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Abstract
Due to the high communication cost in distributed
and federated learning problems, methods relying
on compression of communicated messages are
becoming increasingly popular. While in other
contexts the best performing gradient-type meth-
ods invariably rely on some form of accelera-
tion/momentum to reduce the number of itera-
tions, there are no methods which combine the
benefits of both gradient compression and accel-
eration. In this paper, we remedy this situation
and propose the first accelerated compressed gra-
dient descent (ACGD) methods. In the single
machine regime, we prove that ACGD enjoys the
rate O

(
(1 + ω)

√
L
µ log 1

ε

)
for µ-strongly con-

vex problems and O
(
(1 + ω)

√
L
ε

)
for convex

problems, respectively, where ω is the compres-
sion parameter. Our results improve upon the ex-
isting non-accelerated rates O

(
(1 + ω)Lµ log 1

ε

)
and O

(
(1 + ω)Lε

)
, respectively, and recover the

optimal rates of accelerated gradient descent as
a special case when no compression (ω = 0) is
applied. We further propose a distributed variant
of ACGD (called ADIANA) and prove the con-
vergence rate Õ

(
ω +

√
L
µ +

√(
ω
n +

√
ω
n

)
ωL
µ

)
,

where n is the number of devices/workers and Õ
hides the logarithmic factor log 1

ε . This improves

upon the previous best result Õ
(
ω + L

µ + ωL
nµ

)
achieved by the DIANA method of Mishchenko
et al. (2019). Finally, we conduct several experi-
ments on real-world datasets which corroborate
our theoretical results and confirm the practical
superiority of our accelerated methods.
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1. Introduction
With the proliferation of edge devices such as mobile
phones, wearables and smart home devices comes an in-
crease in the amount of data rich in potential information
which can be mined for the benefit of the users. One of the
approaches of turning the raw data into information is via
federated learning (Konečný et al., 2016; McMahan et al.,
2017), where typically a single global supervised model is
trained in a massively distributed manner over a network of
heterogeneous devices.

Training supervised federated learning models is typically
performed by solving an optimization problem of the form

min
x∈Rd

{
P (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
, (1)

where fi : Rd → R is smooth loss associated with data
stored on device i and ψ : Rd → R ∪ {+∞} is a relatively
simple but possibly nonsmooth regularizer.

In distributed learning in general, and federated learning
in particular, communication of messages across a network
forms the bottleneck of the training system. It is thus very
important to devise novel strategies for reducing the num-
ber of communication rounds. Two of the most common
strategies are i) local computations (Ma et al., 2017; Stich,
2019; Khaled et al., 2020) and ii) communication compres-
sion (Seide et al., 2014; Alistarh et al., 2017; Wangni et al.,
2018; Horváth et al., 2019a). The former is used to perform
more local computations on each device before communi-
cation and subsequent model averaging, hoping that this
will reduce the total number of communications. The lat-
ter is used to reduce the size of communicated messages,
saving precious time spent in each communication round,
and hoping that this will not increase the total number of
communications.

1.1. Theoretical inefficiency of local methods

Despite their practical success, local methods are poorly
understood and there is much to be discovered. For instance,
there exist no theoretical results which would suggest that
any local method (e.g., local gradient descent (GD) or local
SGD) can achieve better communication complexity than
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its standard non-local variant (e.g., GD, SGD). In fact, until
recently, no complexity results existed for local SGD in
environments with heterogeneous data (Khaled et al., 2019;
2020), a key regime in federated learning settings (Li et al.,
2019). In the important regime when all participating de-
vices compute full gradients based on their local data, the
recently proposed stochastic controlled averaging (SCAF-
FOLD) method (Karimireddy et al., 2019) offers no im-
provement on the number of communication as the number
of local steps grows despite the fact that this is a rather elab-
orate method combining local stochastic gradient descent
with control variates for reducing the model drift among
clients.

1.2. Methods with compressed communication

However, the situation is much brighter with methods em-
ploying communication compression. Indeed, several recent
theoretical results suggest that by combining an appropriate
(typically randomized) compression operator with a suit-
ably designed gradient-type method, one can obtain im-
provement in the the total communication complexity over
comparable baselines not performing any compression. For
instance, this is the case for distributed compressed gradient
descent (CGD) (Alistarh et al., 2017; Khirirat et al., 2018;
Horváth et al., 2019a; Li & Richtárik, 2020) and distributed
CGD methods which employ variance reduction to tame the
variance introduced by compression (Hanzely et al., 2018;
Mishchenko et al., 2019; Horváth et al., 2019b; Hanzely &
Richtárik, 2019b; Li & Richtárik, 2020).

