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Abstract
This work proposes a progressive manifold iden-
tification approach for distributed optimization
with sound theoretical justifications to greatly
reduce both the rounds of communication and
the bytes communicated per round for partly-
smooth regularized problems such as the `1-
and group-LASSO-regularized ones. Our two-
stage method first uses an inexact proximal quasi-
Newton method to iteratively identify a sequence
of low-dimensional manifolds in which the final
solution would lie, and restricts the model update
within the current manifold to gradually lower the
order of the per-round communication cost from
the problem dimension to the dimension of the
manifold that contains a solution and makes the
problem within it smooth. After identifying this
manifold, we take superlinear-convergent trun-
cated semismooth Newton steps computed by pre-
conditioned conjugate gradient to largely reduce
the communication rounds by improving the con-
vergence rate from the existing linear or sublinear
ones to a superlinear rate. Experiments show that
our method can be orders of magnitudes lower in
the communication cost and an order of magni-
tude faster in the running time than the state of
the art.

1. Introduction

Distributed computing that simultaneously utilizes multiple
machines is essential for dealing with the huge volume of
data faced nowadays. Therefore, distributed optimization
has become an active research topic in machine learning
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in recent years. In distributed optimization, the additional
computing power and storage from multiple machines can
greatly reduce the time for computation, memory access,
and disk I/O. On the other hand, expensive inter-machine
communication is frequently needed to synchronize the cur-
rent model and calculate the update steps, so the commu-
nication cost, which can be an order of magnitude more
expensive than local computation, usually becomes the bot-
tleneck.

It is clear that the overall communication cost is propor-
tional to both (i) the number of communication rounds and
(ii) the cost per round, so reducing either factor can lower
the overall expense on communication. State-of-the-art
communication-efficient distributed optimization methods
such as (Zhang & Xiao, 2015; Zheng et al., 2017; Lee et al.,
2017; Lee & Chang, 2019; Lee et al., 2019) mainly focused
on improving the former, which is closely related to the
iteration complexity or the convergence speed. On the other
hand, the reduction of the latter is usually achieved by com-
pression or coding techniques that communicate inexact in-
formation using fewer bytes (Aji & Heafield, 2017; Lin et al.,
2017; Wen et al., 2017; Chen et al., 2018). These approaches
can harm the convergence speed of the optimization process
due to the introduced noise, so the overall communication
cost might not be reduced because of the increased commu-
nication rounds, and relevant study is restricted to specific
problem classes with limited theoretical support. This work
aims at decreasing both factors simultaneously through a
two-stage progressive manifold identification approach with
thorough theoretical guarantees.

We consider a distributed setting of minimizing the follow-
ing regularized problem using K machines.

min
w∈<d

F (w) :=

K∑
k=1

fk(w) + Ψ(w), (1)

where each fk is differentiable and exclusively available
on the kth machine, their sum is Lipschitz-continuously-
differentiable (sometimes called smooth) but might not be
convex, and the regularization term Ψ is convex, proper, and
closed but possibly nonsmooth. We assume further that (1)
has a solution set Ω 6= ∅ and Ψ is partly smooth (Lewis,
2002) everywhere. Loosely speaking, a convex function
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Ψ is partly smooth at a point w relative to a C2 manifold
M if Ψ|M is C2 around w and for directions leavingM,
the change of Ψ is sharp. A more technical definition is in
Definition 3.5. We focus on the case in which the manifolds
are translates of subspaces of <d such that for some given
matrices Ai, for each point w there is an index set Iw such
that the manifold

Mw := {w̄ | Aiw̄ = Aiw ∀i ∈ Iw} (2)

contains w and makes Ψ|Mw C2 around w. For example,
when Ψ(·) = ‖ · ‖1, each Ai is the unit vector of the ith
coordinate and Iw = {i | wi = 0}.

An important class of partly smooth functions is the sparsity-
inducing penalty functions such that Ψ is block-separable
and for each block, the only point of nonsmoothness is
the origin. Examples in machine learning include the `1
and the group-LASSO regularizations that promote sparsity
(Tibshirani, 1996; Meier et al., 2008). Partly smoothness
and a mild regularity condition (see (19)) ensures that an
optimal solution lies in a low-dimensional smooth manifold,
and identifying which helps us lower the communication
cost.

We utilize partly smoothness to propose a two-stage pro-
gressive manifold identification approach for (1) that is
ultimately communication-efficient and call it MADPQN
(Manifold-Aware Distributed Proximal Quasi-Newton). The
first stage is a trust-region-like distributed inexact proximal
quasi-Newton method that predicts on the fly the mani-
foldM∗ in which a final solution would lie, and utilizes
the current prediction to gradually reduce the communi-
cation cost from the O(d) in existing work to O(|M∗|).
Empirically, |M∗| � d is often observed. This stage con-
ducts progressive manifold selection such that at each it-
eration, we identify a sub-manifold of the current one and
confine the next iterate to it to keep the communication cost
low. After the manifold becomes fixed, the second stage
applies a superlinear-convergent truncated semismooth New-
ton (SSN) method with preconditioned conjugate gradient
(PCG) on the problem restricted to the manifold. When the
manifold contains an optimal solution, in contrast to the ex-
isting sublinear or linear rates, the superlinear convergence
of the SSN steps greatly cuts the number of communication
rounds while maintaining theO(|M∗|) per-round communi-
cation cost, making MADPQN even more communication-
efficient, especially for obtaining high-precision solutions.

Contributions. This paper is the first to utilize manifold
identification in distributed optimization for improving com-
munication efficiency systematically. Unlike existing work
that only switches to smooth optimization after the final
manifold is identified but does nothing prior to that, our pro-
gressive strategy utilizes the intermediate manifolds identi-
fied in the process to reduce the costs of both computation

and communication throughout. Our two-stage approach
accelerates the optimization, whether the final manifold is
of very low dimension or not. For the former case, the
first stage makes the communication cost per round much
smaller; for the latter, we reach the final manifold swiftly
and the fast-convergent second stage then greatly cuts the
number of communication rounds. In theory, unlike exist-
ing approaches that focus on only one factor, MADPQN
has both lower per-round communication cost and fewer
communication rounds such that the asymptotic commu-
nication complexity to achieve an ε-accurate solution for
(1) can be as low as O(|M∗| log log(1/ε)), in contrast to
the O(d log(1/ε)) or O(d/ε) cost of existing approaches.
Experiments show that MADPQN can be more orders of
magnitudes more communication-efficient than the state of
the art and the running time can be an order of magnitude
faster.

Organization. This paper is organized as follows. In Sec-
tion 2, we give details of the proposed MADPQN algo-
rithm. Section 3 then provides theoretical supports, in-
cluding its convergence rate and the ability for manifold
identification. Related research is reviewed in Section 4.
Experiments in Section 5 showcase the empirical perfor-
mance of MADPQN. Section 6 then concludes this work.
Due to the space limit, proofs, implementation details,
and additional experiments are all put in the appendices.
Based on this study, we have released a package for use at
http://www.github.com/leepei/madpqn/.

2. An Ultimately Communication-efficient
Distributed Optimization Algorithm

MADPQN has three main components–(1) inexact proximal
quasi-Newton, (2) progressive manifold selection, and (3)
local acceleration through smooth optimization. Our two-
stage method uses the first two components at the first stage,
and at the second stage we switch to the third component.
We will first introduce each component respectively, and
then combine them into an integrated algorithm.

2.1. Where Do Communication Costs Occur?

Communication is the usual bottleneck in distributed op-
timization. We discuss where the major communication
takes place. In our description, we assume an all-reduce
model, meaning that each machine serves simultaneously
as a master and a worker, such that each machine has its
own local data, but all other information is global and all
machines conduct the same operations.

We see that the summation in (1) requires distributing w to
all machines, which takes a round of communication with
cost up to O(d). Summing the components up then takes an
additional O(1) communication cost.

http://www.github.com/leepei/madpqn/
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In most efficient algorithms, we need to compute the gradi-
ent of the smooth part f :=

∑
fk, which is of the form

∇f(w) =

K∑
k=1

∇fk(w). (3)

Since w has been made available on all machines when
evaluating F (w), computing (3) through all-reduce takes a
round of O(d) communication. Hence, the major communi-
cation at each iteration occurs when synchronizing w on all
machines and computing the gradient, and each communi-
cates a d-dimensional vector. A goal of our method design
is reducing the size of the vectors to be communicated.

2.2. Distributed Inexact Proximal Quasi-Newton

We give an overview of the inexact distributed proximal
quasi-Newton method (DPLBFGS) by Lee et al. (2019) and
our modifications. This is the major building block of the
first stage of our algorithm. We adopt DPLBFGS because
of its fast convergence as a second-order method that can
effectively reduce the communication rounds, and solving
its subproblem requires little communication.

At the tth iteration, given the current iterate wt, DPLBFGS
solves the following subproblem approximately to obtain a
tentative update direction p:

min
p∈Rd

QHt
(p;wt) := ∇f(wt)>p +

1

2
p>Htp

+ Ψ(wt + p)−Ψ(wt),

(4)

where Ht is the LBFGS approximation of the Hessian that
we will give details below.

After p is obtained, we use the trust-region variant in (Lee
et al., 2019) to ensure sufficient function decrease, as this
approach can identify a manifoldM∗ containing a solution
w∗ ∈ Ω to (1) within finite iterations (see Section 3). Given
any symmetric and positive definite matrix Ht for defining
the subproblem (4) and parameters σ1 ∈ (0, 1] and θ > 1,
we accept the direction p as the update direction pt if

F
(
wt + p

)
≤ F

(
wt
)

+ σ1QHt

(
p;wt

)
; (5)

otherwise we repeatedly update Ht by

Ht ← θHt (6)

and resolve (4) defined by the new Ht until (5) holds. The
iterate is then updated by wt+1 = wt + pt. We will denote
the initial choice for Ht as H̃t and the final one as Ĥt.

DPLBFGS uses the LBFGS approximation of the (gener-
alized) Hessian (Liu & Nocedal, 1989) as H̃t. Using the
compact representation (Byrd et al., 1994), given a prespec-
ified integer m > 0, let m(t) := min(m, t), and define

si := wi+1 −wi, yi := ∇f(wi+1)−∇f(wi), ∀i,

Algorithm 1: MADPQN: An ultimately communication-
efficient two-stage manifold identification method for (1)
Given θ > 1, σ1 ∈ (0, 1), ε̃, δ > 0, integers m,S, T > 0, a

sequence {εj} ≥ ε > 0, an initial point w0,0

for j = 0, 1, 2, . . . do
Uj,0 ← ∅, Zj,0 ← ∅,M̃j,−1 = M̃j,0 = <d
for t = 0, 1, 2, . . . do

Compute PM̃j,t−1
(∇f(wj,t)) by (13)

if t > 0 then
Compute PM̃j,t−1

(yt−1), and γj,t by (15)
if (14) holds for i = t− 1 then

Update Uj,t by (8) and update Z̃j,t using
Z̃j,t−1 and s>j,t−1Ut

end
SelectMj,t ⊂Mj,t−1 with
wj,t ∈Mwj,t ⊆Mj,t using
PM̃j,t−1

(∇f(wj,t)) and decide a basis matrix

Bj,t of M̃j,t

end
ifMj,t unchanged for S consecutive iterations
(ignoringMj̃,0 for all j̃), last update is not SSN,
and∇2F |Mwj,t is positive definite enough then

Compute a truncated SSN step p for F |Mwj,t

by PCG and line search
end
ifMj,t unchanged for S consecutive iterations and

last update is SSN then
Hj,t ← γj,tI

end
while True do

if Hj,t is diagonal then
Solve (12) exactly to obtain p = Bj,tt and

the objective Q
end
Solve (12) approximately using SpaRSA to get
p = Bj,tt and the objective Q
if F (wj,t + p) ≤ F (wj,t) + σ1Q then

break
end
Hj,t ← θHj,t

end
wj,t+1 ← wj,t + p
if |Q| ≤ εj and t ≥ T then

wj+1,0 ← wj,t+1

break
end

end
end

our H̃t is

H̃t = γtI − UtZ−1
t U>t , (7)
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where γt is bounded in a positive interval for all t, and

Ut := [γtSt, Yt] , Zt :=

[
γtS
>
t St, Lt
L>t −Dt

]
, (8)

St :=
[
st−m(t), st−m(t)+1, . . . , st−1

]
,

Yt :=
[
yt−m(t),yt−m(t)+1, . . . ,yt−1

]
,

Dt := diag
(
S>t Yt

)
, (Lt)i,j :=

{(
S>t Yt

)
i,j

if i > j,

0 else.

