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1 Preliminaries and Notations1

We use (x0,y0) to denote a pair of input and label for training or testing. F(x) represents the output2

of the network. For a function f : Rd → Rd, we use ∇f(x) to denote its Jacobian at input x. We3

let B(n)(x, r) denote n-dimensional ball centered at x with radius r. We call a N -stage network if4

the output xN and input x0 of the network corresponds to the following equation:5

xi = si(xi−1), for i = 1, ..., N,

meanwhile we call si(·) is the i-th stages of the network.6

2 Stability of the ODE-based neural networks7

As we will illustrate in the following, we find that the numerical stability on the initial value problem8

is similar to the network’s robustness against adversarial attacks which add perturbations to the input,9

especially when training the network with least squared regression loss. First of all, we define the10

numerical stability for an N -stage neural network from the dynamic system perspective as follows:11

Definition 1. A network with N stages (si represents its i-th stage) is called C-stable for its initial12

value problem at input x0 ∈ Rn, if for a small δ and all the perturbed inputs for each stage x′i−1 ∈13

B(n)(xi−1, δ), the following equations are satisfied for all the stages:14

‖si(x′i−1)− si(xi−1)‖2 ≤ Cδ, i = 1, ..., N.

where C ≤ 1 is a constant.15

From the above definition, one can see that if the network is C-stable at certain input x0, then the16

impacts of the small adversarial perturbation will not enlarge, or even shrink, during the forward17

propagation. Furthermore, we can bound the increment of loss for any attacks η ∈ B(n)(0, δ) for18

sample x0 if the network is C-stable at x0 using the least squared regression loss.19

Proposition 1. If a network with N stages is C-stable at x0, then the increment of the least squared20

regression loss under the adversarial attack η ∈ Bn(0, δ) on input x0 is:21

L(F(θ; x0 + η),y0)− L(F(θ; x0),y0) ≤ CNδ,

where F(·) denotes the neural network and y0 is the label for clean data x0.22

Proof. Since the ResNet (F) is C-stable, then the following statement is satisfied:23

‖F(x′)−F(x)‖2 ≤ CNδ,

Since24

L(F(θ; x),y) = ‖F(θ; x)− y‖2



then25

max
η∈D
L(F(θ; x + η),y)− L(F(θ; x,y)) = max

η∈D
‖F(θ; x + η)− y‖2 − ‖F(θ; x)− y‖2

= max
η∈D
{‖F(θ; x + η)− y‖2 − ‖F(θ; x)− y‖2}

≤ max
η∈D
‖F(θ; x + η)−F(θ; x)‖2

≤ CNδ

26

Therefore, if the network is C-stable at sample x0, then it can perform more stable or even finally27

defend the adversarial attacks on such sample. Since all the testing data and training data belong to a28

same distribution, then the more possible the network is to be C-stable under such data distribution,29

the more robust the network is under adversarial attacks. On this account, we call the network can30

defend the adversarial attacks on x0 if network is C-stable with C ≤ 1 in the following analysis.31

Furthermore, we analyze the sufficient conditions that ResNet and our model can defend the adver-32

sarial attacks.33

Proposition 2. For a N -block Residual Neural Network with fi representing its i-th residual Block34

and a small δ > 0, if the following statements satisfied:35

‖I +∇fi(xi−1)>‖2 ≤ 1 for i = 1, ..., N,

where xi−1 denotes the input of the i-th block corresponding to the clean input x0 for the network,36

then the network with N blocks can defend the attack with perturbation η ∈ B(n)(0, δ) on certain37

sample x0.38

Proof. The original output for the first residual stage can be formulated as:39

x1 = f1(x0) + x0, (1)

then, with the perturbed input x̃0 = η + x0, the perturbed output x̃1 can be formulated as:40

x̃1 = f1(x̃0) + x0 + η, (2)

Then since the perturbation is small, we do Taylor expansion for f1(·) at x0 for Eqn. 2. Then subtract41