While in the case of CGD compression leads to a decrease
in the size of communicated messages per communication
round, it leads to an increase in the number of communica-
tions. Yet, certain compression operators, such as natural
dithering (Horváth et al., 2019a), were shown to be better
than no compression in terms of the overall communication
complexity.

The variance-reduced CGD method DIANA (Mishchenko
et al., 2019; Horváth et al., 2019b) enjoys even better behav-
ior: the number of communication rounds for this method
is unaffected up to a certain level of compression when
the variance induced by compression is smaller than a cer-
tain threshold. This threshold can be very large in practice,
which means that massive reduction is often possible in
the number of communicated bits without this having any
adverse effect on the number of communication rounds.

Recall that a function f : Rd → R is L-smooth or has
L-Lipschitz continuous gradient (for L > 0) if

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, (2)

and µ-strongly convex (for µ ≥ 0) if

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ µ

2
‖x− y‖2 (3)

for all x, y ∈ Rd. The µ = 0 case corresponds to the
standard convexity.

In particular, for L-smooth and µ-strongly convex f
with n machines, DIANA enjoys the iteration bound
O
((
ω + L

µ + ω
n
L
µ

)
log 1

ε

)
, where L

µ is the condition num-
ber and ω is the compression parameter (see Definition 1).
If ω = 0, which corresponds to no compression, DIANA
recovers the O

(
L
µ log 1

ε

)
rate of gradient descent. On the

other hand, as long as ω = O
(
min

{
L
µ , n

})
, the rate is still

O
(
L
µ log 1

ε

)
, which shows that DIANA is able to retain the

same number of communication rounds as gradient descent
and yet save on bit transmission in each round. The higher
ω is allowed to be, the more compression can be applied.

2. Contributions
Discouraged by the lack of theoretical results suggesting
that local methods indeed help to reduce the number of
communications, and encouraged by the theoretical success
of CGD methods, in this paper we seek to enhance CGD
methods with a mechanism which, unlike local updating,
can provably lead to a decrease of the number of communi-
cation rounds.

What mechanism could achieve further improvements?

In the world of deterministic gradient methods, one tech-
nique for such a reduction is well known: Nesterov ac-
celeration / momentum (Nesterov, 1983; 2004). In case
of stochastic gradient methods, the accelerated method
Katyusha (Allen-Zhu, 2017) achieves the optimal rate for
strongly convex problems, and the unified accelerated
method Varag (Lan et al., 2019) achieves the optimal rates
for convex problems regardless of the strong convexity. See
also (Kovalev et al., 2020; Qian et al., 2019) for some en-
hancements. Essentially all state-of-the-art methods for
training deep learning models, including Adam (Kingma &
Ba, 2014), rely on the use of momentum/acceleration in one
form or another, albeit lacking in theoretical support.

However, the successful combination of gradient compres-
sion and acceleration/momentum has so far remained elu-
sive, and to the best of our knowledge, no algorithms sup-
ported with theoretical results exist in this space. Given the
omnipresence of momentum in modern machine learning,
this is surprising.

We now summarize our key contributions:

2.1. First combination of gradient compression and
acceleration

We develop the first gradient-type optimization methods
provably combining the benefits of gradient compression
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Table 1. Convergence results for the special case with n = 1 device (i.e., problem (4))

Algorithm µ-strongly convex f convex f
Compressed Gradient Descent
(CGD (Khirirat et al., 2018)) O

(
(1 + ω)Lµ log 1

ε

)
O
(
(1 + ω)Lε

)
ACGD (this paper) O

(
(1 + ω)

√
L
µ log 1

ε

)
O
(
(1 + ω)

√
L
ε

)
Table 2. Convergence results for the general case with n devices (i.e., problem (1)). Our results are always better than previous results.