When t = 0, H̃0 = γ0I and we solve (4) exactly by simply
applying one proximal operation.

To construct and utilize H̃t efficiently, especially when d
is large, we pick a partition J1, . . . ,JK of {1, . . . , d} and
store (Ut)Jk,: on the kth machine; since m is usually small,
all machines keep a copy of the whole Zt matrix.

If f is not strongly convex, it is possible that (7) is not posi-
tive definite, making (4) ill-conditioned. We thus follow Li
& Fukushima (2001) to take a predefined δ > 0 and discard
all pairs of (si,yi) that do not satisfy s>i yi ≥ δs>i si.

For solving (4), as H̃t is generally not diagonal, there is
no easy closed-form solution. Thus DPLBFGS uses an
iterative solver SpaRSA (Wright et al., 2009), a proximal-
gradient method with fast empirical convergence, to get an
approximate solution to this subproblem. By treating (4)
as another regularized problem with the smooth part being
quadratic, at each round SpaRSA only requires computing
the gradient of the smooth part and at most a couple of
proximal operations and function value evaluations. These
are all relatively cheap in comparison to calculating∇f in
general, as H̃t does not couple with the original function
that might involve operating on a huge amount of data. The
gradient of the smooth part at a subproblem iterate p̃ is
computed through

∇f(wt)+ H̃tp̃ = ∇f(wt)+γtp̃−Ut(Z−1
t (U>t p̃)). (9)

The computation of U>t p̃ is distributed, through

U>t p̃ =

K∑
k=1

(Ut)
>
Jk,:

p̃Jk
(10)

and a round of O(m) communication. The Jk part of the
gradient (9) is then computed locally on the kth machine as
Zt is maintained on all machines. Thus the iterate p̃ is also
computed and stored in a distributed manner according to
the partition {Jk}, consistent with the storage of Ut.

2.3. Progressive Manifold Selection

The usual bottleneck of DPLBFGS is the computation of
∇f , which involves going through the whole dataset and
communicating a vector of length O(d), and the latter can

M̃w
t

M̃t

O

p
t

Mw
t

Mt

w
t

w
t+

1

Figure 1. An example of updating within manifolds.

be much more costly in practice. However, as the trust-
region DPLBFGS approach is able to identify a manifold
M∗w∗ 3 w∗ within finite iterations, it makes sense to con-
fine all subsequent iterates toM∗w∗ , reducing the amount of
communication per round from O(d) bytes to O(|M∗w∗ |).

As the manifolds we consider in (2) are translates of sub-
spaces of <d, in the form

Mwt = wt + M̃wt (11)

for some subspace M̃wt , if we force wi ∈ Mwt for all
i > t, we must have pi ∈ M̃wt for all i ≥ t. This is the
central idea we use to reduce the communication and compu-
tation. At the tth iteration, with the currently manifoldMt

selected by our algorithm that contains wt andMwt (the
one making Ψ partly smooth around wt), we will select a
sub-manifoldMt+1 ⊆Mt and update wt+1 withinMt+1.
Equivalently, our algorithm selects a sequence of subspaces
{M̃t}, and the update steps satisfy pt ∈ M̃t. Therefore,
the subproblem (4) becomes minp∈M̃t

QHt
(p;wt). One

thing to note is thatMt might not be the one that makes Ψ
C2 at wt, which we denote byMwt , but we always have
Mwt ⊆ Mt. We use a super-manifold ofMwt to allow
flexibility because it is likelyMwt+1 *Mwt , unless wt

is close to w∗. An illustration is shown in Figure 1.

To really reduce the communication cost through the idea
above, we need to conduct a change of basis first. As
each M̃t is a subspace of <d, we can find an orthonor-
mal basis {bt,1, . . . , bt,N(t)} of it. We denote Bt :=
[bt,1, . . . , bt,N(t)] and approximately minimize the follow-
ing equivalent problem

min
t∈<N(t)

∇f(wt)>Btt +
1

2
(Btt)

>HtBtt

+ Ψ(wt +Btt)−Ψ(wt),

(12)

and only transmit the solution t̃ to all machines for con-
structing p = Btt̃. This reduces the communication cost
for updating wt from O(d) to O(N(t)). WhenMt =M∗,
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we get N(t) = O(|M∗|) and the cost of this communi-
cation is greatly reduced. For the Ψ(wt + Btt) term in
(12), the proximal operation seems harder to calculate, but
since the basis is selected according to the structure of Ψ,
this is not a problem. For the manifold selection, we use
∂F |Mt

(wt+1) to decide how to shrink the currentMt; see
Appendix A.1 for more details.

Next, we reduce the communication cost for calculating
the gradient. Let PM̃t

be the Euclidean projection onto
M̃t and M̃C

t be the complement space of M̃t. Because
v = PM̃t

(v) + PM̃C
t

(v) for any v ∈ <d, we always have

∇f(wt)>p = PM̃t
(∇f(wt))>p, ∀p ∈ M̃t.

Thus we only need PM̃t
(∇f(wt)) in (12) as Btt ∈ M̃t.

On the other hand, we use PM̃t−1
(∇f(wt)) to selectMt,

and since M̃t ⊆ M̃t−1, we need to compute

PM̃t−1
(∇f(wt)) = Bt−1

K∑
i=1

B>t−1∇fk(wt). (13)

The summation in (13) is where the communication occurs,
and the bytes transmitted is now lowered to O(N(t− 1)).
Therefore, the communication cost per iteration has been
reduced to O(N(t − 1) + N(t)) = O(N(t − 1)) as N(t)
is decreasing with respect to t. If Bj consists of columns
of Bi for all i ≤ j, and the coordinates of the gradient are
aligned with the columns in B0 (as is the case when Ψ is
a sparsity-inducing term like the `1 or `2,1 norms), then
B>t−1∇fk(wt) is simply taking the coordinates of∇fk(wt)
selected in Bt−1, so the computation is also cheaper than
obtaining the whole∇f(wt).

The remaining issue is to construct H̃t when we only have
PM̃t−1

(∇f(wt)) and therefore PM̃t−1
(yt−1). Since H̃t

appears in (12) in the form

B>t H̃tBt = γtB
>
t Bt − (B>t Ut)Z

−1
t (B>t Ut)

>,

as long as we can construct Zt correctly, PM̃t−1
(yt−1) is

enough for obtaining B>t Ut and thus B>t H̃tBt as st−1 =
pt−1 ∈ M̃t−1. Note that because span(Bt+1) =
M̃t+1 ⊆ M̃t = span(Bt), keeping B>t Ut alone is
enough for updating B>t+1Ut. To compute the correct Zt
with only B>t Ut available, the key is to reuse entries al-
ready appeared in Zt−1. We thus only compute the newly
appeared entries, which are S>t st−1 and Y >t st−1. As now
we only compute PM̃t−1

(∇f(wt)), PM̃t−1
(yt−1) is used

instead to update Zt, and we call the matrix obtained this
way Z̃t. Section 3 will show that Z̃t = Zt, so our algo-
rithm correctly maintains the LBFGS approximation and
the corresponding fast convergence.

Our safeguard mechanism is also calculated using the com-
ponents within the subspace only, as follows.

PM̃i
(si)

>PM̃i
(yi) ≥ δPM̃i

(si)
>PM̃i

(si) . (14)

For the choice of γt, we take a small ε̃ > 0 and set the
following in our implementation.

γ0 = max

{∣∣∣∣∣∇f(w0)>∇2f(w0)∇f(w0)

‖∇f(w0)‖22

∣∣∣∣∣ , ε̃
}
,

γt+1 =


PM̃t

(yt)
>PM̃t

(yt)

PM̃t
(yt)

>PM̃t
(st)

if (14),

γt otherwise,
∀t ≥ 0.

(15)

2.4. Acceleration After Identifying the Active Set

The regularization Ψ we consider is partly smooth within
M∗ around a solution w∗. Therefore, whenM∗ is correctly
identified, the problem can be reduced to a smooth optimiza-
tion problem by restricting the subsequent iterates within
M∗. We can therefore utilize smooth optimization algo-
rithms that are both more efficient and faster in convergence.
In particular, we use a truncated semismooth Newton (SSN)
method that is superlinear-convergent when we are close to
a solution (Qi & Sun, 1993), which is the case whenM∗
can be correctly identified. The idea of SSN is that since
∇f is Lipschitz continuous, f is twice-differentiable almost
everywhere. Therefore, its generalized Hessian (denoted by
∇2f ) always exists (Hiriart-Urruty et al., 1984) and is hence
used as the substitute of the real Hessian for computing the
Newton step. When f is twice-differentiable, the algorithm
reduces to the normal Newton method. We use precondi-
tioned conjugate gradient (PCG) to approximately solve the
SSN linear system and follow Hsia et al. (2018) to use the
diagonal entries of ∇2f as the preconditioner. Backtrack-
ing line search is then applied to ensure sufficient objective
decrease. To determine that we have foundM∗ to safely
conduct SSN within the manifold, we assert M∗ = Mt

whenMt remains unchanged for S consecutive iterations,
for some predefined S.

To ensure convergence in case that ∇2f is not positive-
definite, every time after an SSN step, we conduct a
DPLBFGS step or a proximal gradient (PG) step (when
we have entered the superlinear-convergent phase) on F re-
stricted toMt. We also conduct manifold selection again af-
ter the DPLBFGS or PG step, and continue smooth optimiza-
tion only when the manifold remains the same. More de-
tailed description of our implementation is in Appendix A.2.

2.5. Safeguards

Our progressive manifold selection might sometimes be too
aggressive and thus miss the correct manifold. To avoid
this problem, we adopt a two-layer loop strategy. For any
variable that we previously use t as its counter, now we use
(j, t) to indicate that it is at the jth outer iteration and the tth
inner iteration. At the beginning of the jth outer iteration,
we discard Uj−1,t, Z̃j−1,t and the selected manifold to start
afresh from the current iterate. The inner loop then conducts
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the algorithm described above, until |QĤj,t
(pj,t;wj,t)| is

smaller than a predefined εj > 0 and t ≥ T for some
prespecified integer T ≥ 0. We use an annealing strategy
such that {εj} is a sequence decreasing to some ε > 0. The
overall algorithm is summarized in Algorithm 1.

3. Analysis

We first analyze the convergence of the proposed algorithm,
and then show thatM∗ is identified in finite iterations. The
latter justifies our approach of conducting progressive mani-
fold identification on the fly and taking SSN steps after the
manifold is fixed.

We remark that using the domain of <d in (1) is just for
notational ease, and our algorithm and analysis extends
directly to any Euclidean spaces.

3.1. Convergence

The following lemma shows that progressive manifold se-
lection works correctly with the quasi-Newton approach.
Lemma 3.1. For any j = 0, 1, . . . , under the progressive
manifold identification schemeMj,t+1 ⊆Mj,t for all t ≥
0, Z̃j,t = Zj,t always holds true. Moreover, B>j,t+1Uj,t =

B>j,t+1Bj,t(B
>
j,tUj,t) for all i, t, so maintaining B>j,tUj,t

suffices for constructing (12).

We now present the convergence rate of our algorithm,
which provides an upper bound for the communication
rounds. Parts of our analysis are extended from (Lee et al.,
2019). We will use the following notation in this section.

Qj,tHj,t
:= minp∈M̃j,t

(
QHj,t(p;wj,t)

)
.

Throughout the analysis, we assume that there is a fixed
η ∈ [0, 1) such that every time we solve (12) for t > 0, the
solution p is η-approximate:

QHj,t(p;wj,t)−Qj,tHj,t
≤ η(QHj,t(0;wj,t)−Qj,tHj,t

),
(16)

and when t = 0, the solution is exact (as Hj,0 = γj,0I).
Condition (16) can easily be satisfied without the knowledge
of Qj,tHj,t

, provided the eigenvalues of the quadratic term are
bounded in a positive range and the subproblem solver is
linear-convergent on strongly convex problems. See more
discussions in (Lee & Wright, 2019; Lee et al., 2019). We
thus assume (16) holds for all t > 0 with some fixed η ∈
[0, 1), although its explicit value might be unknown. We
first show that H̃j,t and Ĥj,t have bounded eigenvalues.
Lemma 3.2. There are constants C̃1 ≥ C̃2 > 0 such that
C̃1I � H̃j,t � C̃2I for all j, t, and at every (j, t)th itera-
tion, (6) is conducted at most a constant times before (5) is
satisfied. Therefore, There are constants C1 ≥ C2 > 0 such
that C1I � Ĥj,t � H̃j,t � C2I .

