ACFlow: Flow Models for Arbitrary Conditional Likelihoods

Yang Li! Shoaib Akbar? Junier B. Oliva '

Abstract

Understanding the dependencies among features
of a dataset is at the core of most unsupervised
learning tasks. However, a majority of gener-
ative modeling approaches are focused solely
on the joint distribution p(z) and utilize models
where it is intractable to obtain the conditional
distribution of some arbitrary subset of features
x,, given the rest of the observed covariates z,:
p(z,, | ©,). Traditional conditional approaches
provide a model for a fixed set of covariates condi-
tioned on another fixed set of observed covariates.
Instead, in this work we develop a model that is
capable of yielding all conditional distributions
p(z, | x,) (for arbitrary x,,) via tractable con-
ditional likelihoods. We propose a novel exten-
sion of (change of variables based) flow genera-
tive models, arbitrary conditioning flow models
(ACFlow). ACFlow can be conditioned on arbi-
trary subsets of observed covariates, which was
previously infeasible. We further extend ACFlow
to model the joint distributions p(z) and arbi-
trary marginal distributions p(z,,). We also apply
ACFlow to the imputation of features, and develop
a unified platform for both multiple and single im-
putation by introducing an auxiliary objective that
provides a principled single “best guess” for flow
models. Extensive empirical evaluations show
that our model achieves state-of-the-art perfor-
mance in modeling arbitrary conditional distri-
butions in addition to both single and multiple
imputation in synthetic and real-world datasets.

1. Introduction

Spurred on by recent impressive results, there has been a
surge in interest for generative probabilistic modeling in ma-

'Department of Computer Science, University of North Car-
olina at Chapel Hill, NC, USA *Department of Mathematics, North
Carolina State University, NC, USA. Correspondence to: Yang Li
<yangli95 @cs.unc.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

chine learning. These models learn an approximation of the
underlying data distribution and are capable of drawing re-
alistic samples from it. Generative models have a multitude
of potential applications, including image restoration (Ledig
et al., 2017), agent planning (Houthooft et al., 2016), and
unsupervised representation learning (Chen et al., 2016).

Most generative approaches are solely focused on the joint
distribution of features, p(x), and are opaque in the con-
ditional dependencies that are carried among subsets of
features. Existing conditional generative models are mostly
conditioned on a fixed set of covariates, such as class la-
bels (Kingma & Dhariwal, 2018) or other data points (Li
et al., 2019b). In this work, we propose a framework, ar-
bitrary conditioning flow models (ACFlow), to construct
generative models that yield tractable (analytically available)
conditional likelihoods p(x,, | x,) of an arbitrary subset of
covariates, x,,, given the remaining observed covariates x,,.
Although the complete data x comes from a certain distribu-
tion, all its conditional distributions p(x,, | z,) vary when
conditioned on different z,, which poses challenges for
modeling the highly multimodal distributions. Furthermore,
the dimensionality of x,, and x, could be arbitrary.

Dealing with arbitrary dimensionality is a largely unex-
plored topic in current generative models. One might want
to explicitly learn a separate model for each different sub-
set of observed covariates; however, this approach quickly
becomes infeasible as it requires an exponential number of
models with respect to the dimensionality of the input space.
In this work, we propose several conditional transformations
that handle arbitrary dimensionality in a principled manner
and further combine them with an autoregressive likelihood
approach for flexible, tractable generative modeling.

In addition, ACFlow can handle the joint distribution p(x)
and arbitrary marginal distributions p(z,,) as special cases.
Joint distribution p(x) can be obtained by conditioning on
an empty set, i.e., p(x | 0), while arbitrary marginal distribu-
tion p(x,,) can be obtained similarly as p(x,, | 0). In effect,
this allows for our model to perform arbitrary marginaliza-
tion, which has previously been infeasible in flow models
and autoregressive frameworks.

Besides computing likelihoods, we also explore the use of
ACFlow for imputation, where we infer possible values of
T, given observed values z,, both in general real-valued

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

data and images (for inpainting). From the perspective of
probabilistic modeling, data imputation attempts to learn
a distribution of the unobserved covariates, x,,, given the
observed covariates, z,. Thus, generative modeling is a nat-
ural fit for data imputation. It handles single imputation and
multiple imputation in an unified framework by allowing the
generation of an arbitrary number of samples. More impor-
tantly, it quantifies the uncertainty in a principled manner.

Our contributions are as follows. 1) We propose a novel
extension of flow-based generative models to model the
conditional distribution of arbitrary unobserved covariates.
Our method is the first to develop invertible transforma-
tions that operate on an arbitrary set of covariates. 2) We
strengthen a flow-based model by using a novel autoregres-
sive conditional likelihood. 3) We propose a novel penalty
to generate a single imputed “best guess” for models with-
out an analytically available mean. 4) We extend ACFlow
to model arbitrary marginals, enabling one to do approxi-
mate marginalization of flow models, which was previously
infeasible. 5) We run extensive empirical studies and show
that ACFlow achieves state-of-the-art arbitrary conditional
likelihoods on benchmark datasets.