Algorithm
n ≤ ω

(few devices or high compression)
n > ω

(lots of devices or low compression)
Distributed CGD

(DIANA (Mishchenko et al., 2019)) O
(
ω
(
1 + L

nµ

)
log 1

ε

)
O
((
ω + L

µ

)
log 1

ε

)
ADIANA (this paper) O

(
ω
(
1 +

√
L
nµ

)
log 1

ε

)
O
((
ω +

√
L
µ +

√√
ω
n
ωL
µ

)
log 1

ε

)

and acceleration: i) ACGD (Algorithm 1) in the single de-
vice case, and ii) ADIANA (Algorithm 2) in the distributed
case.

2.2. Single device setting

We first study the single-device setting, and design an accel-
erated CGD method (ACGD - Algorithm 1) for solving the
unconstrained smooth minimization problem

min
x∈Rd

f(x) (4)

in the regimes when f is L-smooth and i) µ-strongly convex,
and ii) convex. Our theoretical results are summarized in Ta-
ble 1. In the strongly convex case, we improve the complex-
ity of CGD (Khirirat et al., 2018) from O

(
(1 +ω)Lµ log 1

ε

)
to O

(
(1 + ω)

√
L
µ log 1

ε

)
. In the convex case, the improve-

ment is from O
(
(1 + ω)Lε

)
to O

(
(1 + ω)

√
L
ε

)
, where

ω ≥ 0 is the compression parameter (see Definition 1).

2.3. Distributed setting

We further study the distributed setting with n devices/nodes
and focus on problem (1) in its full generality, i.e.,

min
x∈Rd

{
P (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
,

The presence of multiple nodes (n > 1) and of the regular-
izer ψ poses additional challenges. In order to address them,
we need to not only combine acceleration and compression,
but also introduce a DIANA-like variance reduction mecha-
nism to remove the variance introduced by the compression
operators.

In particular, we have developed an accelerated variant of
the DIANA method for solving the general problem (1),

which we call ADIANA (Algorithm 2). The comparison
of complexity results between ADIANA and DIANA is
summarized in Table 2.

Note that our results always improve upon the non-
accelerated DIANA method. Indeed, in the regime
when the compression parameter ω is larger than
the number of nodes n, we improve the DIANA
rate O

(
ω
(
1 + L

nµ

)
log 1

ε

)
to O

(
ω
(
1 +

√
L
nµ

)
log 1

ε

)
.

On the other hand, in the regime when ω < n,
we improve the DIANA rate O

((
ω + L

µ

)
log 1

ε

)
to

O
((
ω +

√
L
µ +

√√
ω
n
ωL
µ

)
log 1

ε

)
. Our rate is better

since ω + L
µ ≥ 2

√
ωL
µ and

√
ω
n < 1 (note that ω < n).

Note that if ω ≤ n1/3, which is more often true in fed-
erated learning as the number of devices in federated
learning is typically very large, our ADIANA result re-
duces to O

((
ω +

√
L
µ

)
log 1

ε

)
. In particular, if ω =

O
(
min

{
n1/3,

√
L
µ

})
, then the communication round is

O
(√

L
µ log 1

ε

)
; the same as that of non-compressed accel-

erated gradient descent (AGD) (Nesterov, 2004). It means
that ADIANA benefits from cheaper communication due
to compression for free without hurting the convergence
rate (i.e., the communication rounds are the same), and is
therefore better suited for federated optimization.

3. Randomized Compression Operators
We now introduce the notion of a randomized compression
operator which is used to compress the gradients.

Definition 1 (Compression operator) A randomized map
C : Rd 7→ Rd is an ω-compression operator if

E[C(x)] = x, E[‖C(x)− x‖2] ≤ ω‖x‖2, ∀x ∈ Rd. (5)
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In particular, no compression (C(x) ≡ x) implies ω = 0.

Note that the conditions (5) require the compression opera-
tor to be unbiased and its variance uniformly bounded by a
relative magnitude of the vector which we are compressing.

3.1. Examples

We now give a few examples of randomized compression
operators without attempting to be exhaustive.

Example 1 (Random sparsification): Given x ∈ Rd, the
random-k sparsification operator is defined by

C(x) := d

k
(ξk � x),

where � denotes the Hadamard (element-wise) product and
ξk ∈ {0, 1}d is a uniformly random binary vector with k
nonzero entries (‖ξk‖0 = k). This random-k sparsifica-
tion operator C satisfies (5) with ω = d

k − 1. Indeed, no
compression k = d implies ω = 0.

