are 
viewed as fnal goal in most cases. Therefore in these cases, 
the main focus would be designing metrics that better refect 
human evaluation as well as designing training objectives 
that achieve better evaluation. It is also anticipated that 
whether human evaluation is compatible with divergence. 
We regard these as our future work. 

8. Conclusion 
In this paper, we give theoretical analysis of the relation 
between quality-diversity evaluation and distribution-ftting 
goal. We show that when using properly paired quality-
diversity metrics, i.e. g(x) is the integral of an affne trans-
formation of f(x), a linear combination of quality and di-
versity constitutes a divergence metric between the gen-
erated distribution and the real distribution. For metrics 
used in practice, we show the commonly used BLEU and 
Self-BLEU metric pair fails to refect the distribution-ftting 
goal. For a substitute, we suggest to use CR-NRR instead 
as quality-diversity metric pair. 
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