
Neural Architecture Search in A Proxy Validation Loss Landscape

Yanxi Li 1 Minjing Dong 1 Yunhe Wang 2 Chang Xu 1

Abstract
This paper searches for the optimal neural archi-
tecture by minimizing a proxy of validation loss.
Existing neural architecture search (NAS) meth-
ods used to discover the optimal neural architec-
ture that best fits the validation examples given
the up-to-date network weights. However, back
propagation with a number of validation exam-
ples could be time consuming, especially when it
needs to be repeated many times in NAS. Though
these intermediate validation results are invalu-
able, they would be wasted if we cannot use them
to predict the future from the past. In this paper,
we propose to approximate the validation loss
landscape by learning a mapping from neural ar-
chitectures to their corresponding validate losses.
The optimal neural architecture thus can be easily
identified as the minimum of this proxy valida-
tion loss landscape. A novel sampling strategy
is further developed for an efficient approxima-
tion of the loss landscape. Theoretical analysis
indicates that the validation loss estimator learnt
with our sampling strategy can reach a lower er-
ror rate and a lower label complexity compared
with a uniform sampling. Experimental results
on benchmarks demonstrate that the architecture
searched by the proposed algorithm can achieve a
satisfactory accuracy with less time cost.

1. Introduction
Designing neural network architecture by neural architec-
ture search (NAS) methods without human participation
has attracted the interest of researchers since decades ago
(Fahlman & Lebiere, 1990; Kitano, 1990). Recently, the ex-
plosive growth in hardware performance has boosted many
excellent studies in NAS (Cai et al., 2017; Liu et al., 2017;
Real et al., 2017; Zoph & Le, 2016; Zoph et al., 2018),

1School of Computer Science, University of Sydney
2Noah’s Ark Lab, Huawei Technoligies. Correspondence
to: Yanxi Li <yali0722@uni.sydney.edu.au>, Chang Xu
<c.xu@sydney.edu.au>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

which show a promising future of this field. Although hard-
ware performance has improved, NAS is still computational
prohibitive and expensive for relatively small institutions,
organizations and companies due to its nature. Typically,
NAS involves solving a bi-level optimization problem with
model training as the lower optimization problem and ar-
chitecture searching as the upper one. Previous study has
shown that such problems are computationally difficult to be
optimized, due to the fact that the solutions of optimizations
in both levels dynamically affect each other (Dempe, 2018).

To solve the bi-level optimization problem, extensive re-
searches have been conducted for searching neural architec-
tures by reinforcement learning (RL) (Baker et al., 2016;
Bello et al., 2017; Cai et al., 2017; Zoph & Le, 2016; Zoph
et al., 2018) or evolutionary algorithms (EA) (Liu et al.,
2017; Real et al., 2017; Miikkulainen et al., 2019). These
methods often need to evaluate numerous different architec-
tures and therefore require thousands of GPU days to find
an architecture on CIFAR-10. Recent works represented by
DARTS (Liu et al., 2018b) have established a new family of
approaches using gradient-based method to optimize neural
architectures, which reduce the searching cost dramatically
from thousands of GPU days to several GPU hours. How-
ever, in NAS iterations, knowledge from prior steps are far
from fully explored and exploited to instruct the subsequent
searching by existing methods. Intermediate validation re-
sults are often discarded without a thorough investigation,
which causes a huge waste of computation resources.

In this paper, we propose to learn the proxy validation loss
landscape for an efficient neural architecture search. Instead
of discarding the historical validation losses in iterations
of NAS, we reuse them to train a validation loss estimator.
Based on the gradients of this validation loss estimator, we
can then derive neural architectures that correspond to the
smaller validation loss. The validation loss estimator can
be further upgraded with these discovered architectures and
their corresponding actual validation losses. We conduct
theoretical analysis on the convergence of the validation loss
estimator and suggest that it needs fewer labelling costs. Ex-
perimental results on benchmark datasets demonstrate that
searching in the proposed proxy validation loss landscape,
we can outperform comparison methods by achieving up to
2.70% test error rate on CIFAR-10 and 25.6% top-1 error
rate on ImageNet 2012 within 0.20 GPU days.

Neural Architecture Search in a Proxy Validation Loss Landscape

2. Related Works
Recently, the automatic design of neural architectures with-
out human experts involvement, which is generally referred
as Neural Architecture Search (NAS), has been significantly
developed (Baker et al., 2016; Cai et al., 2017; Zoph & Le,
2016; Zoph et al., 2018; Bello et al., 2017; Liu et al., 2017;
Real et al., 2017; Baker et al., 2017; Deng et al., 2017). NAS
methods are commonly classified from three perspectives:
search space, search strategy, and performance estimation
strategy (Elsken et al., 2018).

The majority of earlier NAS approaches typically choose
the macro search space (Brock et al., 2017; Cai et al., 2018;
Veniat & Denoyer, 2018; Zoph & Le, 2016), where the
entire network is discovered by algorithms. As its name
indicated, macro search space only allows coarse-grained
optimizations, in which architectures are parameterized by:
the number of convolutional layers, the operations applied
by each layer, the hyper-parameters of each operation (e.g.
size of a filter, number of parallel filters or strides), and
the number of units in fully connected layers (Elsken et al.,
2018). To make the optimization more fine-grained, inspired
by repeated motifs (a.k.a. cells or blocks) in hand-crafted
architectures (He et al., 2016; Szegedy et al., 2015), later
works usually apply the micro search space (Pham et al.,
2018; Real et al., 2019; 2017; Zoph et al., 2018). The scale
of motifs is relatively small, which allows efficient searching
for more specific and complex architectures, while powerful
large scale networks can still be built by stacking multiple
motifs together.