Example 2 (Quantization): Given x ∈ Rd, the (p, s)-
quantization operator is defined by

C(x) := sign(x) · ‖x‖p ·
1

s
· ξs,

where ξs ∈ Rd is a random vector with i-th element

ξs(i) :=

{
l + 1, with probability |xi|

‖x‖p s− l
l, otherwise

,

where the level l satisfies |xi|
‖x‖p ∈ [ ls ,

l+1
s ]. The probability

is chosen so that E[ξs(i)] = |xi|
‖x‖p s. This (p, s)-quantization

operator C satisfies (5) with ω = 2 + d1/p+d1/2

s . In partic-
ular, QSGD (Alistarh et al., 2017) used p = 2 (i.e., (2, s)-
quantization) and proved that the expected sparsity of C(x)
is E[‖C(x)‖0] = O

(
s(s+

√
d)
)
.

4. Accelerated CGD: Single Machine
In this section, we study the special case of problem (1) with
a single machine (n = 1) and no regularizer (ψ(x) ≡ 0),
i.e., problem (4):

min
x∈Rd

f(x).

4.1. The CGD algorithm

First, we recall the update step in compressed gradient de-
scent (CGD) method, i.e.,

xk+1 = xk − ηC(∇f(xk)),

where C is a kind of ω-compression operator defined in
Definition 1.

As mentioned earlier, convergence results of CGD are
O
(
(1 + ω)Lµ log 1

ε

)
for strongly convex problems and

O
(
(1 + ω)Lε

)
for convex problems (see Table 1). The

convergence proof for strongly convex problems, i.e.,
O
(
(1 + ω)Lµ log 1

ε

)
, can be found in (Khirirat et al., 2018).

For completeness, we now establish a convergence result
for convex problems, i.e., O

(
(1 + ω)Lε

)
since we did not

find it in the literature.

Theorem 1 Suppose f is convex with L-Lipschitz continu-
ous gradient and the compression operator C satisfies (5).
Fixing the step size η = 1

(1+ω)L , the number of iterations
performed by CGD to find an ε-solution such that

E[f(xk)]− f(x∗) ≤ ε

is at most

k = O

(
(1 + ω)L

ε

)
.

4.2. The ACGD algorithm

Note that in the non-compressed case ω = 0 (i.e., CGD is
reduced to standard GD), there exists methods for obtain-
ing accelerated convergence rates of O

(√
L
µ log 1

ε

)
and

O
(√

L
ε

)
for strongly convex and convex problems, respec-

tively. However, no accelerated convergence results exist
for CGD methods. Inspired by Nesterov’s accelerated gra-
dient descent (AGD) method (Nesterov, 2004) and FISTA
(Beck & Teboulle, 2009), we propose the first accelerated
compressed gradient descent (ACGD) method, described in
Algorithm 1.

Algorithm 1 Accelerated CGD (ACGD)
Input: initial point x0, {ηk}, {θk}, {βk}, {γk}, p
1: z0 = y0 = x0

2: for k = 0, 1, 2, . . . do
3: xk = θky

k + (1− θk)zk
4: Compress gradient gk = C(∇f(xk))
5: yk+1 = xk − ηk

p g
k

6: zk+1 = 1
γk
yk+1 +

(
1
p −

1
γk

)
yk

+
(
1− 1

p

)
(1− βk)zk +

(
1− 1

p

)
βkx

k

7: end for

4.3. Convergence theory

Our accelerated convergence results for ACGD (Algorithm
1) are stated in Theorems 2 and 3, formulated next.

Theorem 2 (ACGD: convex case) Let f be convex with
L-Lipschitz continuous gradient and let the compression
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operator C satisfy (5). Choose the parameters in ACGD
(Algorithm 1) as follows:

ηk ≡
1

L
, p = 1 + ω,

θk =
k

k + 2
, βk ≡ 0, γk =

2p

k + 2
.

Then the number of iterations performed by ACGD to find
an ε-solution such that

E[f(xk)]− f(x∗) ≤ ε

is at most

k = O

(
(1 + ω)

√
L

ε

)
.

Theorem 3 (ACGD: strongly convex case) Let f be µ-
strongly convex with L-Lipschitz continuous gradient and
let the compression operator C satisfy (5).Choose the pa-
rameters in ACGD (Algorithm 1) as follows:

ηk ≡
1

L
, p = 1 + ω,

θk ≡
p

p+
√
µ/L

, βk ≡
√
µ/L

p
, γk ≡

√
µ

L
.