We now show that the inner loops terminate finitely and give
the convergence rate of the outer loop.
Lemma 3.3. The jth inner loop ends in o(1/εj) steps.
When f is convex and the quadratic growth condition

g(w)−min
ŵ

g(ŵ) ≥ min
w∗∈argmin g(w)

µ‖w −w∗‖22,

∀w ∈ dom(g),
(17)

for some fixed µ > 0 is satisfied by F |Mj,t for all j, t within
the level set {w | F |Mj,t(w) ≤ F |Mj,t(w

j,t)}, the inner
loop ends in O(log(1/εj)) steps.
Theorem 3.4. Consider (1), and fix ε > 0. When f is
convex, for reaching a point w with F (w) − F ∗ ≤ ε, it
takes O(1/ε) outer iterations if

max
w:F (w)≤F (w0,0)

min
w∗∈Ω

‖w −w∗‖2 (18)

is bounded, and O(log(1/ε)) if F satisfies (17). When
f is nonconvex, it takes o(1/ε) outer iterations to have
|QĤj,0

(pj,0;wj,0)| ≤ ε, and the first-order optimality
0 ∈ ∂F (wj,0) holds if and only if QĤj,0

(pj,0;wj,0) = 0.

3.2. Finite-time Manifold Identification

In what follows, we establish that the proposed algorithm
can identify the correct manifold within finite time under
the partly smoothness assumption (Lewis, 2002).
Definition 3.5 (Partly smooth functions). A convex function
Ψ is partly smooth at w relative to a setM containing w if
∂Ψ(w) 6= ∅ and:

1. Around w,M is a C2-manifold and Ψ|M is C2.
2. The affine span of ∂Ψ(w) is a translate of the normal

space toM at w.
3. ∂Ψ is continuous at w relative toM.

We first show that cluster points of the iterates are stationary.
Theorem 3.6. All cluster points of {wj,0}∞j=0 are criti-
cal. Moreover, if f is lower-bounded and Ψ is coercive,
{wj,0}∞j=0 has at least one cluster point.

We now present the main result thatM∗ can be identified
within finite iterations.
Theorem 3.7. If a cluster point w∗ of {wj,0} satisfies

−∇f(w∗) ∈ relint ∂Ψ(w∗), (19)

where relint denotes the relative interior, and Ψ is partly
smooth relative to M∗ around w∗, then wj,1 identifies
M∗ in finite outer iterations. If moreover (12) is always
solved exactly, then for j large enough and in the convergent
subsequence, wj,t ∈M∗ for all t > 0.
Remark 3.8. Theorems 3.4 and 3.7 are applicable to the
case in which F is nonconvex as long as Ψ is convex. There-
fore, MADPQN is also applicable to nonconvex problems
with a differentiable loss, including deep learning models.
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When the nondegenerate condition (19) fails, we are un-
able to identifyM∗. However, if Ψ is a mirror-stratifiable
function (Fadili et al., 2018), we can still identify a super-
manifold M̂∗ ofM∗, so MADPQN is still able to reduce
the per-round communication cost to O(|M̂∗|) at the first
stage. However, it will not enter the second stage, so
the overall communication cost is expected to be slightly
higher, though still superior to existing approaches. See
Appendix B.3 for the empirical effectiveness of the second
stage.

3.3. Superlinear Convergence of the Second Stage

At the smooth optimization stage of MADPQN, eventually
we alternate between a PG step and a truncated SSN step.
If ∇f is semismooth (see Definition C.2), then we can
obtain a two-step superlinear convergence of the iterates
to the optimal solution when the truncated SSN steps are
accurate enough. Due to the space limit, we leave the details
of computing the truncated SSN steps and the superlinear
convergence in Appendices A.2 and C.2.

4. Related Work

Manifold Identification. The major tool we use is mani-
fold identification for partly smooth functions studied by
Hare & Lewis (2004); Lewis (2002); Lewis & Zhang (2013).
By applying their theory, many first-order algorithms are
known to have the ability of manifold identification for
partly smooth functions, including proximal-gradient-type
methods (Nutini et al., 2017b; Liang et al., 2017a), the alter-
nating direction method for multipliers (Liang et al., 2017b),
regularized dual averaging (Lee & Wright, 2012), proximal
coordinate descent (Wright, 2012; Nutini et al., 2017a), and
variance reduction stochastic methods (Poon et al., 2018).
However, these algorithms are usually not the choice for dis-
tributed optimization as non-stochastic first-order methods
converge slowly in practice, and the frequent update of the
iterate in stochastic methods incurs much more rounds of
communication. Second-order algorithms tend to be supe-
rior for distributed optimization (see, e.g., (Zhang & Xiao,
2015; Lee et al., 2019)), but current theory for their ability
of manifold identification is restricted to the case in which
(4) is solved exactly (Hare & Lewis, 2007; Hare, 2011; Sun
et al., 2019). This work is the first to study and utilize such
property in distributed optimization to improve communica-
tion efficiency. A key difference from all the works above
is that instead of passively waiting until the final manifold
is identified, our approach actively tries to find the man-
ifold, and improves the computation and communication
efficiency by utilizing from the beginning on the fact that
the final solution lies in a lower-dimensional manifold.

Active Set Approaches. Another related idea is working-
set or active-set methods for constrained problems in single-

core optimization. These approaches force inequality con-
straints selected in the active-set to be at equality to save
computation. Active-set methods can be extended to (1)
when Ψ has an equivalent constrained form. For exam-
ple, Yuan et al. (2012) used working set selection for `1-
regularized logistic regression for proximal-Newton with
coordinate descent as the subproblem solver, and Zhong et al.
(2014) took a similar idea for `1-regularized M-estimators.
These works showed that working-set heuristics can im-
prove the empirical running time, but did not provide the-
oretical supports. Johnson & Guestrin (2015) considered
a primal-dual approach for working set selection for `1-
regularized problems with theoretical guarantees and nice
practical performance, but it is hard to generalize the results
to other regularizers. Our usage of progressive manifold
identification is essentially a type of working set selection,
but unlike existing works, MADPQN is fully supported by
the theory of manifold identification and is applicable to
all partly smooth regularizers, including but not limited to
the `1 and group-LASSO norms. The stage of smooth opti-
mization method is not present in the methods with working
set heuristics either. Moreover, the purposes are totally
different—these works use active sets to reduce their com-
putation cost, while our progressive manifold identification
is mainly for improving the communication efficiency.

Distributed Optimization for (1). For optimizing (1) in a
distributed manner, although there are some heuristic ap-
proaches designed for specific regularizers that work well
in practice, such as L-COMM (Chiang et al., 2018) and
OWLQN (Andrew & Gao, 2007) for `1-regularized prob-
lems, the only method we are aware of that applies to gen-
eral regularizers is the one proposed by Lee et al. (2019).
They consider an inexact distributed proximal quasi-Newton
method for (1) with theoretical convergence supports, and
the first stage of MADPQN is extended from it. However,
they did not utilize the partly smoothness of Ψ, so the com-
munication cost per-round of their method is fixed to O(d),
while the communication cost per round of MADPQN is
O(N(t− 1)), which converges to O(|M∗|) rapidly. When
|M∗| � d, our method has a much lower communication
cost per round (see Figure 3). Another difference between
MADPQN and (Lee et al., 2019) is the truncated SSN steps,
which greatly helps the convergence and reduces the number
of communication rounds.

Distributed Optimization for Linear Models with
Feature-wise Storage. For linear models such that
fk(w) = gk(X>k w) for some function gk and some ma-
trix Xk, instead of assuming each machine has exclusive
access to an fk, some works such as (Mahajan et al., 2017;
Dünner et al., 2018) consider the scheme in which each
node stores some rows of X := [X1, . . . , XK ] ∈ <d×n.
These approaches communicate a vector of length O(n) to
synchronize X>w instead, so they might have a lower com-
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munication cost when n� d. However, they do not work
for nonlinear models. Even for linear models, |M∗| < n is
often observed and these methods are unable to utilize the
low-dimensional manifolds to reduce the communication
cost. On the other hand, when d � n, their communica-
tion cost becomes prohibitively high, while MADPQN can
handle both large d and large n.

5. Experiments
We conduct experiments to examine the empirical behavior
of MADPQN on the Amazon cloud. For all experiments,
we use 32 EC2 instances, each with one thread, connected
through Open MPI. Convergence is compared through the
relative difference to the optimal function value (F (w)−
F ∗)/F ∗, where F ∗ is the optimal objective value of (1),
obtained approximately by solving the problem to a high
precision.

We use the following fixed parameters for MADPQN
throughout the experiments, and it works quite robustly, so
there is no need to tune these parameters: θ = 2, m = 10,
T = 2, S = 10, σ1 = 10−4, ε̃ = 10−10, δ = 10−10,
ε = 10−14, εj = max{ε, 10−4−3j}.

Table 1. Data statistics for (20).

Data set #instances (n) #features (d) |M∗|
news20 19,996 1,355,191 506
webspam 350,000 16,609,143 793
avazu-site 25,832,830 999,962 11,867

Table 2. Data statistics for (21). Note that d = d̂× c.

Data set n d̂ c |M∗|
sector.scale 6,412 55,197 105 94,920
rcv1-test.multiclass 518,571 47,236 53 386,529

5.1. Experiment on `1-regularized Problems

We first examine the performance of MADPQN on `1-
regularized logistic regression, whose objective in (1) is

F (w) = ‖w‖1+C

n∑
i=1

log
(
1 + exp

(
−yiw>xi

))
, (20)

where each (xi, yi) ∈ <d × {−1, 1} is an instance-label
pair stored in one of the machines (so the sum over the data
points on the kth machine forms fk), and C > 0 is a given
parameter to balance the two terms. For this problem, each
Ai in (2) is the standard unit vector of the ith coordinate (so
are the columns of Bj,t), Iw = {i | wi = 0}, and |M∗| is
the number of nonzero elements in the solution w∗.

We consider public datasets listed in Table 1 (from
http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets) and set C = 1 in all
experiments. For news20, we use 32 t2.micro instances,
while for the remaining two larger datasets, we use 32
r5n.large instances. We first examine the effectiveness
of our progressive manifold selection. Table 1 shows
that |M∗| can be much smaller than d, proving the
effectiveness of utilizing manifold identification to reduce
the communication cost per round. We further compare
the time spent on communication of our method with and
without progressive manifold selection in Figure 3, and see
that the progressively selected manifold quickly approaches
M∗ and effectively keeps the cumulative communication
cost low as the manifold dimension drops.

We then compare MADPQN with the following state-of-
the-art methods for (20) implemented in C/C++.

• DPLBFGS (Lee et al., 2019)
• OWLQN (Andrew & Gao, 2007)
• L-COMM (Chiang et al., 2018)

For all of them, we use information from the past 10 itera-
tions and set the step size shrinking parameter to 0.5 to have
a fair comparison with MADPQN (equivalent to m = 10
and θ = 2). Note that distributed first-order methods are not
included in our comparison because they have been shown
by Lee et al. (2019) (for proximal-gradient-type methods)
and Dünner et al. (2018) (for stochastic methods) to be in-
ferior to the methods we compare with. Comparison with
the feature-wise approach by Dünner et al. (2018) and other
additional experiments are in Appendix B.

We compare the running time and the bytes communicated
(divided by d) in Figure 2. We observe that the commu-
nication cost and the running time of MADPQN are both
better than all other methods, although the difference in the
running time is less significant. This is because that local
computation still occupies a prominent portion of the total
running time. Note that the manifold selection procedure in
MADPQN takes less than 1% of the total running time so it
is not the cause.

5.2. Experiment on Group-LASSO-regularized
Problems

We next consider the group-LASSO-regularized multino-
mial logistic regression problem for multiclass classifica-
tion:

F (W ) =

d̂∑
i=1

√√√√ c∑
j=1

W 2
i,j+C

n∑
i=1

l(W>xi; yi),W ∈ <d̂×c,

(21)
where c > 0 is the number of possible classes in the prob-
lem, each (xi, yi) ∈ <d̂ × {1, . . . , c} is an instance-label

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 2. Comparison of methods for (20). We present the number of bytes communicated divided by d (upper) and the training time
(lower) vs. the relative difference to the optimal value.
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Figure 3. Iteration (x-axis) vs. total time spent on communication
(solid lines, y-axis on the left) and the number of nonzero elements
in the current w of MADPQN (dotted line, y-axis on the right).
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Figure 4. Comparison of methods for (21). We present the bytes
communicated (upper) and the training time (lower) vs. the relative
difference to the optimal value.

pair stored in one of the machines, and the loss term is
defined as l(z; y) := − log(exp(zy)/

∑c
i=1 exp (zi)). For

this problem, each Ai in (2) is the same as that for (20),
IW = {i | Wi,j = 0,∀j}, and |M∗| is c times the number
of rows in the solution W ∗ that contain at least one nonzero
entry. Note that the problem dimension in this problem is
d = c× d̂. For this problem, we compare MADPQN with
DPLBFGS and SpaRSA (Wright et al., 2009) on the public
datasets in Table 2, as OWLQN and L-COMM only apply
to `1-regularized problems. The result of using 32 t2.micro
instances is shown in Figure 4, and we see that MADPQN
is significantly more efficient than existing approaches in
both the communication cost and the running time.