While search spaces define what architectures to search,
search strategies determine how to search in such spaces. In
earlier NAS approaches, architectures are discretely sam-
pled and evaluated (Baker et al., 2016; Bello et al., 2017;
Cai et al., 2017; Zoph & Le, 2016; Zoph et al., 2018; Liu
et al., 2017; Real et al., 2017; Miikkulainen et al., 2019).
For each sampled architecture, a new network is constructed,
trained and evaluated independently, which increases the
inference cost dramatically. Recent differentiable search
approaches represented by DARTS (Liu et al., 2018b) pro-
pose to consider target architectures as sub-graphs of a large
computation graph and use continuous architecture weights
to parameterize them, which allows joint optimization of
model weights and architecture weights using gradient de-
scent. GDAS (Dong & Yang, 2019) further proposes to
sample one operation each step rather than use the weighted
sum of all operations, which significantly reduces inference
cost and improves search speed. A similar work aiming to
boost search speed is PC-DARTS (Xu et al., 2019), which
performs operation search in a subset of channels instead
of operations. Besides search speed, Amended-DARTS (Bi
et al., 2019) uses mathematical methods to stabilize the
search progress of DARTS.

hc-2 hc-1 x(0) x(1) x(2) x(3) hc

Figure 1. A cell in the form of computation graph. The blue and
green nodes (hc−2,hc−1) are outputs of previous cells. The or-
ange node (hc) is the output of current cell. The white nodes
(x(i), i = 0, 1, 2, 3) are latent representations (i.e. feature maps)
in the current cell.

Training a network for several epochs and then evaluating it
is the most straightforward method to estimate the perfor-
mance of a network. However, if we can predict the per-
formance of a network directly from its architecture, things
will be much easier. Predicting neural network performance
is an emerging topic, which is initially proposed to speed up
hyper-parametric search (Baker et al., 2017; Domhan et al.,
2015; Klein et al., 2016; Swersky et al., 2014). In Peephole
(Deng et al., 2017), individual layers of a network are en-
coded into vectors and compressed as a single integrated
description via LSTM. Performance of the network is then
predicted given the integrated description of architecture.
Predicting performance of networks with repeated motifs is
much simpler, Progressive NAS (Liu et al., 2018a) proposes
to use a surrogate model to predict architecture performance.

3. Methodology
In this section, we introduce the search space and the dif-
ferentiable architecture sampling, and then propose a new
NAS algorithm based on proxy validation loss landscape.

3.1. Search Space

We adopt the recently popular micro search space (Zoph
et al., 2018). A cell c is represented by a DAG in Fig.
1, whose nodes are latent representations and edges are
operations. We limit each cell to contain 7 nodes, i.e.
nodes = {I(i)|0 ≤ i ≤ 6}. The first two nodes I(0) and
I(1) are outputs from previous two cells hc−2 and hc−1.
From node I(2) to node I(5) are 4 computation nodes cal-
culated by

I(j) =
∑
i<j

oi,j(I
(i)), (1)

where oi,j(·) represents the operation on the edge from I(i)

to I(j). The last node I(6) =
⋃5
i=2 I

(i) is the output of
current cell hc, which is the channel-wise concatenation
of the four computation node. The difference between the
normal cell and the reduction cell is that operations in the
former has a stride of one while operations in the latter
has a stride of two to half the height and width of latent
representations.

Neural Architecture Search in a Proxy Validation Loss Landscape

3.2. Differentiable Architecture Sampling

The aforementioned operation oi,j is chosen from a set of
K operation candidates O according to specific rules. The
most straightforward sampling method is to use the argmax
of a K-dimensional architecture weight ai,j ∈ RK to select
the operation. An architecture can be represented by a one-
hot vector and Eq. 1 can be rewritten with it as:

I(j) =
∑
i<j

K∑
k=1

h
(k)
i,j · O

(k)(I(i)),

s.t. hi,j = one hot(argmaxk(a
(k)
i,j),

(2)

where a(k)
i,j is the k-th element of the architecture weight.

The problem of Eq. 2 is that the discrete architecture rep-
resentation H = {hi,j |2 ≤ j ≤ 5, i < j} is not dif-
ferentiable. To relax the discrete candidate sampling for
gradient-based optimization, a differentiable formula of ar-
chitecture parameter is required. Additionally, the Gumbel
distribution is introduced to incorporate randomness. Thus,
a continuous Gumbel-Softmax distribution can be used to
approximate the one-hot distribution in a differentiable way
as:

h̃
(k)

i,j =
exp ((a

(k)
i,j + ξ

(k)
i,j)/τ)∑K

k′=1 exp ((a
(k′)
i,j + ξ

(k′)
i,j)/τ)

, (3)

where τ is the softmax temperature and ξ(k)
i,j is an i.i.d sam-

ple from Gumbel(0, 1) 1. The balance between random
distribution and architecture weights allows the sampler
explores the search space at the beginning of search and
gradually converges to a relatively stable state with the in-
creasing of architecture weights. For simplicity, the sampler
is denoted as H̃ = GumbelSoftmax(A; ξ, τ).