Then the number of iterations performed by ACGD to find
an ε-solution such that

E[f(xk)]− f(x∗) ≤ ε

(or E[‖xk − x∗‖2] ≤ ε) is at most

k = O

(
(1 + ω)

√
L

µ
log

1

ε

)
.

In the non-compressed case ω = 0 (i.e., C(x) ≡ x), our
results recover the standard optimal rates of accelerated
gradient descent. Further, if we consider the random-k spar-
sification compression operator, ACGD can be seen as a
variant of accelerated randomized coordinate descent (Nes-
terov, 2012). Our results recover the optimal results of
accelerated randomized coordinate descent method (Allen-
Zhu et al., 2016; Hanzely & Richtárik, 2019a) under the
same standard smoothness assumptions.

4.4. Proof sketch

The following lemma which demonstrates improvement in
one iteration plays a key role in our analysis.

Lemma 1 If parameters {ηk}, {θk}, {βk}, {γk} and p sat-
isfy θk = 1−γk/p

1−βkγk/p
, βk ≤ min{µηkγkp

, 1}, p ≥ (1+Lηk)(1+ω)
2

and the compression operator Ck satisfies (5), then we have
for any iteration k of ACGD, and for all x ∈ Rd,

2ηk
γ2k

E[f(yk+1)− f(x)] + E[‖zk+1 − x‖2]

≤
(
1− γk

p

)
2ηk
γ2k

(
f(yk)− f(x)

)
+ (1− βk)‖zk − x‖2,

where the expectation is with respect to the randomness of
compression operator sampled at iteration k.

The proof of Theorems 2 and 3 can be derived (i.e., plug
into the specified parameters ({ηk}, {θk}, {βk}, {γk} and
p) and collect all iterations) from Lemma 1. The detailed
proofs can be found in the appendix.

5. Accelerated CGD: Distributed Setting
We now turn our attention to the general distributed case,
i.e., problem (1):

min
x∈Rd

{
P (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
.

The presence of multiple nodes (n > 1) and of the regular-
izer ψ poses additional challenges.

5.1. The ADIANA algorithm

We now propose an accelerated algorithm for solving prob-
lem (1). Our method combines both acceleration and vari-
ance reduction, and hence can be seen as an accelerated
version of DIANA (Mishchenko et al., 2019; Horváth et al.,
2019b). Therefore, we call our method ADIANA (Algo-
rithm 2). In this case, each machine/agent computes its lo-
cal gradient (e.g., ∇fi(xk)) and a shifted version thereof is
compressed and sent to the server. The server subsequently
aggregates all received messages, to form a stochastic gra-
dient estimator gk of 1

n

∑
i∇fi(xk), and then performs a

proximal step. The shift terms hki are adaptively chang-
ing throughout the iterative process, and have the role of
reducing the variance introduced by compression. If no
compression is used, we may simply set the shift terms to
be hki = 0 for all i, k.

Our method was inspired by Mishchenko et al. (2019), who
first studied variance reduction for CGD methods for a
specific ternary compression operator, and Horváth et al.
(2019b) who studied the general class of ω-compression
operators we also study here. However, we had to make
certain modifications to make variance-reduced compres-
sion work in the accelerated case since both of them were
studied in the non-accelerated case. Besides, our method
adopts a randomized update rule for the auxiliary vectors
wk which simplifies the algorithm and analysis, resembling
the workings of the loopless SVRG method proposed by
Kovalev et al. (2020).
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Algorithm 2 Accelerated DIANA (ADIANA)
Input: initial point x0, {h0i }ni=1, h0 = 1

n

∑n
i=1 h

0
i , param-

eters η, θ1, θ2, α, β, γ, p
1: z0 = y0 = w0 = x0

2: for k = 0, 1, 2, . . . do
3: xk = θ1z

k + θ2w
k + (1− θ1 − θ2)yk

4: for all machines i = 1, 2, . . . , n do in parallel
5: Compress shifted local gradient Cki (∇fi(xk)− hki )

and send to the server
6: Update local shift hk+1

i = hki +αCki (∇fi(wk)−hki )
7: end for
8: Aggregate received compressed gradient information

gk = 1
n

n∑
i=1

Cki (∇fi(xk)− hki ) + hk

hk+1 = hk + α 1
n

n∑
i=1

Cki (∇fi(wk)− hki )

9: Perform update step
yk+1 = proxηψ(x

k − ηgk)
10: zk+1 = βzk + (1− β)xk + γ

η (y
k+1 − xk)

11: wk+1 =

{
yk, with probability p
wk, with probability 1− p

12: end for

5.2. Convergence theory

Our main convergence result for ADIANA (Algorithm 2) is
formulated in Theorem 4. We focus on the strongly convex
setting.