Eqn. 1:42

∆1 = x̃1 − x1 = (I +∇f1(x0)>)η,

Then since43

‖I +∇fi(xi−1)>‖2 ≤ 1 for i = 1, ..., N,

we can obtain that:44

‖∆1‖2 = ‖x̃1 − x1‖2 = ‖(I +∇f1(x0)>)η‖2
≤ ‖I +∇f1(x0)>‖2‖η‖2
= C1‖η‖2 ≤ ‖η‖2

with C1 = ‖I +∇f1(x0)>‖2 ≤ 1. Then we figure out that the perturbations for output is smaller45

than the input perturbations which means ∆1 ∈ B(n)(0, δ), then redo the above procedure on next46

residual stage, we can find that the perturbation also shrinks withC2 = ‖I+∇f2(x1)>‖2 ≤ 1. Then47

for a ResNet with N blocks, the output perturbation ∆N corresponding to every initial perturbation48

η obeys:49

‖∆N‖2 ≤
N∏
i=1

Ci‖η‖2 ≤ (max
i
Ci)

Nδ ≤ CNδ,

where C = maxi Ci ≤ 1. So ResNet can defend the attack on x0.50
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3 Roubst Analysis for our IR ResNet51

Proposition 3. For an N -block exact IE-ResNet with fi representing its i-th residual block and a52

small δ > 0, if the following statement is satisfied:53

σmin(I−∇fi(xi)>) ≥ 1 for i = 1, ..., N, (3)

where σmin denotes the smallest singular value and xi denotes the output of the i-th block corre-54

sponding to the clean input x0 for the network, then the network with N blocks can defend attacks55

with perturbation η ∈ B(n)(0, δ) on sample x0.56

Proof. The original output for the first residual stage can be formulated as:57

x1 = f1(x1) + x0, (4)

then, with the perturbed input x̃0 = η + x0, the perturbed output x̃1 can be formulated as:58

x̃1 = f1(x̃1) + x0 + η, (5)

Then since the perturbation is small, we do Taylor expansion for f1(·) at x1 for Eqn. 5. Then subtract59

Eqn. 4:60

Then since61

σmin(I−∇fi(xi)>) ≥ 1 for i = 1, ..., N,

and use ∆1 to denote x̃1 − x1, we can obtain that:62

(I−∇f1(x1)>)∆1 = η

σmin(I−∇f1(x1)>)‖∆1‖2 ≤ ‖η‖2

‖∆1‖2 ≤
1

σmin(I−∇f>1 (x1))
‖η‖2

= C1‖η‖2 ≤ ‖η‖2

with C1 = 1
σmin(I−∇f1(x1)>)

≤ 1. Then we figure out that the perturbations for output is smaller63

than the input perturbations which means ∆1 ∈ B(n)(0, δ), then redo the above procedure on next64

residual stage, we can find that the perturbation also shrinks with C2 = 1
σmin(I−∇f2(x2)>)

≤ 1. hen65

for a ResNet with N blocks, the output perturbation ∆N corresponding to every initial perturbation66

η obeys:67

‖∆N‖2 ≤
N∏
i=1

Ci‖η‖2 ≤ (max
i
Ci)

Nδ ≤ CNδ,

where C = maxi Ci ≤ 1. So, IE-ResNet can defend the attack on x0.68

From the propositions above, one can see that our IE-ResNet is much easier to satisfy the Jacobian’s69

condition for the stability. Furthermore, we have proved that our IE-ResNet has higher probability70

to defend the attack under our definitions above than its corresponding ResNet. For an N -block71

ResNet with gi representing its i-th residual block and a N -block exact IE-ResNet with fi denoting72

its i-th residual block. Furthermore, we use xi to denote the input of i-th block for ResNet while we73

use yi to represent the output of i-th block for IE-ResNet.74

Theorem 1. Suppose that for a input x, which is sampled from a data distribution, its corresponding75

∇gi(xi) and∇fi(yi) obey the same distribution since they enjoy the same strategies and Jacobians76

{∇gi(xi),∇fi(yi)} are independent. Then, we can obtain the following relations:77

P[∩i=1,..N{‖I +∇gi(xi)>‖2 ≤ 1}] ≤
P[∩i=1,..N{σmin(I−∇fi(yi)>) ≥ 1}].