By applying Eq. 3, we can reformulate Eq. 2 into an
approximated differentiable form. We replace the one-
hot vector hi,j with the Gumbel-Softmax distribution:

I(j) ≈
∑
i<j

∑K
k=1 h̃

(k)

i,j · O(k)(I(i)). During model train-
ing, terms in the approximated architecture parameter h̃i,j
with coefficient approaching zero can be omitted. As hi,j
is very close to an one-hot vector, only the k-th term where

k = argmaxk h̃
(k)

i,j need to be calculated:

I(j) ≈
∑
i<j

h̃
(k)

i,j · O(k)(I(i))

s.t. k = argmaxk h̃
(k)

i,j .

(4)

With Eq. 4, only one operation candidate on each edge
needs to be trained at a time, which significantly reduces

1The Gumbel distribution is generated via a commonly used
approach: ξ(k)i,j = − log(− log(u)) with u ∼ unif[0, 1]

the memory and computation overhead comparing to (Liu
et al., 2018b).

The optimization of an architecture is typically based on
its validation loss. To evaluate the performance of a
sampled architecture H̃ , we build a target super-network
ŷ = f(x;w, H̃) by stacking several copies of it together,
where x is the network input, ŷ is the prediction output,
and w is the model weight. Loss of the target network is
measured by the commonly used negative log likelihood for
classification tasks:

L(D;w, H̃) = E(x,y)∼D

[
− log

(
f(x;w, H̃)

)]
, (5)

where D is the corresponding training, validation or testing
set depending on the context. The validation loss of an
architecture is therefore calculated by L(Dval;w, H̃). With
this validation loss, the architecture weights can be jointly
optimized together with the target network weights as a
bi-level optimization problem:

min
A

L(Dvalid;w∗(H̃), H̃)

s.t. w∗(H̃) = arg max
w
L(Dtrain;w, H̃)

H̃ = GumbelSoftmax(A; ξ, τ).

(6)

3.3. Proxy Validation Loss Landscape

For efficient evaluation of architectures and approximation
of architecture gradient, we propose to use a validation
loss estimator to learn a proxy validation loss landscape in
the search space. For simplicity, the real validation loss
is normalized to a range of [0, 1]. The estimator is thus a
mapping ψ : H̃ 7→ L̂ from any given architecture weight
H̃ ∈ H to a real value estimated loss L̂ ∈ [0, 1]. In practice,
we use a network ψ to fit the mapping:

L̂ = ψ(H̃). (7)

The network ψ consists of two parts, an RNN E as archi-
tecture encoder and a dense layer D outputting a real value
estimated loss. The encoder E : RK×N → RM takes a
K×N dimension architecture parameter as its input, where
K is the candidates number and N is the edge number in a
cell, and outputs a M dimension vector as embedded rep-
resentation. Architecture parameters are fed to the encoder
as a sequence with length N , in which each step is a K
dimension vector representing a selection of candidate oper-
ations on the corresponding edge. Based on the embedding
vector, the dense layer D : RM → [0, 1] can estimate the
validation loss. Since the estimated validation loss has been
normalized to the range of [0, 1], instead of using the linear
activation on the output layer as the majority of regression
models usually do, we use sigmoid activation function to
limit the output to fall within the above range.

Neural Architecture Search in a Proxy Validation Loss Landscape

The validation loss estimator is optimized with a weighted
mean squared error (MSE) loss function:

min
ψ

LT (ψ) =
1

T

T∑
t=1

1

pt

(
ψ(H̃t)− Lt

)2

. (8)

where T is the total time step and Lt is the real validation
loss of H̃t evaluated in the super-network. We introduce
pt as a weight of Ht to stabilize the training of ψ. pt is
defined as pt = ψ∗t (H̃t) − ψ∗t (H̃t−1), where ψ∗t is the
optimal validation loss estimator at time step t. Note that if
H̃t is far from H̃t−1, we assign a smaller weight 1/pt to
H̃t, so that the significant perturbation of the architecture
will not influence the optimization of the validation loss
estimator too much. All the pairs of sampled architecture
and its real validation loss evaluated in the super-network
are stored in a memory M , i.e. M = {(H̃t,Lt),∀1 ≤
t ≤ T}. After each sampling, memory M is updated by
M = M ∪ {(H̃t,Lt)}.

Via minimizing Eq. 8, we can obtain the optimal validation
loss estimator ψ∗T at time step T . By replacing the validation
loss in Eq. 6 with the optimal validation loss estimator ψ∗T ,
we can reformulate the bi-level optimization problem into a
simpler formula:

min
A

ψ∗T (H̃)

s.t. H̃ = GumbelSoftmax(A; ξ, τ),
(9)

where the lower level optimization problem is bypassed with
the estimator. The major difference between Eq. 9 and Eq. 6
is that w∗ is no longer involved in the searching process. In
this way, we do not need to solve the bi-level optimization
anymore, but only need to learn an estimator and use it to
search for architectures.

We use the gradient of the proxy loss ∇Aψ(H̃) to update
the architecture parameter for both searching and sampling.
At a time step t, starting from an architecture parameter
A with corresponding H̃ , updating is conducted along the
gradient direction induced by estimator ψ∗t with η as the
step size:

A′ ← A− η · ∇Aψ
∗
t (H̃), (10)

where A′ is the new architecture parameter. With appro-
priate step size, A′ should satisfy that the estimated val-
idation loss of it ψ∗t (A′) ≤ ψ∗t (A). The next architec-
ture to evaluate is therefore obtained according to A′ by
H̃
′

= GumbelSoftmax(A′; ξ′, τ). The memory M is
then updated toM = M ∪ {(H̃ ′,L′)}.