6. Conclusions
In this work, we utilize manifold identification to greatly
improve the communication efficiency and hence the overall
running time of distributed optimization. Our algorithm
cuts the bytes communicated per round through progres-
sively selecting a sub-manifold where an optimal solution
is likely to lie. After the correct manifold is identified, our
algorithm further exploits partly smoothness of the problem
to accelerate the convergence, and reduce the communica-
tion complexity by switching to a superlinear-convergent
truncated semismooth Newton method. Experiments show
that the overall communication cost and running time of
our method are orders of magnitude lower than the state
of the art. Future work includes the extension to nonlin-
ear manifolds using Riemannian optimization, applying our
algorithm to deep learning training with sparsity-inducing
norms (Wen et al., 2016), and the analysis of manifold iden-
tification when the subproblems are solved inexactly.
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A. Implementation Details

In this appendix, we give more implementation details of our algorithm.

A.1. Manifold Selection

The manifold selection rule forMj,t can directly affect the performance of our algorithm. If the selection is not aggressive
enough, the dimension of the manifolds and therefore the per-iteration communication cost may remain large for many
iterations. On the other hand, if the selection is too aggressive, it is possible that from very early on,Mj,t does not contain
the correct manifoldM∗ as a submanifold anymore, and all subsequent inner iterations would give only limited objective
improvement as no optimal solution is contained in the manifold we are confined to. Therefore, we want to have some rules
that become more aggressive when we are certain that the current iterate is close to a solution. To achieve this, we use an
adaptive strategy.

We consider the situation such that there is a known basis {bjt−1,i}
N(t−1)
i=1 of the subspace M̃j,t−1 (see (11)) and the

manifold selection procedure for M̃j,t is simply picking vectors from this basis. Our first goal is to ensure thatMwj,t (the
manifold that makes Ψ smooth around wj,t) is always included inMj,t (the manifold we currently select), so that at least
we can conduct smooth optimization within a subset ofMj,t. Thus, our first step is to include the vectors that form a basis
of M̃wj,t . We then examine the remaining vectors. The identification theorem (Theorem 3.7) shows that the requirement for
manifold identification is −∇f(w∗) ∈ relint ∂Ψ(w∗). Therefore, for each bjt−1,i not selected in the first step, we examine
the distance between−∇bj

t−1,i
f(wj,t) and the boundary of ∂bj

t−1,i
Ψ(wj,t), which we denote by bdd(∂bj

t−1,i
Ψ(wj,t)). First

of all, if
−∇bj

t−1,i
f(wj,t) /∈ ∂bj

t−1,i
Ψ(wj,t) ⇔ 0 /∈ ∂bj

t−1,i
F (wj,t), (22)

it means that 0 is not in the directional derivative along this direction, so for sure we should still include this vector in our
next basis. On the other hand, if (22) does not hold, we see how likely it would turn to hold in the future iterations. More
specifically, we give a threshold ξj,t > 0 at the (j, t)th iteration, and if

0 ∈ ∂bj
t−1,i

F (wj,t), and dist
(
−∇bjt−1,if(wj,t), bdd(∂bj

t−1,i
Ψ(wj,t))

)
< ξj,t, (23)

we deem that (22) might turn to hold again when we get closer to a solution, meaning that M̃∗ might also include it, and
thus this vector bjt−1,i is also included in the basis for constructing M̃j,t. Now to decide the value of ξj,t, we want it to
gradually decrease to 0 when we approach a critical point. Thus, we make it proportional to the subproblem objective
|QĤj,t−1

(pj,t−1;wj,t−1)|, which is an indicator for how much we can still improve the objective value within the current
manifold as shown in Theorem 3.4. More specifically, we set

ξj,t = ξ0 min

{
1,
|QĤj,t−1

(pj,t−1;wj,t−1)|
|QĤj,0

(p0,0;w0,0)|

}

for some ξ0. This way, it converges to 0 asymptotically as shown in Theorem 3.4, and thusMj,t convergesM∗j,t. In our
implementation, we let

ξ0 = d−1.

To summarize, the vectors bjt−1,i in the basis of M̃j,t−1 that satisfy (22) or (23) and those that are contained in M̃j,t−1 are
selected as the basis for M̃j,t and therefore to construct the next manifold selected.

As mentioned in Section 2.3, we use PM̃j,t−1
(∇f(wj,t)) to decide the next subspace M̃j,t. Therefore, the gradient

calculation has a slightly higher communication cost than updating the iterate.

A.2. Preconditioned Conjugate Gradient and Backtracking Line Search for Truncated Semismooth Newton Steps

When we are certain that the manifold does not change anymore, we start the smooth optimization stage of using truncated
semismooth Newton steps. We will sometimes call them Newton steps or SSN steps for short. When an SSN step is
computed, we first check the largest step size we can take without passing through a point of nonsmoothness of Ψ. This is
the initial step size α0 we take, and then we do a backtracking line search for ensuring sufficient function decrease starting
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from min{1, α0}. Assume that the current iterate is w, the corresponding manifold that makes F smooth around w isM,
its parallel subspace is M̃, and the SSN step is p. Given parameters σ, β ∈ (0, 1), we find the smallest nonnegative integer i
such that

F
(
w + α0β

ip
)
≤ F (w) + σα0β

i

(
∇F |M(w)>p +

1

2
p>∇2F |M(w)p

)
, (24)

Note that since f is Lipschitz-continuously differentiable and Ψ|M is C2 around w, a generalized Hessian ∇2F |M(w)
always exists (Hiriart-Urruty et al., 1984). When there are multiple possible generalized Hessians, we pick an arbitrary one.
The final step size is then set to α0β

i. If α0 is too small, or this decrease condition cannot be satisfied even when α0β
i is

already extremely small, we discard this smooth optimization step and turn back to proximal quasi-Newton steps.

The truncated semismooth Newton step is obtained by applying preconditioned conjugate gradient (PCG) to find an
approximate solution p ∈ M̃ to the linear system

∇2F |M(w)p = −∇F |M(w),

or equivalently, if B is an orthonormal basis of M̃,

B>∇2F |M(w)Bt = −B>∇F |M(w), p = Bt.

More details of PCG can be found in, for instance, Nocedal & Wright (2006, Chapter 7). Note that we take the diagonal
entries B>∇2F |M(w)B as the preconditioner in PCG.

We know that if w is close enough to a solution point w∗ ∈ Ω, the generalized Hessian at w∗ is positive definite, and w and
w∗ are in the same manifold, then unit step size and superlinear convergence can be expected. However, those conditions
are not verifiable in practice, and it is possible that after taking many PCG iterations to compute a highly accurate truncated
semismooth Newton step, we only get a very small step size, resulting in a limited objective decrease with disproportionately
expensive computation. Therefore, before letting PCG run for lengthy iterations, we start from something with a much lower
cost. When any of the following conditions holds, we terminate PCG when it reaches an iteration bound P that gradually
increases from some integer P0.

1. When there is no previous Newton step.

2. WhenMj,t, the current selected manifold, differs fromMwj,t , the manifold that makes Ψ smooth around the current
iterate wj,t. This situation indicates that the manifold that makes Ψ smooth is likely to change in later iterations.

3. When the last SSN step results in a step size smaller than 1.

If none of these conditions holds, we take a factor ζ > 1 and set

P ← min{ζP, |M̃wj,t |},

as in theory PCG finds the exact solution of the Newton linear system within |M̃wj,t | steps. See, for example, Nocedal &
Wright (2006, Chapter 7). In our implementation, we set P0 = 5 and ζ = 10.

We do not know in practice whether H = B>∇2F |M(w)B is positive definite or not as well. When it is not positive
definite at w∗, superlinear convergence does not happen. Even worse, PCG might not be able to obtain a solution for the
linear system (as there might be no solution at all). Theoretically, we should check the smallest eigenvalue of H first and
when it is too small, we should not try to compute a Newton step. However, computing the smallest eigenvalue can be too
expensive. Alternatively, we use an early exit mechanism and a trust-region technique in PCG to avoid such cases. At the
T th PCG iteration, two vectors are generated: the current approximate solution t(T ) to the linear system and the direction
s(T ) for updating t(T ). For some small threshold τ > 0, we exit PCG if(

t(T )
)>
Ht(T )(

t(T )
)>

t(T )
≤ τ, or

(
s(T )

)>
Hs(T )(

s(T )
)>

s(T )
≤ τ,

which implies that indeed H has an eigenvalue no larger than τ . In our implementation, we set τ = 10−8.
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The trust-region technique uses the fact (straightforward from the KKT conditions) that given any vector a and any
symmetric matrix H , for any ∆ > 0, there exists a λ ≥ 0 such that H + λI is positive definite and the solution to

min
t:‖t‖2≤∆

a>t +
1

2
t>Ht (25)

is the same as the solution to
min
t

a>t +
1

2
t>(H + λI)t.

PCG solves the former problem without the trust region constraint, so incorporating it with a trust-region technique takes
more observations. Classical analysis for PCG shows that ‖t(T )‖ increases monotonically with T , and when H is not
positive definite, it is not hard to see that ‖t(T )‖ increases to infinity. Therefore, we place an upper bound ∆ such that when
‖t(T )‖ > ∆, we terminate PCG and use Bt(T ) as the final truncated semismooth Newton step. Each time we set ∆ to be
large enough such that it does not change the solution unless the smallest eigenvalue of H is too small.

For the safeguards above, when PCG is terminated early, we still use the obtained approximate solution as a possible update
direction and conduct the backtracking line search procedure first to see if we can get sufficient objective decrease, as line
search is usually much cheaper than the computation of an update direction.

Except for the above safeguards, we terminate PCG when∥∥∇2F |M(w)p +∇F |M(w)
∥∥ ≤ 0.1 min

{
1, ‖∇F |M(w)‖2

}
(26)

to obtain superlinear convergence; see Theorem C.3 for more details.

Assume that at the (j, t)th iteration a Newton step is taken. When PCG is not terminated early, and the final accepted step
size is 1, at the (j, t+ 1)th iteration, we take the next update to be a simple proximal gradient step, with the initial step size
being γj,t+1 defined in (15). That is, we obtain the update by

pj,t+1 = arg min
p∈M̃j,t+1

∇f(wj,t+1)>p +
γj,t+1

2
p>p + Ψ(wj,t+1 + p) (27)

and iteratively enlarge γj,t+1 through (6) and resolve (27) until (5) holds. Otherwise, we continue the next step using the
proximal quasi-Newton procedure. This is because that when PCG terminates normally and the step size is one, likely we
are entering the superlinear convergence phase so the proximal step is just a safeguard and we do not wish to spend too
much time on it, and thus we take a proximal gradient but not a much more expensive proximal quasi-Newton step.

A.3. Coordinate Random Shuffling

In Section 2.2, we described that the rows of Ut are stored in a distributed manner, according to a partition J1, . . . ,JK
of {1, . . . , d}. To facilitate the computation of (10), which is the most expensive one in the subproblem solve, we should
make each Ji of equal size so that each machine has an equal computational burden, assuming all machines have similar
computational power. (When the computational environment is heterogeneous, the burden distribution should be proportional
to the computational power of the machines.) In this sense, it is most straightforward to let each Jk be a set of consecutive
numbers as this also improves memory locality for accessing other information in the memory. However, when manifold
selection is involved, it is possible that the coordinates are ordered in a specific, non-random way such that consecutive
coordinates are more likely to be correlated, so that they tend to be included in or excluded from the current manifold
simultaneously. This can make the computation burden distribution unbalanced. To even out the computational burden,
we apply coordinate random shuffling in assigning the partition. That is, we first randomly shuffle {1, . . . , d} and then let
each Jk take consecutive elements of the shuffled set. This way, the computational burden on each machine becomes more
balanced in expectation, both before and after manifold selection; experiments in Section B.4 verify this claim.