Theorem 4 Suppose f is µ-strongly convex and that the
functions fi have L-Lipschitz continuous gradient for all i.
Further, let the compression operator C satisfy (5). Choose
the ADIANA (Algorithm 2) parameters as follows:

η = min

{
1

2L
,

n

64ω(2p(ω + 1) + 1)2L

}
,

θ1 = min

{
1

4
,

√
ηµ

p

}
, θ2 =

1

2
,

α =
1

ω + 1
, β = 1− γµ, γ =

η

2(θ1 + ηµ)
,

p = min

{
1,

max{1,
√

n
32ω − 1}

2(1 + ω)

}
.

Then the number of iterations performed by ADIANA to find
an ε-solution such that

E[‖zk − x∗‖2] ≤ ε

is at most

k =

O
([
ω + ω

√
L
nµ

]
log 1

ε

)
, n ≤ ω,

O
([
ω +

√
L
µ +

√√
ω
n
ωL
µ

]
log 1

ε

)
, n > ω.

As we have explained in the introduction, the above rate is
vastly superior to that of non-accelerated distributed CGD
methods, including that of DIANA.

5.3. Proof sketch

In the proof, we use the following notation:

Zk :=
∥∥zk − x∗∥∥2 , (6)

Yk := P (yk)− P (x∗), (7)

Wk := P (wk)− P (x∗), (8)

Hk :=
1

n

n∑
i=1

∥∥hki −∇fi(wk)∥∥2 . (9)

We first present a key technical lemma which plays a similar
role to that of Lemma 1.

Lemma 2 If the parameters satisfy η ≤ 1
2L , θ1 ≤

1
4 , θ2 =

1
2 , γ = η

2(θ1+ηµ)
and β = 1 − γµ, then we have for any

iteration k,

2γβ

θ1
E
[
Yk+1

]
+ E

[
Zk+1

]
≤ (1− θ1 − θ2)

2γβ

θ1
Yk + βZk

+ 2γβ
θ2
θ1
Wk +

γη

θ1
E
[∥∥gk −∇f(xk)∥∥2] (10)

− γ

4Lnθ1

n∑
i=1

∥∥∇fi(wk)−∇fi(xk)∥∥2 (11)

− γ

8Lnθ1

n∑
i=1

∥∥∇fi(yk)−∇fi(xk)∥∥2 . (12)

Theorem 4 can be proved by combing the above lemma
with three additional Lemmas: Lemma 3, 4 and 5, which
we present next. In view of the presence ofWk in (10), the
following result is useful as it allows us to addWk+1 into
the Lyapunov function.

Lemma 3 According to Line 11 of Algorithm 2 and Defini-
tion (7)–(8), we have

E
[
Wk+1

]
= (1− p)Wk + pYk.

To cancel the term E
[∥∥gk −∇f(xk)∥∥2] in (10), we use

the defining property of compression operator (i.e., (5)) :

Lemma 4 If the compression operator C satisfies (5), we
have

E
[∥∥gk −∇f(xk)∥∥2]
≤ 2ω

n2

n∑
i=1

∥∥∇fi(wk)−∇fi(xk)∥∥2 + 2ω

n
Hk . (13)
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Note that the bound on variance obtained above introduces
an additional termHk (see (13)). We will therefore add the
termsHk+1 into the Lyapunov function as well.

Lemma 5 If α ≤ 1
ω+1 , we have

E
[
Hk+1

]
≤
(
1− α

2

)
Hk

+

(
1 +

2p

α

)
2p

n

n∑
i=1

∥∥∇fi(wk)−∇fi(xk)∥∥2
+

(
1 +

2p

α

)
2p

n

n∑
i=1

∥∥∇fi(yk)−∇fi(xk)∥∥2 .
Note that the terms

∑n
i=1

∥∥∇fi(wk)−∇fi(xk)∥∥2 and∑n
i=1

∥∥∇fi(yk)−∇fi(xk)∥∥2 in Lemma 5 and (13) can
be cancelled by (11) and (12) by choosing the parameters
appropriately.