3.4. Search Procedure

The overall procedure of our framework is shown in Algo-
rithm 1. Firstly, we randomly initialize a warm-up popu-
lation H of size N and use architecture Hi ∈ H to warm

up the target super-network f . The validation loss of Hi

after network warm-up along with the architecture itself is
then saved to a memory M as architecture-performance
pair, which is used to warm up and train the validation loss
estimator ψ. The purpose of warm-up is to let the valida-
tion loss estimator equipped with prior knowledge about the
validation loss landscape before the searching conducts.

When the target network f and validation loss estimator ψ
are both warmed up, the search commences. In each epoch
of the search stage, we sample an architecture weight H̃t

according to the current architecture parameter At as in
Eq. 4, and then update the corresponding sub-graph in the
super network. The sub-graph is then evaluated to obtain
a validation loss for validation loss estimator training. The
architecture parameterAt is then updated with the estimated
loss with Eq. 10 for the subsequent sampling.

Algorithm 1 Loss Space Regression
1: Initialize a warm-up population:

P = {H̃i|i = 1, ..., N}
2: for each H̃i ∈ P do
3: Warm-up architecture H̃i for 1 epoch
4: end for
5: Initialize a performance memoryM = ∅
6: for each H̃i ∈ P do
7: Train architecture H̃i for 1 epoch
8: Evaluate architecture H̃i’s loss Li
9: SetM = M ∪ {(H̃i,Li)}

10: end for
11: Warm-up ψ withM
12: for t = 1→ T do
13: Sample an architecture as in Eq. 4 with H̃t:

H̃t = GumbelSoftmax(At; ξt, τ)
14: Optimize network with loss in Eq. 5
15: Evaluate architecture to obtain loss Lt
16: SetM = M ∪ {(H̃t,Lt)}
17: Update ψ with Eq. 8
18: UpdateAt toAt+1 with Eq. 10
19: end for

4. Theoretical Analysis
In this section, we apply theoretical analysis to demonstrate
our method that trains validation loss estimator with archi-
tectures sampled by Eq. 10 is consistent and has a lower
label complexity compared to a baseline method that sam-
ples architectures following a uniform distribution.

4.1. The Algorithm Consistency

A desirable feature of our method is that with large enough
total step T , Eq. 9 can finally output a validation loss es-
timator ψT whose loss is at most L∗ + ε, where L∗ is the
optimal loss can be reached and ε is a constant small enough.

Neural Architecture Search in a Proxy Validation Loss Landscape

This feature is typically referred as the consistency.

We define a hypothesis class Ψ, which is a parameter space
such that ψ ∈ Ψ. The training of validation loss estimator
ψ is to find the optimal parameter ψ∗ = argminψ∈Ψ L(ψ)
within the hypothesis class Ψ. The architecture search space
H is the input space of the validation loss estimator, and
the [0, 1] normalized architecture loss space is the corre-
sponding output space. The loss function defined in Eq. 9 is
usually referred as the empirical loss. Replacing MSE with
a more general formula `(·), we can rewrite the empirical
loss as:

LT (ψ) =
1

T

T∑
t=1

1

pt
`(ψ(Ht),Lt), (11)

where T is the total time step and pt is the probability that
Ht is sampled. Lt is the validation loss of sampled archi-
tectureHt, which is evaluated in the super-network f . It is
the ground truth for validation loss estimator training. The
loss function `(·) in Eq. 11 measures the error of estimator
output ψ(Ht) w.r.t. the ground truth Lt.

To compare with the empirical loss calculated on samples
selected given Eq. 10, we also define an expected loss
(a.k.a. true loss). The expected loss is the loss of a given
validation loss estimator ψ calculated on the entire data
space D = {(H,LH)|H ∈ H}, which is defined as

L(ψ) = E(H,L)∼D [l(ψ(H),L)] . (12)

If our Eq. 8 is consistent, the difference between the empir-
ical and expected loss should be within an arbitrarily small
value, with probability arbitrarily to 1:

P[|LT (ψ)− L(ψ)| < ε] > 1− δ, (13)

where δ is a constant close to 0. We gives the error bound
ε in this inequality in Theorem 1. The detailed proof is
provided in the supplementary material.

Theorem 1. Let Ψ be a hypothesis class, LT be the empir-
ical loss, and L be the expected loss. For any δ > 0, with
probability at lest 1− δ, ∀ψ ∈ Ψ:

|LT (ψ)− L(ψ)| <

√
2
(
d+ ln 2

δ

)
T

, (14)

where d is the Pollard’s pseudo-dimension of Ψ.

Theorem 1 shows that the gap between the empirical and
expected loss of is at most of order O(

√
d/T). The gap is

only related to Pollard’s pseudo-dimension d and total time
step T . With a fixed d, the gap decreases with T increases.
The consistency indicates that the validation loss estimator
trained with architectures sampled by our sampling strategy
is competitive with an estimator trained on the entire search
space.

4.2. The Label Complexity

In NAS problem, we typically does not have all the vali-
dation losses of architectures in the search space and the
cost of evaluating an architecture is expensive. Therefore
we focus the complexity analysis on how architectures to be
evaluated are sampled. We use the label complexity, which
measures how many architectures we need to evaluate to
learn a validation loss estimator by Eq. 8.