B. Additional Experiments and Setting Details
This appendix provides additional experiments and setting details for our and other algorithms. We first give implementation
details of other solvers we compare with in Section B.1. In Section B.2, comparison on more datasets is conducted.
Section B.3 examines the effectiveness of the two stages of MADPQN. Coordinate shuffling discussed in Section A.3 is
then scrutinized in Section B.4. Finally, we compare MADPQN with a state-of-the-art feature-wise storage method (that
works for convex and linear models only) in Section B.5.
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Table 3. Additional data statistics.

Data set #instances (n) #features (d) |M∗|
rcv1-test 677,399 47,226 5,095
yahoo-japan 176,203 832,026 3,182
yahoo-korea 460,554 3,052,939 9,818
epsilon 400,000 2,000 1,463
url 2,396,130 3,231,961 25,399
KDD2010-b 19,264,097 29,890,096 2,007,370

B.1. Implementation Details of Other Solvers Compared

In Section 5, several methods are used to solve (20). To make a fair comparison, all methods are implemented in C++ and
MPI. Here we give more details about the implementations and parameters used in these methods.

• OWLQN (Andrew & Gao, 2007) and L-COMM (Chiang et al., 2018): We use the implementation in the experimental
codes of Chiang et al. (2018).1 m = 10 and θ = 2 are used for both methods.

• DPLBFGS (Lee et al., 2019): We use the experimental codes released by the authors. m = 10 and θ = 2 are used.2

For MADPQN and DPLBFGS, we take the maximum SpaRSA steps for solving the subproblem to be 100.

B.2. Comparisons on More Datasets

In addition to the datasets listed in Table 1, we further conduct experiments on more datasets listed in Table 3.3 We use
32 t2.micro instances for the first three smaller datasets, and 32 r5n.large instances for the rest in order to fit the whole
dataset into the main memory. The results are presented in Figure 5. Similar to the observation in Section 5.1, our proposed
method is always faster than others in terms of the communication cost. Because |M∗| ≈ d for rcv1-test and epsilon (see
Table 3), the difference between MADPQN and others on these two is less significant, but MADPQN is still the most
communication-efficient. Regarding the training time, our method is generally the fastest to achieve nearly optimal solutions,
with the only exception on rcv1-test, while other methods suffer from slower convergence especially on difficult problems
such as KDD2010-b (and avazu-site in Figure 2). It is also worth noting that especially for rcv1-test and url, the difference
in the training time between MADPQN and others is much smaller than that in their communication costs, indicating that the
proportion of communication costs in the overall running time is smaller and the running time improvement from reducing
the communication is thus limited. This also explains why although MADPQN is the most communication-efficient for
rcv1-test, its running time is not the fastest. However, even under these settings that do not favor MADPQN, it is still
competitive with the state of the art. Moreover, we expect to see more improvement if more machines are used so that the
computation burden per machine is lighter and the communication cost becomes relatively significant. Overall speaking, our
method is faster than others in most datasets and enjoy better convergence in the later stage of optimization. Even when the
setting does not favor our method, MADPQN is still at least competitive, and in other settings, MADPQN outperforms the
state of the art significantly.

B.3. Experiments on the Effectiveness of Progressive Manifold Selection and Smooth Optimization

In Sections 2.3, 2.4, A.1 and A.2, we have introduced the progressive manifold identification strategy and smooth optimization
acceleration to reduce the communication costs and rounds. Now we use (20) to examine the effectiveness of these two
techniques, respectively, by comparing MADPQN without manifold selection (and thus no smooth optimization as well),
MADPQN without (semismooth) Newton steps, and MADPQN. We call the first variant MADPQN-noMS, and the second
MADPQN-noN. The difference between MADPQN-noMS, and MADPQN-noN indicates the effectiveness of manifold
selection, while the comparison between MADPQN-noN and MADPQN shows how the Newton steps accelerate the

1https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir-l1/
2https://github.com/leepei/dplbfgs
3yahoo-japan and yahoo-korea are two document binary classification datasets, and all others are downloaded from http://www.

csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir-l1/
https://github.com/leepei/dplbfgs
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Figure 5. More comparisons of methods for (20). We present the number of bytes communicated (upper) and the training time (lower) vs.
the relative difference to the optimal value.

optimization process. We present the results in Figure 6. For news20 and webspam, as their final solutions w∗ are extremely
sparse (see Table 1), meaning that |M∗| is small, our progressive shrinking strategy becomes very useful. Hence, compared
with MADPQN-noMS, we observe significant reductions of the communication cost in MADPQN and MADPQN-noN.
On the other hand, the final solution w∗ of epsilon is relatively dense and the original problem dimension is also low.
In such a case, we do not see much difference between MADPQN-noMS and MADPQN-noN because |M∗| ≈ d and
communication is likely not the bottleneck. However, after the smooth optimization stage is added in MADPQN, which
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Figure 6. Effectiveness of progressive manifold selection and smooth optimization. We present the number of bytes communicated (upper)
and the training time (lower) versus the difference to the optimal value. MADPQN-noMS indicates our method without the manifold
selection and the semismooth Newton parts, and MADPQN-noN indicates our method without the semismooth Newton part.

Table 4. The minimum and maximum numbers of nonzero coordinates in w across machines after MADPQN identifies the correct
manifold. For example, for news20 without random shuffling the coordinates, one machine contains no nonzero coordinate while another
contains 392.

Data set without shuffling with shuffling
min max min max

news20 0 392 9 25
webspam 0 172 9 36
yahoo-japan 0 2,114 78 117
yahoo-korea 0 8,549 277 336
rcv1-test 105 205 136 177
url 413 7,226 754 858
KDD2010-b 37,273 264,462 62,296 63,119
epsilon 33 52 30 53
avazu-site 325 407 338 410

starts to take Newton steps after identifying the correct manifold, the convergence is significantly improved in the later stage
of optimization, showing the necessity of both stages.

B.4. Random Shuffling on the Coordinates

In Section 2.2, we mentioned that a partition J1, . . . ,JK of {1, . . . , d} is used to indicate the coordinates handled by
each machine, and for (20) and (21), this partition actually aligns directly with the basis of the manifolds. We notice that
during the training, the numbers of nonzero coordinates could greatly vary on different machines, leading to an unbalanced
workload that causes high synchronization costs between machines when random shuffling is not introduced (see Table 4 for
the sizes of smallest and largest nonzero sets on (20)). To alleviate this issue, we apply coordinate shuffling described in
Section A.3 to MADPQN (and also all other solvers as well for a fair comparison, although it is not quite useful for other
approaches). To see its effectiveness, we present in Table 4 the sizes of nonzero sets after conducting a random shuffling of
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Figure 7. Comparisons of MADPQN with and without random shuffling the coordinates on (20). We present the training time versus the
relative difference to the optimal value.

the coordinates for (20). Results show that the sizes become more balanced, making the workload distributed more evenly.
We further conduct a running time comparison on (20) in Figure 7. We observe a clear gain of random shuffling in four of
the six datasets presented since their synchronization costs are reduced, and for the remaining two datasets, the running time
difference between with and without random shuffling is quite minor.

B.5. Comparison With the Feature-wise Scheme

We proceed on to compare with methods using feature-wise storage for linear models we reviewed in Section 4. We compare
MADPQN and ADN (Dünner et al., 2018) as it is considered the state of the art for this type of methods. As the authors
did not give details about the local sub-problem solver, we consider an efficient Newton-type random-permutation cyclic
coordinate descent-based method (Yuan et al., 2012) implemented in the package LIBLINEAR (Fan et al., 2008) to solve the
local problem and implement ADN in C/C++. Cyclic coordinate descent is known to converge Q-linearly so the requirement
in (Dünner et al., 2018) is satisfied. We aggregate the local solutions after one epoch of cyclic coordinate descent to make
the computation/communication ratio closer to our method for a fair comparison.

The comparison is shown in Figure 8. We notice that ADN has a communication cost close to MADPQN on datasets
with n � d, including news20 and webspam, but performs poorly on other datasets with a larger n. Note that ADN is
consistently slow in the running time for its heavier computation per iteration as it always processes all coordinates, so even
on datasets that it has a low communication cost, the running time is not competitive. We also notice on all datasets that the
convergence of ADN slows down significantly after reaching a certain medium precision.

C. More Analysis

We discuss more theoretical properties of our algorithm in this appendix. In particular, we discuss in detail the inner loop
stopping condition and the superlinear convergence of the truncated semismooth Newton steps.
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Figure 8. More comparisons of methods for (20). We present the number of bytes communicated (upper) and the training time (lower) vs.
the relative difference to the optimal value.

C.1. Inner Loop Stopping Condition

In our implementation, we used the objective of the subproblem (12) as our stopping condition. The reason is that it provides
an estimate of how far we are from the best solution we can get within the current manifold.
Lemma C.1. If pj,t is obtained through solving (12) approximately and (16) is satisfied, the first-order optimality condition
restricted toMj,t, 0 ∈ ∂F |Mj,t

(wj,t), holds if and only if |QĤj,t
(pj,t;wj,t)| = 0.

When f is convex, (16) is always satisfied, and (18) is bounded, there are constants R1, R2 > 0 such that

∆̃j,t

σ1
≥ |QĤj,t

(pj,t;wj,t)| ≥ min
{
R1∆̃2

j,t, R2∆̃j,t

}
, (28)

where
∆̃j,t := F (wj,t)− F ∗j,t, F ∗j,t := min

w∈Mj,t

F (w).

When F |Mj,t further satisfies (17) for some fixed µ > 0 for all w within the level set {w | F |Mj,t(w) ≤ F |Mj,t(w
j,t)},

the lower bound of (28) can be tighten to
|QĤj,t

(pj,t;wj,t)| ≥ R3∆̃j,t
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for some R3 > 0.

C.2. Two-step Superlinear Convergence of the Newton Steps

We show that if ∇f is semismooth, we have already found the correct manifoldM∗, and when we are close enough to
a local solution, we can get asymptotic superlinear convergence using the truncated semismooth Newton steps, even if
between two Newton steps there is always one proximal gradient step.

Before starting our analysis, we give the definition of semismoothness (Mifflin, 1977) that is needed later.
Definition C.2 (Semismoothness). For a Lipschitz continuous function G : <m → <n, for some integers m,n ≥ 0, we say
that G is semismooth at a point x if G is directionally differentiable at x and for any V ∈ ∂G(x+ ∆x) with ∆x→ 0,

G(x+ ∆x)−G(x)− V∆x = o (‖∆x‖) . (29)

We notice that the class of semismooth functions is much broader than the class of differentiable functions, as the latter
implies the former but not vice versa. We will assume that ∇f is semismooth to get superlinear convergence in our analysis.

We will assume that around a critical point w∗ of the iterates, all the generalized Hessians H restricted to the manifoldM∗
have eigenvalues lower-bounded by a constant r > 0 for M̃∗, in the sense

v>Hv ≥ r‖v‖2,∀v ∈ M̃∗ :=M∗ −w∗.

This combined with the nondegenerate condition−∇f(w∗) ∈ relint ∂Ψ(w∗) can be shown to be equivalent to the quadratic
growth condition locally within the manifold (Wright, 2012). But we do not go along that direction further as it is not the
focus of our analysis.

We now show that when the gradient is semismooth (as Ψ is C2 when restricted to the manifold, we just need ∇f to be
semismooth) and when the generalized Hessians around w∗ are all positive definite enough, the iterates of alternating
between truncated semismooth Newton and proximal gradient steps converge to to w∗ superlinearly in a two-step manner.
We will assume that unit step size is already accepted. Under the positive definiteness assumption of the generalized Hessians
around w∗, standard argument for truncated Newton method indicates that unit step size is eventually accepted, and thus we
omit discussion for this part. Parts of our proof are motivated by the proof of Wright (2012, Theorem 3.7).
Theorem C.3. Assume that w∗ is a cluster point of the iterates of our algorithm that is critical, Ψ is partly smooth around
w∗ with respect to the C2 manifoldM∗, ∇F |M∗ is semismooth around w∗, and there is δ1 > 0 and r > 0 such that for all
w ∈M∗ with ‖w −w∗‖2 ≤ δ1, all the generalized Hessian

∇2F |M∗(w) ∈ ∂∇F |M∗(w)

satisfy
v>∇2F |M∗(w)v ≥ r‖v‖2,∀v ∈ M̃∗. (30)

Then there exists another constant δ2 > 0 such that if:

• The iterate wj,t is already inM∗ with ‖wj,t −w∗‖ ≤ δ2,

• We conduct one proximal gradient step (27) at the (j, t)th iteration of our algorithm, and

• The next update step at the (j, t+ 1)th iteration is a truncated semismooth Newton step satisfying (26) and unit step
size satisfies (24) so that it is accepted,

then we have that
‖wj,t+2 −w∗‖ = o

(
‖wj,t −w∗‖

)
.