Finally, it is not hard to obtain the following key inequality
for the Lyapunov function by plugging Lemmas 3-5 into
our key Lemma 2:

E
[
c1Yk+1 + c2Zk+1 + c3Wk+1 + c4Hk+1

]
≤ (1− c5)

(
c1Yk + c2Zk + c3Wk + c4Hk

)
. (14)

Above, the constants c1, . . . , c5 are related to the algorithm
parameters η, θ1, θ2, α, β, γ and p. Finally, the proof of
Theorem 4 can be derived (i.e., plug into the specified pa-
rameters) from inequality (14). The detailed proof can be
found in the appendix.

6. Experiments
In this section, we demonstrate the performance of our accel-
erated method ADIANA (Algorithm 2) and previous meth-
ods with different compression operators on the regularized
logistic regression problem,

min
x∈Rd

{
1

n

n∑
i=1

log
(
1 + exp(−bia>i x)

)
+
λ

2
‖x‖2

}
,

where {ai, bi}i∈[n] are data samples.

Data sets. In our experiments we use four standard
datasets, namely, a5a, mushrooms, a9a and w6a from
the LIBSVM library. Some of the experiments are provided
in the appendix.

Compression operators. We use three different compres-
sion operators: random sparsification (see e.g. (Stich et al.,
2018)), random dithering (see e.g. (Alistarh et al., 2017)),
and natural compression (see e.g. (Horváth et al., 2019a)).
For random-r sparsification, the number of communicated

bits per iteration is 32r, and we choose r = d/4. For
random dithering, we choose s =

√
d, which means the

number of communicated bits per iteration is 2.8d + 32
(Alistarh et al., 2017). For natural compression, the number
of communicated bits per iteration is 9d bits (Horváth et al.,
2019a).

Parameter setting. In our experiments, we use the theo-
retical stepsize and parameters for all the three algorithms:
vanilla distributed compressed gradient descent (DCGD),
DIANA (Mishchenko et al., 2019), and our ADIANA (Al-
gorithm 2). The default number of nodes/machines is 20
and the regularization parameter λ = 10−3. The numeri-
cal results for different number of nodes can be found in
the appendix. For the figures, we plot the relation of the
optimality loss gap f(xk) − f(x∗) and the number of ac-
cumulated transmitted bits. The optimal value f(x∗) for
each case is obtained by getting the minimum of three un-
compressed versions of ADIANA, DIANA, and DCGD for
100000 iterations.

6.1. Comparison with DIANA and DCGD

In this subsection, we compare our ADIANA with DIANA
and DCGD with three compression operators: random spar-
sification, random dithering, and natural compression in
Figures 1 and 2.

The experimental results indeed show that our ADIANA
converges fastest for all three compressors, and natural com-
pression uses the fewest communication bits than random
dithering and random sparsification. Moreover, because the
compression error of vanilla DCGD is nonzero in general,
DCGD can only converge to the neighborhood of the opti-
mal solution while DIANA and ADIANA can converge to
the optimal solution.

6.2. Communication efficiency

Now, we compare our ADIANA and DIANA, with and
without compression to show the communication efficiency
of our accelerated method ADIANA in Figures 3 and 4.

According to the left top and left bottom of Figure 4, DIANA
is better than its uncompressed version if the compression
operator is random sparsification. However, ADIANA be-
haves worse than its uncompressed version. For random
dithering (middle figures) and natural compression (right fig-
ures), ADIANA is about twice faster than its uncompressed
version, and is much faster than DIANA with/without com-
pression. These numerical results indicate that ADIANA
(which enjoys both acceleration and compression) could
be a more practical communication efficiency method, i.e.,
acceleration (better than non-accelerated DIANA) and com-
pression (better than the uncompressed version), especially
for random dithering and natural compression.
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Figure 1. The communication complexity of different methods for three different compressors (random sparsification, random dithering
and natural compression) on the a5a dataset.
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Figure 2. The communication complexity of different methods for three different compressors (random sparsification, random dithering
and natural compression) on the mushrooms dataset.
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Figure 3. The communication complexity of DIANA and ADIANA with and without compression on the a5a dataset.
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Figure 4. The communication complexity of DIANA and ADIANA with and without compression on the mushrooms dataset.
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