According to our sampling strategy, the architecture to be
sampledHt+1 at time step t+ 1 satisfies that the estimated
validation loss of it is smaller than the estimated validation
loss of architecture previously sampled at time step t, i.e.
ψt(Ht+1) ≤ ψt(Ht), as long as the step size η is within a
reasonable range (e.g. small enough). According to the stan-
dard label complexity, the validation loss estimator ψt has
an maximum allowed slack ∆t =

√
(8/t)(d+ ln(2/δ)),

which means the estimated validation loss at most larger
than the ground truth than ∆t, i.e. ψt(Ht) ≤ Lt + ∆t.
This is equivalent to shrink the current search space into a
smaller subset Ht+1:

Ht+1 = {H ∈ Ht :

ψt(H) ≤ ψt(Ht) ≤ L(Ht) + ∆t}. (15)

The new sample Ht+1 should locate in the subset Ht+1.
The initial search space is set to be the entire search space:
H0 = H.

In Theorem 2, we demonstrate that by updating the archi-
tecture sampler with Eq. 10, we can reach a sub-linear
label complexity, which makes the training of our validation
loss estimator more efficient than sampling architectures
uniformly or following any other fixed distribution. The
detailed proof is provided in the supplementary material.
Theorem 2. Let Ψ be a hypothesis class containing all the
possible hypothesises of estimator ψ, and N be the size of a
input space, with probability at least 1− δ, the number of
labels required to optimize Eq. 8 is at most the order of

O
(√

N(d+ ln (2/δ))
)
, (16)

where d is the Pollard’s pseudo-dimension of Ψ.

Theorem 2 defines the bound of label complexity of Eq. 8.
The label complexity is proportional to the size N of the
search space in a sub-linear form, which outperforms linear
complexity.

5. Experiments
In experiments, we evaluated the performance of architec-
tures searched by the proposed algorithm on the CIFAR and
ImageNet datasets. Besides, we specifically design some
further experiments to demonstrate the effectiveness of the
proposed estimator and sampling strategy.

Neural Architecture Search in a Proxy Validation Loss Landscape

5.1. Search and Evaluation on CIFAR-10

Following previous works (Liu et al., 2018b; Dong & Yang,
2019), we use the CIFAR-10 dataset (Krizhevsky et al.,
2009) for architecture searching and results evaluation. The
CIFAR-10 dataset contains 50,000 training images together
with 10,000 testing images from 10 classes. During the
searching phase, we shuffle the training set and divide it
into two parts with equal size for model weights training
and validation performance inference respectively.

In our framework, operation candidates are formed in a
ReLU-Conv-BN pattern. We set candidates number K = 8,
including 4 convolutional operations: 3×3 separable convo-
lutions, 5×5 separable convolutions, 3×3 dilated separable
convolutions and 5 × 5 dilated separable convolutions, 2
pooling operations: 3× 3 average pooling and 3× 3 max
pooling, and two special operations: an identity operation
representing skip-connection and a zero operation represent-
ing two nodes are not connected.

The super-network for searching is constructed by stacking
8 cells. Cells locate at the 1/3 and 2/3 of the network (in
this case, the 3rd and 6th cells) are set as reduction cells,
while others are normal cells. The network has 16 initial
channels, which are doubled after each reduction cell. After
the searching, a large-scale network is constructed following
the pattern of obtained architecture and retrained with the
whole training set.

We follow the search procedure in Section 3.4. The warm-up
population is initialized with 100 random sampled architec-
tures. The performance memory is a queue with a maximum
length of 100, which is just equal to the size of the warm-up
population. In this way, the first sampled architecture can
survive until the warm-up stage finish, and as the search pro-
gresses, the warm-up population will be forgotten gradually.
This setting also ensures that the estimator is always trained
with an equal number of samples.

We trained models in the warm-up population with mini-
batch gradient descent, whose batch size is set to 64 and
the base learning rate is set to 0.025. The learning rate is
gradually reduced with cosine annealing. The architecture
weights and validation loss estimator are both optimized by
Adam with a constant learning rate of 0.1. The Softmax
temperature τ in Gumbel-Softmax is set to 0.1. To evalu-
ate the performance of the obtained architecture, a larger
network is constructed with 20 stacked cells and 36 initial
channels. The network is trained with the same training
setting as in the searching phase for 600 epochs on the
complete CIFAR-10 training set.

The corresponding test results on CIFAR-10 is shown in Ta-
ble 1 to compare with both hand-crafted and NAS searched
state-of-the-art architectures. As for our method, PVLL-
NAS outperforms all previous methods with similar param-

Model GPUs
Time

(Days)
Params

(M)
Test Error

(%)
ResNet-110 - - 1.7 6.61
DenseNet-BC - - 25.6 3.46
MetaQNN 10 8-10 11.2 6.92
NAS 800 21-28 7.1 4.47
NAS+more filters 800 21-28 37.4 3.65
ENAS 1 0.32 21.3 4.23
ENAS+more channels 1 0.32 38.0 3.87
NASNet-A 450 3-4 3.3 3.41
NASNet-A+cutout 450 3-4 3.3 2.65
ENAS 1 0.45 4.6 3.54
ENAS+cutout 1 0.45 4.6 2.89
DARTS(1st)+cutout 1 1.50 3.3 3.00
DARTS(2nd)+cutout 1 4 3.3 2.76
NAONet+cutout 200 1 128 2.11
NAONet+WS 1 0.30 2.5 3.53
GDAS 1 0.21 3.4 3.87
GDAS+cutout 1 0.21 3.4 2.93
PVLL-NAS 1 0.20 3.3 2.70

Table 1. Comparison of PVLL-NAS with different state-of-the-art
CNN models on CIFAR-10 dataset.

eter numbers and achieves the fastest searching speed, as
shown in Table 1. After searching for 0.2 GPU day, our
algorithm achieves better trade-offs between error rate and
parameters, which reaches 2.70% error rate on CIFAR-10
with 3.3M parameters.