From the above theorem, one can see that the possibility for our IE-ResNet to maintain stable on78

a sample is higher than the vanilla ResNet. On this account, the robustness of our IE-ResNet is79

superior to the vanilla ResNet.80
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Proof. First of all, we define the following sets:81

Ω1i ={∇gi(xi)|‖∇gi(xi)> + I‖2 ≤ 1},
Ω2i ={∇fi(yi)|‖∇fi(yi)> + I‖2 ≤ 1},
Ω3i ={∇fi(yi)|σmin(I−∇fi(yi)>) ≥ 1}.

Since ∇fi(xi) and ∇gi(yi) corresponding to a same input x0 obeys the same distribution, we can82

obtain the following equation:83

P[∩i=1,..N{‖I +∇fi(xi)>‖2 ≤ 1}] = P[∩i=1,..N{‖∇gi(yi)> + I‖2 ≤ 1}],
Secondly, we prove that Ω2i ⊂ Ω3i. Before that, we first prove that (I − ∇f>i ) is invertible if84

∇fi ∈ Ω2i. If I−∇fi is not invertible, which means:85

∃α 6= 0, s.t. (I−∇f>i )α = 0

Then,86

(I +∇f>i )α = 2α

‖(I +∇f>i )α‖2 = 2α ≤ ‖(I +∇f>i )‖2‖α‖2
so that:87

‖(I +∇f>i )‖2 ≥ 2.

which is contradicts to the above facts that∇fi ∈ Ω2i. So (I−∇f>i |x) is invertible if ∇fi ∈ Ω2i.88

Next, we can get that if∇fi ∈ Ω2i, we can obtain that:89

−(2I)−1(I +∇f>i )(I−∇f>i )−1 = −1

2
(I +∇f>i )(I−∇f>i )

= [−I +
1

2
(I−∇f>i )](I−∇f>i )−1

=
1

2
I− (I−∇f>i )−1

(I−∇f>i )−1 =
1

2
I + (2I)−1(I +∇f>i )(I−∇f>i )−1

So that90

‖(I−∇f>i )−1‖2 = ‖1

2
I + (2I)−1(I +∇f>i )(I−∇f>i )−1‖2

≤ 1

2
+

1

2
‖(I +∇f>i )‖2‖(I−∇f>i )−1‖2

(1− 1

2
‖I +∇f>i ‖2)‖(I−∇f>i )−1‖2 ≤

1

2

Since ‖I +∇f>i ‖2 ≤ 1, we can acquire that:91

‖(I−∇f>i )−1‖2 ≤
1

2− ‖I +∇f>i ‖2
≤ 1.

Since92

‖(I−∇f>i )−1‖2 =
1

σmin(I−∇f>i )
.

Then the following equation is hold:93

σmin(I−∇f>i ) ≥ 1.

Therefore, we proved that if ∇fi ∈ Ω2i, then it also belongs to Ω3i. Furthermore, one can see that94

−3I only belongs to Ω3i. So we can conduct that:95

Ω2i ⊂ Ω3i

So we can conduct,96

P[∩i=1,..N{‖I +∇fi(xi)>‖2 ≤ 1}] ≤ P[∩i=1,..N{σmin(I−∇fi(yi)>) ≥ 1}]
P[∩i=1,..N{‖I +∇gi(xi)>‖2 ≤ 1}] ≤ P[∩i=1,..N{σmin(I−∇fi(yi)>) ≥ 1}]

97
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Figure 1: The structure sketch for the swResNet. The wights for resblock1 and resblock2 are the
same. Meanwhile, the weights for resblock3 and resblock4 are the same.

4 swResNet Skectch98

In Section 5.2, we design a share weight ResNet (swResNet) to compare with our model. The99

sketch of the swResNet can be depict as follow: As one can see from the above figure, we share100

weights for two adjacent residual block with the same dimension. We let the blocks unchanged as101

the original ResNet if there are dimension changes in such blocks. Therefore, the parameter size for102

swResNet-58 is the same as ResNet-34 and IE-ResNet-34.103

5 Hyper-Parameters for TRADES training104

We set perturbation δ = 0.031, perturbation step size α = 0.007, number of iterations K = 10 and105

1/λ = 6 for the TRADES adversarial training, which is consistent to the settings in Zhang et al.106

[2019].107
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