Namely, {wj,2i}i converges to w∗ superlinearly.

D. Proofs
D.1. Proof of Lemma 3.1

Proof. We assume without loss of generality that (14) is always satisfied, as otherwise it just involves some index changes.
We prove the first claim by induction. As no outer iteration is involved in this lemma, we omit the counter j for outer
iterations.
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The detailed update rule for Z̃t is:

Z̃t :=

[
γtZ̃

1,1
t Z̃2,1

t(
Z̃2,1
t

)>
Z̃2,2
t

]
, (31)

with each block being of size m(t)×m(t) and defined as (note that Z̃2,2
t is a diagonal matrix)

(
Z̃1,1
t

)
i,j

=


(
Z̃1,1
t−1

)
i,j

if m(t− 1) < m and i, j < m(t),(
Z̃1,1
t−1

)
i+1,j+1

if m(t− 1) = m and i, j < m,

PM̃t−1

(
st−m(t)+i−1

)>
PM̃t−1

(
st−m(t)+j−1

)
otherwise.

(32a)

(
Z̃2,2
t

)
i,i

=


(
Z̃2,2
t−1

)
i,i

if m(t− 1) < m and i < m(t),(
Z̃2,2
t−1

)
i+1,i+1

if m(t− 1) = m and i < m,

PM̃t−1
(st−1)

>
PM̃t−1

(
yt−1

)
otherwise.

(32b)

(
Z̃2,1
t

)
i,j

=



(
Z̃2,1
t−1

)
i,j

if m(t− 1) < m and i, j < m(t),(
Z̃2,1
t−1

)
i+1,j+1

if m(t− 1) = m and i, j < m,

PM̃t−1
(st−1)

>
PM̃t−1

(
yt−m(t)+j−1

)
if m(t) = i > j,

0 otherwise.

(32c)

First, for t = 1 the two are the same because M̃0 = <d, which implies s0 = PM̃0
(s0) and y0 = PM̃0

(y0), and there is no
entry obtained from the previous iteration. Next, suppose that Z̃t = Zt for t = 1, 2, . . . , T − 1. It is trivial to see that the
update rules (32) without the projection part updates Zt correctly by comparing (32) and (8). Therefore, we just need to
check the correctness after the projection kicks in. For t = T , we see that because the previous update direction is obtained
through solving (12) that confines the solution to M̃t−1, we have sT−1 = pT−1 ∈ M̃T−1. Therefore,

PM̃C
T−1

(sT−1) = 0.

As M̃T−1 is a subspace, for any vector v, we always have

v = PM̃C
T−1

(v) + PM̃T−1
(v),

so
s>T−1v = PM̃T−1

(sT−1)
>
v = PM̃T−1

(sT−1)
>
PM̃T−1

(v) .

This shows that the new entries in Z̃T also accord with the entries of ZT at the same locations, as all new entries computed
in (32) are inner products between sT−1 and some other vectors. Thus, by induction, we have proven that (8) and (32) give
the same result, so Z̃T = ZT as desired.

For the second result, we know that bt+1,i ∈ M̃t+1 ⊆ M̃t for all i, and therefore for any vector v, we have that

b>t+1,iv = b>t+1,iPM̃t
(v). (33)

Since Bt is an orthonormal basis of M̃t, we know that BtB>t is the orthogonal projection operator onto M̃t, which
completes our proof using (33).

D.2. Proof of Lemma 3.2

Proof. In this proof, we denote the Lipschitz constant for ∇f by L. We first show that for the initial H̃j,t, there are
C̃1 ≥ C̃2 > 0 such that

C̃1I � H̃j,t � C̃2I, ∀j, t ≥ 0. (34)
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Consider the case t = 0. The lower bound γj,0 ≥ ε̃ is trivial from (15). For the upper bound, the Lipschitz continuity of the
gradient suggests that ‖∇2f(w)‖ ≤ L for any w at where f is twice-differentiable. Therefore, we have that γj,0 ≤ L as the
generalized Hessian ∇2f(wj,0) is the limit of a sequence of real Hessians. Thus, (15) gives γj,0 ≤ max{L, ε̃}. The two
results above combined then proves that

ε̃ ≤ γj,0 ≤ max{L, ε̃}. (35)

Now consider the case of t > 0. We assume without loss of generality that (14) is satisfied for all t ≥ 0. Otherwise, we can
just shift the indices in the proof since those pairs of (sj,t,yj,t) that failed (14) are discarded. We first show that γj,t for
t > 0 defined by (15) satisfies

γj,t ∈
[
δ,
L2

δ

]
, ∀t > 0,∀j. (36)

For the upper bound, we have from (14) that∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥ ≥ δ ∥∥∥PM̃j,t−1
(sj,t−1)

∥∥∥ , ∀t > 0,∀j,

so

γj,t =

∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥2

PM̃j,t−1

(
yj,t−1

)>
PM̃j,t−1

(sj,t−1)
≥

∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥2∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥ ∥∥∥PM̃j,t−1
(sj,t−1)

∥∥∥ =

∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥∥∥∥PM̃j,t−1
(sj,t−1)

∥∥∥ ≥ δ.
For the lower bound, we first note from the Lipschitz continuity of∇f that∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥ ≤ ‖yj,t−1‖ ≤ L‖sj,t−1‖ = L
∥∥∥PM̃j,t−1

(sj,t−1)
∥∥∥ . (37)

We thus get that

γj,t =

∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥2

PM̃j,t−1
(sj,t−1)

>
PM̃j,t−1

(sj,t−1)

PM̃j,t−1
(sj,t−1)

>
PM̃j,t−1

(sj,t−1)

PM̃j,t−1

(
yj,t−1

)>
PM̃j,t−1

(sj,t−1)

(14)
≤


∥∥∥PM̃j,t−1

(
yj,t−1

)∥∥∥∥∥∥PM̃j,t−1
(sj,t−1)

∥∥∥
2

1

δ

(37)
≤ L2

δ
.

Thus, we have proven (36).

Next, we show that H̃j,t has bounded eigenvalues. Following Liu & Nocedal (1989), the construction of H̃j,t is equivalent to

H
(0)
j,t := γj,tI,

H
(i+1)
j,t := H

(i)
j,t −

H
(i)
j,t sj,t−m(t)+is

>
j,t−m(t)+iH

(i)
j,t

s>j,t−m(t)+iH
(i)
j,t st−m(t)+i

+
yt−m(t)+iy

>
t−m(t)+i

y>t−m(t)+ist−m(t)+i

, i = 0, . . . ,m(t)− 1, (38)

H̃j,t = H
(m(t))
j,t .

We start from another sequence of matrices {B(i)
j,t}

m(t)
i=0 instead:{

B
(0)
j,t := 1

γj,t
I,

B
(i+1)
j,t := Vj,t−m(t)+iB

(i)
j,tV

>
j,t−m(t)+i + ρj,t−m(t)+isj,t−m(t)+is

>
j,t−m(t)+i,

(39)

with

Vj,i :=
(
I − ρj,isj,iy>j,i

)
, ρj,i :=

1

s>j,iyj,i
, i = 0, 1, . . . . (40)

It is obvious that B(i)
t are all symmetric. By an easy induction, we see that they are also positive semidefinite, as (14)

ensures that ρj,i > 0 for all i. Now we show that B(i)
j,t are actually positive definite for all i through induction. Clearly,
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since γj,t > 0, B(0)
j,t � 0. Assume that B(i)

j,t � 0 for i = 0, 1, . . . , i0, then for i = i0 + 1, if there is a vector v such that

v>B
(i0+1)
j,t v = 0, we must have that{

v>sj,t−m(t)+i0 = 0,

v>Vj,t−m(t)+i0B
(i0)
j,t V

>
j,t−m(t)+i0

v = 0.
⇒ (v − 0)>B

(i0)
j,t (v − 0) = 0,

which implies that v = 0. Therefore, B(i0+1)
j,t � 0.

Since all B(i)
j,t are positive definite, they are invertible. By the matrix inversion lemma, we can see that the inverse of B(i)

j,t is

exactly H(i)
j,t , so H(i)

j,t are all invertible and positive definite. We can therefore bound the trace of H(i)
j,t by

trace
(
H

(i)
j,t

)
≤ trace

(
H

(0)
j,t

)
+

t−m(t)+i−1∑
k=t−m(t)

y>j,kyj,k

y>j,ksj,k
≤ γj,td+

iL2

δ
≤ (i+ 1)L2

δ
≤ (m+ 1)L2

δ
, ∀i, j ≥ 0,∀t > 0.

(41)

Therefore, from the positive semidefiniteness of H(i)
j,t , (41) implies the existence of C̃1 > 0 such that

H
(i)
j,t � C̃1I, i = 0, . . . ,m(t), ∀t > 0,∀j ≥ 0.

Next, for its lower bound, from the formulation for (38) in (Liu & Nocedal, 1989), and the upper bound ‖H(i)
j,t ‖ ≤ C̃1, we

have

det
(
H̃j,t

)
= det

(
H

(0)
j,t

) t−1∏
k=t−m(t)

y>j,ksj,k

s>j,ksj,k

s>j,ksj,k

s>j,kH
(k−t+m(t))
j,t sj,k

≥ γdj,t
(
δ

C̃1

)m(t)

> 0.

We then take

c2 = δd min
i=0,1,...,m

(
δ

C̃1

)i
and see immediately from (36) that

det
(
H̃j,t

)
≥ c2, ∀t > 0,∀j ≥ 0.

We therefore get that

λmin

(
H̃j,t

)
≥

det
(
H̃j,t

)
λmax

(
H̃j,t

)d−1
≥ c2

C̃d−1
1

=: C̃2 > 0,

where λmin(·) and λmax(·) denote the smallest and the largest eigenvalues, respectively. The part of finite modification then
follows from Lemma 4 of (Lee & Wright, 2019), and the final result is clear from (6) and that H̃t is positive definite.

D.3. Proof of Lemma 3.3

Proof. In this proof, without loss of generality, we skip all the semismooth Newton steps, as it just involves at most a shift
of the iteration counters because we alternate between a Newton step and a proximal quasi-Newton or proximal gradient
step. Consider the acceptance criterion (5) for the update step. From (16) and that QH(0;w) = 0 for any H and any w, we
know that QĤj,t

(
pj,t;wj,t

)
≤ 0 for all t. Therefore, we can see that for any T ≥ 0 and any j,

T∑
t=0

σ1

∣∣∣QĤj,t

(
pj,t;wj,t

)∣∣∣ = −
T∑
t=0

σ1QĤj,t

(
pj,t;wj,t

)
≤

T∑
t=0

(
F (wj,t)− F (wj,t+1

)
≤ F (wj,0)− F (wj,T+1)

≤ F (wj,0)− F ∗.
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By dividing both sides by σ1(T + 1), we get that

cj,T := min
0≤t≤T

∣∣∣QĤj,t

(
pj,t;wj,t

)∣∣∣ ≤ F (wj,0)− F ∗

σ1(T + 1)
.

As for any fixed j, {cj,T } is decreasing, nonnegative, and summable with respect to T , Proposition 3.4 and Theorem 3.5 of
(Shi et al., 2015) show that {cj,T }T=0,1,... decreases at a rate of o(1/T ), showing that within o(1/εj) inner iterations, cj,T
will be smaller than εj . Note that this part does not depend on the eigenvalues of Ĥj,t, and thus it holds regardless whether a
proximal quasi-Newton step or a proximal gradient step is taken after an SSN step.

When (17) holds, again from the acceptance criterion, and let F ∗t be defined as

F ∗j,t := min
w∈Mj,t

F (w), (42)

clearly we have
F (wj,t)− F ∗j,t ≥ F (wj,t)− F (wj,t+1) ≥ σ1

∣∣∣QĤj,t
(pj,t;wj,t)

∣∣∣ . (43)

From Corollary 2 of (Lee & Wright, 2019), F (wj,t)−F ∗j,t converges to 0 at a Q-linear rate as Ĥj,t has bounded eigenvalues
for all j and t (Lemma 3.2 and note that if we take (27), γj,t are also bounded), so it takes at most O(log(1/εj)) inner
iterations to make |QĤj,t

(pj,t;wj,t)| smaller than εj . Notice thatMj,t might be shrinking, but since F ∗j,t does not decrease
whenMj,t shrinks (as the constraint for the optimization problem becomes more restrictive), and the Lipschitz constant only
increases when confined to a subspace, the Q-linear rate at each iteration can only become faster but not slower. Therefore,
the Q-linear convergence rate indeed holds, even if the selected manifold keeps shrinking.