Comparing to NAO (Luo et al., 2018), the gradient of the
validation loss estimator is employed to determine archi-
tectures to be evaluated. Such a sampling strategy is more
specific and architecture been sampled can contribute more
to the training of validation loss estimator. We can thus
learn a competitive proxy validation loss landscape with
fewer samples and hence fewer search time. Comparing
to GDAS (Dong & Yang, 2019), we search architectures
with the proxy validation loss landscape, which includes
knowledge from all previous evaluations, instead of only
using the current gradient information to update the archi-
tecture parameter. Therefore we can achieve better results
with equivalent searching time.

5.2. Generality on ImageNet

The generality of architecture we obtained is tested on Im-
ageNet 2012 (Russakovsky et al., 2015). ImageNet 2012
is a large-scale dataset containing 1.3 million training im-
ages and 50,000 testing images in 10,000 categories. The
training images in it is 26 times that of CIFAR-10, and its
classes are 100 times that of CIFAR-10, which makes it a
common dataset for testing the generality of architectures
in NAS studies. We follow the mobile setting (Sandler
et al., 2018) for ImageNet, where the input size is fixed to
224× 224 with 3 channels and the number of multiply-add
operations is restricted to be less than 600M. We set other
hyper-parameters following (Dong & Yang, 2019; Liu et al.,
2018b; Xu et al., 2019). The constructed model contains
14 layers with 48 initial channels. Our best architecture on

Neural Architecture Search in a Proxy Validation Loss Landscape

Model GPUs Time
(Days)

Params
(M)

+×
(M)

Test Error (%)
Top-1 Top-5

Inception-V1 - - 6.6 1448 30.2 10.1
MobileNet-V2 - - 3.4 300 28.0 -
ShuffleNet - - ∼ 5 524 26.3 -
MnasNet-A3 8 472∗ 4.4 403 23.3 6.7
AmoebaNet-A 450 7 5.1 555 25.5 8.0
AmoebaNet-B 450 7 5.3 555 26.0 8.5
AmoebaNet-C 450 7 6.4 570 24.3 7.6
NASNet-A 450 3-4 5.3 564 26.0 8.4
NASNet-B 450 3-4 5.3 488 27.2 8.7
NASNet-C 450 3-4 4.9 558 27.5 9.0
Progressive NAS 100 1.5 5.1 588 25.8 8.1
DARTS 1 4 4.9 595 26.7 8.7
FBNet-C 8 1.13 5.5 375 25.1 -
GDAS 1 0.21 5.3 581 26.0 8.5
PVLL-NAS 1 0.20 5.0 556 25.6 8.1

∗ MnasNet takes 4.5 days on 64 TPUv2 for one search. The GPU
days is estimated by Wu et al. (2019).

Table 2. Top-1 and top-5 error rates of PVLL-NAS and other state-
of-the-art cnn models on ImageNet dataset.

ImageNet is illustrated in Fig. 2.

c_{k-2}

0

sep_conv_5x5

1

sep_conv_5x5

3

max_pool_3x3

c_{k-1}

dil_conv_3x3

sep_conv_3x3
2

dil_conv_5x5

sep_conv_3x3

c_{k}

avg_pool_3x3

c_{k-2}

0

max_pool_3x3 2
sep_conv_5x5

c_{k-1}

sep_conv_5x5

1

max_pool_3x3

3

dil_conv_3x3

dil_conv_3x3

dil_conv_5x5

skip_connect c_{k}

Figure 2. Normal (the upper one) and reduction (the lower one)
cells that generalize best to ImageNet.

We compare our results with other NAS algorithms in Ta-
ble 2. PVLL-NAS outperforms most gradient-based NAS
algorithms, including DARTS and GDAS, which reaches
25.6% error rate on ImageNet with 4.8M parameters. Com-
pared with other baselines, our algorithm achieves com-
petitive performance with much lower search cost, which
demonstrates the efficiency of PVLL-NAS. Consistently,
PVLL-NAS achieves better trade-offs on both CIFAR-10
and ImageNet, which highlights the generality of our algo-
rithm.

5.3. Warm-up with Different Population Sizes

To reach a better trade-off between performance and effi-
ciency, we evaluate various learned PVLLs with different
population sizes on a separated validation set. Table 5.3

Population Size 50 100 200 500
GPU hours 1.2 2.3 4.6 11.6
Estimation Loss 0.0023 0.0009 0.0005 0.0007

Table 3. Estimation loss of various PVLLs with different popula-
tion sizes

shows the estimation loss of those PVLLs. The result shows
that a population size of 100 can ensure a competitive val-
idation performance with reasonable cost (about 48% of
the overall search time), and further enlarging the popula-
tion size cannot guarantee a consistent increasing of per-
formance. Besides, network weights are updated gradually,
and a large population contains samples from a wide period
which might confuse the estimator. This can explain why
the loss with a population size of 500 is even worse than the
loss with a population size of 200.

5.4. The First and Second Order Estimation

We argue that optimize the architecture parameter with the
architecture gradient estimated with the proxy validation
loss landscape is reasonable, and the effect of this estima-
tion is competitive comparing to other estimation methods.
To demonstrate that, we design an experiment following
the concept of the 2nd order approximation in DARTS (Liu
et al., 2018b). The 2nd order approximation of architecture
gradient in DARTS is to approximate the optimal model
weight w∗ by a single training step and compute architec-
ture gradient based on the approximated model weight w′.
A counterpart of the 2nd order approximation in our Algo-
rithm 1 is that after sampling each architecture, we further
train it in the super-network for 1 epoch and evaluate its
validation loss. We refer this validation loss as the 2nd or-
der validation loss. By contrast, we evaluate the validation
losses of architectures in the super-network without further
training, which is referred as the 1st order validation loss.
Note that super-networks in both cases are warmed up, oth-
erwise the validation loss will make no sense. Estimations
depending on the 1st order and 2nd order validation losses
are referred as 1s order and 2nd order estimation respec-
tively. The results of searching with 1st order and 2nd order
estimations are listed in Table 4.

Method Order Time
(Days)

Test Error
(%)

DARTS 1st 1.5 3.00 ± 0.14
2nd 4.0 2.76 ± 0.09

Amended-
DARTS

1st - -
2nd 1.0 2.81 ± 0.21

PVLL-NAS 1st 0.10 3.48
2nd 0.20 2.72 ± 0.02

Table 4. Performances of architectures found on CIFAR-10 with
different order of approximation.

Neural Architecture Search in a Proxy Validation Loss Landscape

Not surprisingly, the performance of architecture obtained
by searching with the 1st order estimation is worse than
that obtained by the regular search scheme using 2nd order
estimation, which is even worse than the 1st order approxi-
mation in the original DARTS. However, after the 2nd order
estimation is introduced, the improvement is significant. Be-
sides, our 2nd order estimation method is about two times
slower than its 1st order counterpart, which is mainly caused
by the sampled architecture training. We also compared our
results with a DARTS approach amended by a mathemati-
cal method to make the 2nd order approximation, namely
Amended-DARTS (Bi et al., 2019). Amended-DARTS is
experimented on two different search spaces. We only com-
pared with their results on S1 search space, which is the
same to the original DARTS. The comparison with other
baselines demonstrates the effectiveness and stability of
proposed validation loss estimator.

5.5. Comparison of Different Sampling Strategies

We furthermore conduct in-depth analysis towards the effect
of our sampling strategies. In Fig. 3 (a), the learning curve
of estimator trained with our sampling strategy is compared
against learning curve with uniformly sampling as a baseline.
We sampled 100 architectures with our sampling strategy.
Another 100 architectures are uniformly sampled. The test
set is 100 independently and randomly (also uniformly)
sampled architectures from the search space. We also ensure
that training sets are mutually exclusive from the test set.
The same elements are allowed to exist in both training sets,
but due to the fact that the search space is large enough,
this is very unlikely to happen. For fairness, we train two
estimators with the same setting. Training data is passed to
the estimators one by one at each epoch during the training
progress to simulate the behaviour in architecture searching.
The estimator performance is tested on the remaining test
set after each epoch.

As shown in Fig. 3 (a), our sampling strategy shows superior
prediction performance when sampling number is limited
compared with uniform sampling. The sampled architec-
tures fed to estimator are determined by the gradient of
proposed validation loss estimator for architecture updating,
which makes full use of sampled architectures for estimator
updating and thus accelerates the training as well as reduces
the requirement for sample number. As sample number
increases, our method still shows stable performance and
continuously outperforms uniformly sampling.

Furthermore, we compare the performance of architectures
found with different sampling strategies in Table 5. Besides,
the involvement of warm-up and the weigh term of the
loss function in Eq. 8 is also justified. For searching with
warm-up, we use 100 randomly sampled architectures to
warm up the model and then search for 100 steps in which

With
Sampler Warm-up Weighted

Loss
Test Error

(%)
Y Y Y 2.72 ± 0.02
Y Y N 2.81 ± 0.08
Y N Y 3.10 ± 0.22
Y N N 3.03 ± 0.30
N Y N/A 3.08 ± 0.24
N N N/A 3.20 ± 0.32

Table 5. Ablation studies on the performances of architectures
searched on CIFAR-10 with different strategies.

(a)

(b)

Figure 3. (a) presents the learning curves with different sampling
strategies. The dashed line indicates training loss, and the solid
line indicates test loss. (b) shows the learning curves on search
space with different sizes.

100 new architectures are extended to the training set. It
is worth noting that when there is no warm-up, we will
search for 200 steps to maintain the same search budget.
The purpose of using warm-up is to enable our sampler to
acquire prior knowledge about loss space at the beginning of
searching. Without a warm-up, the initial behaviour of our
sampler will be close to uniform sampling, but as the search
proceeds, it still has the potential to outperform uniform
sampling. Comparing all the variants in Table. 5, the usage
of sampler, warm-up and weighted loss all contribute to
the performance and warm-up boosts the stability of our
algorithm. This observation empirically verifies that the
prior knowledge of loss space is necessary for the sampler to
start with and the weighted loss contributes to the algorithm
consistency. With the combination of these components,
the discovered architecture achieves the best and the most
stable performance among all the variants, which illustrates
the complementarity of each component.