D.4. Proof of Theorem 3.4

Proof. First consider the case that f is convex. We will denote the upper bound for (18) by R, and define

F ∗ := min
w

F (w), ∆j,t := F (wj,t)− F ∗. (44)

Clearly 0 ≤ R <∞ and ∆j,t ≥ 0. We notice from QH(0;w) = 0 for any H and w and (16) that

QĤj,t
(pj,t;wj,t) ≤ 0.

This together with (5) shows that the function value is always decreasing. Now we consider only wj,0 and wj,1 for all j.
We know that in this case H̃j,0 = γj,0I , and from Lemma 3.2 we know that Ĥj,0 = γ̂j,0I for some γ̂j,0 that is bounded in a
range [C2, C1] for some C1 ≥ C2 > 0, for all j ≥ 0. As we solve (4) exactly for t = 0, we have from the convexity of f
and therefore F that

QĤj,0
(pj,0;wj,0)

= min
p
∇f

(
wj,0

)>
p +

γ̂j,0
2

p>p + Ψ
(
wj,0 + p

)
−Ψ

(
wj,0

)
≤ min

p
f
(
wj,0 + p

)
+ Ψ

(
wj,0 + p

)
+
γ̂j,0
2

p>p− F
(
wj,0

)
≤ min

λ∈[0,1]
F
(
wj,0 + λ

(
PΩ

(
wj,0

)
−wj,0

))
+
γ̂j,0λ

2

2

(
PΩ

(
wj,0

)
−wj,0

)> (
PΩ

(
wj,0

)
−wj,0

)
− F

(
wj,0

)
≤ min

λ∈[0,1]
(1− λ)F

(
wj,0

)
+ λF ∗ +

γ̂j,0λ
2

2

(
wj,0 − PΩ

(
wj,0

))> (
wj,0 − PΩ

(
wj,0

))
− F

(
wj,0

)
≤ min

λ∈[0,1]
−λ∆j,0 +

γ̂j,0λ
2

2
‖wj,0 − PΩ

(
wj,0

)
‖2 (45)

≤ min
λ∈[0,1]

−λ∆j,0 +
R2γ̂j,0λ

2

2

≤ min
λ∈[0,1]

−λ∆j,0 +
C1R

2λ2

2
. (46)
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The minimizer of (46) is

λ = min

{
1,

∆j,0

C1R2

}
,

and by using which in (46), we get

QĤj,0
(pj,0;wj,0) ≤ −1

2
∆j,0

in the former case and

QĤj,0
(pj,0;wj,0) ≤ −

∆2
j,0

2C1R2

in the latter. We then get that

∆j+1,0 ≤ ∆j,1 ≤ ∆j,0−
σ1

2
min

{
∆j,0,

∆2
j,0

C1R2

}
≤ ∆j,0−

σ1

2
min

{
∆j,0,

∆2
j,0

C1R2 + ∆0,0

}
≤ ∆j,0−

σ1

2

∆2
j,0

C1R2 + ∆0,0
,

where in the last inequality we used the fact that ∆j,0 is decreasing with respect to j. Therefore, after dividing both sides by
∆j,0∆j+1,0, we obtain

∆−1
j,0 ≤ ∆−1

j+1,0 −
1

C1R2 + ∆0,0
.

By summing the inequality above from j = 0 to j = T − 1 and telescoping, we get

∆−1
T,0 ≥ ∆−1

0,0 +
T

C1R2 + ∆0,0
≥ T

C1R2 + ∆0,0
.

This shows that ∆T,0 decreases at a rate of O(1/T ), and therefore it takes at most O(1/ε) such steps to reach an ε-accurate
solution.

When F satisfies (17), we apply it to (45) and get

QĤj,0
(pj,0;wj,0) ≤ min

λ∈[0,1]
−λ∆j,0 +

γ̂j,0λ
2

2µ
∆j,0 ≤ min

λ∈[0,1]
−λ∆j,0 +

C1λ
2

2µ
∆j,0 = min

λ∈[0,1]

(
C1λ

2

2µ
− λ
)

∆j,0. (47)

Let

C3 := min
λ∈[0,1]

(
C1λ

2

2µ
− λ
)
,

then, with some simple calculation, clearly C3 ∈ [−1, 0). From (5), we see that

∆j+1,0 −∆j,0 ≤ ∆j,1 −∆j,0 ≤ σ1QĤj,0

(
pj,0;wj,0

)
≤ σ1C3∆j,0 ⇒ ∆j+1,0 ≤ (1 + σ1C3) ∆j,0,

showing that ∆j,0 decreases at a Q-linear rate (as σ1 ∈ (0, 1] and C3 ∈ [−1, 0)), so it takes at most O(log(1/ε)) such
proximal gradient steps to get an ε-accurate solution.

Finally, consider the case in which f is nonconvex. We use (5) to get

σ1

T∑
j=0

|QĤj,0
(pj,0;wj,0)| ≤

T∑
j=0

(F (wj,0)− F (wj,1)) ≤ F (w0,0)− F ∗. (48)

Define
Qk := min

0≤j≤k

∣∣∣QĤj,0
(pj,0;wj,0)

∣∣∣ ,
and we get that Qk is decreasing, nonnegative, and summable. Thus again by Proposition 3.4 and Theorem 3.5 of (Shi et al.,
2015), Qk decreases at a rate of o(1/k), showing that it takes at most o(1/ε) outer iterations to decrease Qk to below ε.

For the final claim, from Lemma 3.2 we know that Ĥj,0 = γ̂j,0I for some γ̂j,0 that is bounded in a range [C2, C1]
for some C1 ≥ C2 > 0. Because Qγ̂j,0I(· ;wj,0) is strongly convex, Qγ̂j,0I(0;wj,0) = 0, and (16), we know that
Qγ̂j,0I(p

j,0;wj,0) = 0 if and only if pj,0 = 0. The optimality condition of the subproblem (4) is

0 ∈ ∇f(wj,0) + γ̂j,0p
j,0 + ∂Ψ

(
wj,0 + pj,0

)
. (49)
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When pj,0 = 0, (49) implies that 0 ∈ ∂F (wj,0). On the other hand, we have that

Qγ̂j,0I
(
pj,0;wj,0

)
= ∇f(wj,0)>pj,0 +

γ̂j,0
2

∥∥pj,0∥∥2
+ Ψ

(
wj,0 + pj,0

)
−Ψ

(
wj,0

)
≥ ∇f(wj,0)>pj,0 +

γ̂j,0
2

∥∥pj,0∥∥2
+ s>pj,0, ∀s ∈ ∂Ψ

(
wj,0

)
. (50)

When 0 ∈ ∂F (wj,0) holds, we see that −∇f(wj,0) ∈ ∂Ψ
(
wj,0

)
, so (50) implies that

Qγ̂j,0I
(
pj,0;wj,0

)
= ∇f(wj,0)>pj,0 +

γ̂j,0
2

∥∥pj,0∥∥2
+ Ψ

(
wj,0 + pj,0

)
−Ψ

(
wj,0

)
≥ 0>pj,0 +

γ̂j,0
2

∥∥pj,0∥∥2 ≥ 0.

However, we have noticed above that Qγ̂j,0I
(
pj,0;wj,0

)
≤ 0, so it must be 0, as desired.

D.5. Proof of Theorem 3.6

Proof. From (48), we see that |QĤj,0
(pj,0;wj,0)| converges to 0 as j approaches infinity. From Lemma 3.2 we know that

QĤj,0
(·;wj,0) is C2-strongly convex for some C2 > 0 for all j, so it satisfies (17) with µ = C2/2 and pj,0 is the only

solution to (4) (we assumed that for t = 0 the solution is exact as it is just a simple proximal operation). These imply that
pj,0 converges to 0 as well. On the other hand, from, for example, Proposition 8.7 of (Rockafellar & Wets, 2009), we know
that the subdifferential ∂Ψ is outer-semicontinuous, meaning that for any sequence of points ŵj converging to a point ŵ,
we have

lim
j→∞

∂Ψ
(
ŵj
)
⊆ ∂Ψ(ŵ). (51)

Thus if there is a subsequence {wj,0}j∈K that converges to a cluster point w∗, we have from the optimality condition of (4)
that

−
(
∇f

(
wj,0

)
+ γ̂j,0p

j,0
)
∈ ∂Ψ

(
wj,0 + pj,0

)
.

By taking limit on j over K on it, using (51), and that γ̂j,0 ∈ [C2, C1] for some C1 ≥ C2 > 0 for all j from Lemma 3.2, we
get that

−(∇f(w∗) + 0) ∈ ∂Ψ(w∗ + 0) ⇒ 0 ∈ ∂F (w∗),

showing that w∗ is a critical point and {wj,1}j∈K converges to w∗ as well.

When f is lower-bounded and Ψ is coercive, the level sets of F are compact. Then from the Bolzano-Weierstrass Theorem,
the sequence {wj,0} must have a subsequence converging to a point w∗, as the whole sequence lies in a compact set.

D.6. Proof of Theorem 3.7

Proof. Let K denotes the set of the indices of the subsequence of {wj,0} that converges to w∗. From (49) and Lemma 3.2,
we know that

dist(−∇f(wj,1), ∂Ψ(wj,1)) ≤ ‖ − γ̂j,0pj,0 + (∇f(wj,1)−∇f(wj,0))‖
= ‖ − γ̂j,0pj,0 + (∇f(wj,0 + pj,0)−∇f(wj,0))‖
≤ C1‖pj,0‖+ ‖∇f(wj,0 + pj,0)−∇f(wj,0)‖
≤ C1‖pj,0‖+ L‖pj,0‖
= (L+ C1)‖pj,0‖ → 0

for j ∈ K, where L is the Lipschitz constant of∇f and the convergence is from the proof of Theorem 3.6. Therefore, all
the conditions of Lewis & Zhang (2013, Theorem 4.10) are satisfied, showing that wj,1 = wj,0 + pj,0 ∈M∗ holds for all
j ∈ K large enough, or equivalently when wj,0 is close enough to w∗.

Next, we take into consideration the inner iterates. For the jth outer iteration, We denote by T (j) the set for the indices of the
inner iterations in which we did not use a truncated semismooth Newton step. We then construct another two sequences of
vectors {ŵj,t} and {p̂j,t} for j ∈ K and t = 0, 1, . . . , by ŵj,0 ≡ wj,0, ŵj,1 ≡ wj,1, p̂j,0 ≡ pj,0, and letting ŵj,t+1 and
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p̂j,t+1 for t+1 ∈ T (j) be the iterates and steps generated by solving (4) under <d instead of the selected manifold/subspace,
using the previous ŵj,t. For those t + 1 /∈ T (j), we do the same truncated semismooth Newton step within the current
smooth manifold in which ŵj,t+1 lies. Then by using an argument similar to that in the proof of Lemma 3.3, we have

σ1

∑
j∈K

∑
t∈T (j)

|QĤj,t
(p̂j,t; ŵj,t)| ≤ F (w0,0)− F ∗,

showing that
∑
t∈T (j) |QĤj,t

(p̂j,t; ŵj,t)| converges to 0 as well. This in turn implies that {
∑
t∈T (j) ‖p̂

j,t‖2}j∈K also con-

verges to 0, asQĤj,t
satisfies (17) with µ = C2 for some fixedC2 > 0 for all j and t by Lemma 3.2,QĤj,t

(0, ŵj,t; p̂j,t) = 0,

and p̂j,t is the only exact solution (as assumed in the theorem statement).

For those t /∈ T (j), we know that there are only finite such t according to Lemma 3.3. We show that the corresponding
update steps also converge to 0 as well, in the sense that {

∑
t/∈T (j) ‖p̂

j,t‖2}j∈K also approaches 0. We let the iterations
t /∈ T (j) be denoted by ij,k, k = 0, 1, . . . , and denote the largest number of possible inner iterations by K1, we then have
that k ≤ K1 and ij,k ≤ K1 for all j, k. For any given j and k = 0, we have t ∈ T (j) for all t < ij,0. As we know that ŵj,0

converges to w∗ and
∑
t<ij,0

‖p̂j,t‖2 converges to 0 as j approaches infinity, we see that

ŵj,ij,0 = ŵj,0 +

ij,0−1∑
t=0

p̂j,t → w∗ + 0 = w∗, (52)

thus ŵj,ij,0 also converges to w∗. Since these iterates all lie in a region close to w∗, we can find a compact set S that
encompasses them. As Ψ|M∗ is C2, its Hessian is actually bounded within S. Moreover, the generalized Hessian of f has
eigenvalues upper bounded by L, and thus the generalized Hessian of F |M∗ is upper-bounded within the region of interest.
On the other hand, from the trust-region technique for the SSN steps in (25), the real matrix used for obtaining the SSN
step is also lower-bounded. Because the gradient within the smooth manifold is continuous and the iterates are confined to
a compact set, we know that the exact SSN step converges to 0 as well, and thus so does p̂j,ij,0 as implied by (26). Now
assume p̂j,ij,k converges to 0 for k = 0, 1, . . . , T , then for k = T + 1, if ij,T+1 exists, we see that by reusing (52) with ij,0
replaced by ij,T , ŵj,ij,T+1 also converges to w∗ (as the sum has no more than K1 terms), so the step p̂j,ij,k also converges
to 0. This shows that the whole sequence of ŵj,t for j ∈ K converges to w∗.