Neural Architecture Search in a Proxy Validation Loss Landscape

5.6. Estimators on Different Search Spaces

In Theorem 2, we have shown that the label complexity
of our algorithm is related to the size of the search space.
In this section, we furthermore justify this conclusion with
experiments. We define 4 search spaces with different size.
The size of the search space is controlled by both the num-
ber of operation candidates and the number of operations
allowed in each cell. Detailed settings for each search space
is shown in the legend of Fig. 3 (b). The total number of
architectures in a search space can be easily computed given
those settings. For example, with 8 operation candidates and
4 operations per cell, the number of cells can be constructed
is 8(2+3+4+5) = 4.39×1012. As there are two kinds of cells
(normal and reduction), the total number of architectures in
the search space is (4.39× 1012)2 = 1.93× 1025. Test loss
curves of estimators trained on those search spaces are com-
pared. Theorem 2 suggests that the speed of convergence is
proportional to the size of data space in sub-linear relation.
Thus, the increment of size of search space impacts slightly
on convergence speed of estimator training. As shown in
Fig. 3 (b), 4 search spaces with different size have similar
converge speed and requirement of sample number, which
illustrates the efficiency of our algorithm.

6. Conclusion
In this paper, we propose to search for neural architectures
with a proxy validation loss landscape. We introduce a novel
method to dynamically sample architecture to be evaluated
for the efficient validation loss estimator training. Both theo-
retical analysis and experiments show that this approach can
establish a satisfactory proxy validation loss landscape with
less computational resource. Experimental results demon-
strate that the proposed NAS algorithm can efficiently de-
sign networks of the competitive performance compared to
state-of-the-art methods.

Acknowledgement
The authors would like to thank the Area Chair and the
reviewers for their constructive comments. This work was
supported by the Australian Research Council under Project
DE180101438.

References
Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing

neural network architectures using reinforcement learn-
ing. arXiv preprint arXiv:1611.02167, 2016.

Baker, B., Gupta, O., Raskar, R., and Naik, N. Accelerating
neural architecture search using performance prediction.
arXiv preprint arXiv:1705.10823, 2017.

Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. Neural

optimizer search with reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 459–468. JMLR. org, 2017.

Bi, K., Hu, C., Xie, L., Chen, X., Wei, L., and Tian, Q.
Stabilizing darts with amended gradient estimation on ar-
chitectural parameters. arXiv preprint arXiv:1910.11831,
2019.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Smash:
one-shot model architecture search through hypernet-
works. arXiv preprint arXiv:1708.05344, 2017.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Re-
inforcement learning for architecture search by network
transformation. arXiv preprint arXiv:1707.04873, 2017.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Efficient
architecture search by network transformation. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

Dempe, S. Bilevel optimization: theory, algorithms and
applications. TU Bergakademie Freiberg, Fakultät für
Mathematik und Informatik, 2018.

Deng, B., Yan, J., and Lin, D. Peephole: Predicting
network performance before training. arXiv preprint
arXiv:1712.03351, 2017.

Domhan, T., Springenberg, J. T., and Hutter, F. Speed-
ing up automatic hyperparameter optimization of deep
neural networks by extrapolation of learning curves. In
Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, 2015.

Dong, X. and Yang, Y. Searching for a robust neural archi-
tecture in four gpu hours. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 1761–1770, 2019.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architec-
ture search: A survey. arXiv preprint arXiv:1808.05377,
2018.

Fahlman, S. E. and Lebiere, C. The cascade-correlation
learning architecture. In Advances in neural information
processing systems, pp. 524–532, 1990.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kitano, H. Designing neural networks using genetic algo-
rithms with graph generation system. Complex systems,
4(4):461–476, 1990.

Neural Architecture Search in a Proxy Validation Loss Landscape

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F.
Learning curve prediction with bayesian neural networks.
ICLR 2017, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li,
L.-J., Fei-Fei, L., Yuille, A., Huang, J., and Murphy, K.
Progressive neural architecture search. In Proceedings of
the European Conference on Computer Vision (ECCV),
pp. 19–34, 2018a.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C.,
and Kavukcuoglu, K. Hierarchical representations
for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018b.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. Neural
architecture optimization. In Advances in neural informa-
tion processing systems, pp. 7816–7827, 2018.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,
D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A.,
Duffy, N., et al. Evolving deep neural networks. In
Artificial Intelligence in the Age of Neural Networks and
Brain Computing, pp. 293–312. Elsevier, 2019.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Efficient neural architecture search via parameter sharing.
arXiv preprint arXiv:1802.03268, 2018.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,
Tan, J., Le, Q. V., and Kurakin, A. Large-scale evolution
of image classifiers. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
2902–2911. JMLR. org, 2017.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 4780–4789, 2019.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 4510–
4520, 2018.

Swersky, K., Snoek, J., and Adams, R. P. Freeze-thaw
bayesian optimization. arXiv preprint arXiv:1406.3896,
2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Veniat, T. and Denoyer, L. Learning time/memory-efficient
deep architectures with budgeted super networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3492–3500, 2018.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,
Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
10734–10742, 2019.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q.,
and Xiong, H. Pc-darts: Partial channel connections for
memory-efficient differentiable architecture search. arXiv
preprint arXiv:1907.05737, 2019.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 8697–8710, 2018.