Therefore, we have from the optimality condition of (4) that for t ∈ T (j),

dist(−∇f(ŵj,t+1), ∂Ψ(ŵj,t+1)) ≤ ‖Ĥj,tp̂
j,t + (∇f(ŵj,t+1)−∇f(ŵj,t))‖

≤ ‖Ĥj,t‖‖p̂j,t‖+ L‖p̂j,t‖
≤ (C1 + L)‖p̂j,t‖ → 0,

and again from Theorem 4.10 of (Lewis & Zhang, 2013), we know that after finite outer iterations, the sequence {ŵj,t+1} for
j ∈ K identifies and always stays within the correct manifoldM∗ (note that those ŵj,0 are not included in this sequence).
Since those semismooth Newton steps do not move the iterates away from its current manifold, they do not affect this result.
We denote by (ĵ, t̂) the first iteration from where on ŵj,t for j ∈ K do not leaveM∗.

Finally, consider our original iterates and steps {wj,t} and {pj,t}. Clearly, as our previous construction calibrates wj,1 and
ŵj,1, for any j ∈ K satisfying j > ĵ, we know that wj,1 has already identifiedM∗. Thus in our manifold selection strategy,
we must haveM∗ ⊆Mj,1. Then since the solution of (4) at the next iteration actually lies in M̃∗, the subspace parallel to
M∗, we have that the respective solutions of (4) and (12) result in identical update steps. Therefore, we see that pj,t = p̂j,t

for all j ∈ K satisfying j > ĵ and all t ∈ T (j). By induction, the semismooth Newton steps also coincide. Therefore, for
j ∈ K and j ≥ ĵ, wj,t = ŵj,t for all t. This suggests that the inner iterates stay withinM∗ as desired.

D.7. Proof of Lemma C.1

Proof. Let the optimal solution to (12) be t∗j,t and let p∗j,t := Bj,tt
∗
j,t, then it is clear from (16) and the strong convexity of

the subproblem (from Lemma 3.2) that

|QĤj,t
(pj,t;wj,t)| = 0 ⇔ |QĤj,t

(p∗j,t;w
j,t)| = 0 ⇔ pj,t = p∗j,t = 0. (53)
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The optimality condition of the subproblem (12) is

0 ∈ B>j,t
(
∇f(wj,t) + Ĥj,tp

∗
j,t + ∂Ψ

(
wj,t + p∗j,t

))
.

As Bj,t is an orthonormal basis of M̃j,t, this holds true if and only if

0 ∈ PM̃j,t

(
∇f(wj,t) + Ĥj,tp

∗
j,t + ∂Ψ

(
wj,t + p∗j,t

))
. (54)

When |QĤj,t
(pj,t;wj,t)| = 0, (53) shows that p∗j,t = 0, and (54) implies that

0 ∈ PM̃j,t

(
∇f(wj,t) + ∂Ψ

(
wj,t

))
= ∂M̃j,t

F (wj,t) = ∂F |Mj,t
(wj,t).

On the other hand, when 0 ∈ ∂F |Mj,t
(wj,t) = ∂M̃j,t

F (wj,t) holds, we have that

QĤj,t

(
pj,t;wj,t

)
= ∇M̃j,t

f(wj,t)>pj,t +
1

2

(
pj,t
)>
Ĥj,tp

j,t + Ψ
(
wj,t + pj,t

)
−Ψ

(
wj,t

)
≥ ∇M̃j,t

f(wj,t)>pj,t +
1

2

(
pj,t
)>
Ĥj,tp

j,t + s>pj,t, ∀s ∈ ∂ΨM̃j,t

(
wj,t

)
. (55)

Since 0 ∈ ∂M̃j,t
F (wj,t), we see that−∇M̃j,t

f(wj,t) ∈ ∂M̃j,t
Ψ
(
wj,t

)
, so (55) and the positive definiteness of Ĥj,t imply

that

0 ≥ QĤj,t

(
pj,t;wj,t

)
= ∇M̃j,t

f(wj,t)>pj,t +
1

2

(
pj,t
)>
Ĥj,tp

j,t + Ψ
(
wj,t + pj,t

)
−Ψ

(
wj,t

)
≥ 0>pj,t +

1

2

(
pj,t
)>
Ĥj,tp

j,t ≥ 0,

which shows that QĤj,t
(pj,t;wj,t) = 0.

Now consider the case that f is convex. The upper bound in (28) is straightforward from the acceptance condition (5) and
that the largest possible function decrease is bounded by ∆̃j,t. For this part, convexity is actually not needed. We then
consider the lower bound. We will denote the upper bound for (18) by R and we define

Ωj,t :=
{
ŵ∗ | ŵ∗ ∈Mj,t, F (ŵ∗) = F ∗j,t

}
as the solution set for F |Mj,t

. Clearly we have 0 ≤ R <∞. From Lemma 3.2 we know that Ĥj,t has eigenvalues bounded
in a range [C2, C1] for some C1 ≥ C2 > 0. We then get from (16) that

1

1− η
QĤj,t

(pj,t;wj,t)

≤ QĤj,t
(p∗j,t;w

j,t)

= min
p
∇f

(
wj,t

)>
p +

1

2
p>Ĥj,tp + Ψ

(
wj,t + p

)
−Ψ

(
wj,t

)
≤ min

p
f
(
wj,t + p

)
+ Ψ

(
wj,t + p

)
+

1

2
p>Ĥj,tp− F

(
wj,t

)
≤ min

λ∈[0,1]
F
(
wj,t + λ

(
PΩj,t

(
wj,t

)
−wj,t

))
+
λ2

2

(
PΩj,t

(
wj,t

)
−wj,t

)>
Ĥj,t

(
PΩj,t

(
wj,t

)
−wj,t

)
− F

(
wj,t

)
≤ min

λ∈[0,1]
(1− λ)F

(
wj,t

)
+ λF ∗j,t +

λ2

2

(
wj,t − PΩj,t

(
wj,t

))>
Ĥj,t

(
wj,t − PΩj,t

(
wj,t

))
− F

(
wj,t

)
≤ min

λ∈[0,1]
−λ∆̃j,t +

‖Ĥj,t‖λ2

2
‖wj,t − PΩj,t

(
wj,t

)
‖2 (56)

≤ min
λ∈[0,1]

−λ∆̃j,t +
C1R

2λ2

2
. (57)
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The solution of (57) is

λ = min

{
1,

∆̃j,t

C1R2

}
.

When the former holds, it implies that

1

1− η
QĤj,t

(pj,t;wj,t) ≤ −∆̃j,t +
C1R

2

2
≤ −∆̃j,t

2
,

and when the latter holds, we get

1

1− η
QĤj,t

(pj,t;wj,t) ≤ −
∆̃2
j,t

2C1R2
.

These two combined then proves (28).

When F |M̃j,t
further satisfies (17), (56) implies that

1

1− η
QĤj,t

(pj,t;wj,t) ≤ min
λ∈[0,1]

−λ∆̃j,t +
C1λ

2∆̃j,t

µ
= min
λ∈[0,1]

(
C1λ

2

µ
− λ
)

∆̃j,t,

and the final claim holds by taking

R3 = −(1− η) min
λ∈[0,1]

(
C1λ

2

µ
− λ
)
.

D.8. Proof of Theorem C.3

Proof. We first show that if pj,t is a proximal gradient step (27) with the “step size” γ̂j,t ∈ [C2, C1] for some C1 ≥ C2 > 0,
there exists L̃ > 0 and δ2 > 0 such that

‖pj,t‖ ≤ L̃‖wj,t −w∗‖,∀wj,t ∈M∗
⋂
Bδ2(w∗), (58)

where Bδ2(w∗) is the open `2-norm ball centered at w∗ with radius δ2. Assume this claim is false, then there is a sequence
{wi} inM∗ converging to w∗ and the corresponding proximal gradient steps {pi}, with the step sizes being {γi} and
γi ≥ γ for some γ > 0, such that

lim
i→∞

‖wi −w∗‖
‖pi‖

= 0. (59)

Note that the proximal gradient steps are obtained through

pi = arg min
p
∇f(wi)

>p +
γi
2
p>p + Ψ(wi + p). (60)

We know from Theorem 3.7 that pi ∈ M̃∗ for i large enough, so we omitted the constraint of restricting the update within
the current selected manifold as they eventually result in the same update step. Since pi is the optimal solution to the
strongly convex problem (60), we have that

∇f(wi)
>pi +

γi
2
p>i pi + Ψ(wi + pi) ≤ ∇f(wi)

>(w∗ −wi) +
γi
2
‖w∗ −wi‖2 + Ψ(w∗). (61)

We also have from the optimality condition −∇f(w∗) ∈ ∂Ψ(w∗) that

Ψ(wi + pi) ≥ Ψ(w∗)−∇f(w∗)>(wi + pi −w∗).

Substituting the result above into (61), we get that

γi
2
p>i pi ≤ (∇f(w∗)−∇f(wi))

>
(wi+pi−w∗)+

γi
2
‖w∗−wi‖2 ≤ L‖wi−w∗‖2+L‖wi−w∗‖‖pi‖+

γi
2
‖w∗−wi‖2.
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After dividing both sides by γi‖pi‖2 and letting i approach infinity, (59) indicates that the right-hand side approaches 0 as
γi are lower-bounded, while the left-hand side is always 1/2, giving a contradiction. Therefore, (58) holds true for some
δ2 > 0 and some L̃ > 0.

It is clear that since Ψ|M∗ is C2 around w∗, its gradient is locally Lipschitz within Bδ2(w∗), and therefore ∇F |M∗ is
locally Lipschitz continuous with some constant L2 > 0 within this range. Next, let H denote the generalized Hessian at
wj,t+1 that we use for computing the truncated semismooth Newton step at the (j, t+ 1) iteration and pj,t+1 denote this
truncated semismooth Newton step, we have

‖H
(
wj,t+2 −w∗

)
‖

= ‖H
(
wj,t+1 + pj,t+1 −w∗

)
‖

= ‖Hwj,t+1 −∇F |M∗(wj,t+1) +∇F |M∗(wj,t+1) +Hpj,t+1 −Hw∗‖
≤ ‖∇F |M∗(wj,t+1) +Hpj,t+1‖+

∥∥(H (wj,t+1 −w∗
)
−∇F |M∗

(
wj,t+1

)
+∇F |M∗ (w∗)

)∥∥
≤ 0.1‖∇F |M(wj,t+1)‖2 +

∥∥H (wj,t+1 −w∗
)
−∇F |M∗

(
wj,t+1

)
+∇F |M∗ (w∗)

∥∥
≤ 0.1L2

2‖wj,t+1 −w∗‖2 + o
(∥∥wj,t+1 −w∗

∥∥) = o
(∥∥wj,t+1 −w∗

∥∥) .
Notice that in the last inequality, we used the semismoothness of the gradient in (29) and the termination condition (26) of
PCG. Finally, as wj,t+2,w∗ ∈M∗, we know that wj,t+2 −w∗ ∈ M̃∗, and therefore from (30), we have that

r‖wj,t+2 −w∗‖ ≤ ‖H
(
wj,t+2 −w∗

)
‖ ⇒ ‖wj,t+2 −w∗‖ =

1

r
o
(∥∥wj,t+1 −w∗

∥∥) .
Finally, from (58), we know that

o
(∥∥wj,t+1 −w∗

∥∥) = o
(∥∥wj,t −w∗

∥∥) .
Notice that when ‖wj,t −w∗‖ is small enough (modify δ2 if necessary), ‖wj,t+2 −w∗‖ ≤ δ2 can be guaranteed, and the
superlinear convergence continues at the next step. Thus we have completed the proof.