2. Problem Formulation

Consider a real-valued! distribution p(z) over R%. We are
interested in estimating the conditional distribution of all
possible subsets of covariates u C {1,...,d} conditioned
on the remaining observed covariates o = {1,...,d} \ u.
That is, we shall estimate p(z,, | z,) where x,, € RI“l and
T, € RI°l for all possible subsets u.

For ease of notation, let b € {0,1}¢ be a binary mask in-
dicating which dimensions are observed. Furthermore, let
v[b] index a vector v using a bitmask b. Thus, z, = x [b]
denotes observed dimensions and x,, = x [1 — b] denotes
unobserved dimensions. We also apply this indexing mech-
anism to matrices such that Wb, b] indexes rows and then
columns. Without loss of generality, conditionals may also
be conditioned on the bitmask b, p(z,, | %,,b), and will
be estimated with maximum log-likelihood estimation as
described below. In addition, imputation tasks shall be
accomplished by generating samples from the conditional
distributions p(x,, | ., b).

3. Background

ACFlow builds on Transformation Autoregressive Networks
(TANSs) (Oliva et al., 2018), a flow-based model that com-
bines transformation of variables with autoregressive likeli-
hoods. We expound on flow-based models and TANs below.

"Data with categorical dimensions can be handled by a special
case of our model, please refer to appendix A.

The change of variable theorem (1) is the cornerstone of
flow-based generative models, where ¢ represents an invert-
ible transformation that transforms covariates from input
space X into a latent space Z.

px(z) =

d
det d:qv‘pg(q(x)) (D

Typically, a flow-based model transforms the covariates to a
latent space with a simple base distribution, like a standard
Gaussian. However, TANs provide additional flexibility
by modeling the latent distribution with an autoregressive
approach (Larochelle & Murray, 2011). This alters the
earlier equation (1), in that pz(g(x)) is now represented as
the product of d conditional distributions.

d

Hpg(zi | 2712 (2)

i=1

d
det “

px(z) = dx

Since flow models give the exact likelihood, they can be
trained by directly optimizing the log likelihood. In addition,
thanks to the invertibility of the transformations, one can
draw samples by simply inverting the transformations over
a set of samples from the latent space.

4. Methods

We develop ACFlow by constructing both conditional trans-
formations of variables and autoregressive likelihoods that
work with an arbitrary set of unobserved covariates. To deal
with arbitrary dimensionality for conditioning covariates x,,,
we define a zero imputing function ¢(z,; b) that returns a
d-dimensional vector by imputing vector z, € Rl with
zeros based on the specified binary mask b:

Zolci]

w=(ro:b), w,;—{ AP C)

i
3
where ¢; = Z;:l b; represents the cumulative sum over
b. The imputed output w is a d-dimensional vector with
unobserved values replaced by zeros (See Fig. 1(a) for an
illustration.). Thus, we get a conditioning vector with fixed
dimensionality. However, handling the arbitrary dimension-
ality of z,, requires further care, as discussed below.

4.1. Arbitrary Conditional Transformations

We first consider a conditional extension to the change of
variable theorem:

deo,b

pX(xu | -rovb) = ‘det pZ(QIO,b(xu) | J)O,b), (4)

u

where g, p is a transformation on the unobserved covariates
x,, with respect to the observed covariates x, and binary
mask b as demonstrated in Fig. 1(a). However, the fact that

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

EEEE FEEEaEE]
t)

—EEKL-:-:‘

.Zi [z [=) ¢ ¢ RILN Hh - RIIN s R
EHE— ;

T i < mmEmm £
p 9 p : DNN % ﬁ DNN
\q(XuIXo,b)/ ‘¥‘P(xo»b) ‘ l—ED(;_:-] 3 @\N‘
T ' |
“ 11110 1b0 oy Lalxolx]xo] x| x]o [[xo [x [x Jo0F** [x[x[o] o x[oTol*

Lolafofrfofififo

X [%o [X[x4 [X5 xe [X7 [Xg

L[fof Jof s Jofo—

Lilifol 1ol 1]ofo

(a) general formulation (b) affine coupling

(c) linear (d) RNN coupling

Figure 1. Conditional transformations used in ACFlow. Grayed out boxes represent unobserved covariates. Checkerboarded boxes in (b)
belong to unobserved dimensions, but are used as conditioning in the affine coupling transformation.

T, is a set of arbitrary missing dimensions makes it chal-
lenging to define g, ;’s across different bitmasks b. One
challenge comes from requiring the transformation to have
adaptive outputs that can adapt to different dimensionality
of x,,. Another challenge is that different missing patterns
require the transformation to capture different dependencies.
Since the missing pattern could be arbitrary, we require
the transformation to learn a large range of possible de-
pendencies. To solve those challenges, we propose several
conditional transformations that leverage the conditioning
information in =, and b and can be adapted to arbitrary x,,.
We describe them in detail below. For notation simplicity,
we drop the subscripts X and Z in the following sections.

Affine Coupling Transformation Affine coupling is a
commonly used flow transformation. Here, we derive a
arbitrary conditional version. Just as in the unconditional
counterparts (Dinh et al., 2014; 2016; Kingma & Dhariwal,
2018), we divide the unobserved covariates x, into two
parts, =/} and zZ according to some binary mask b, €
{0,1}“lie., 22 = 2,[b,) and & = z,[1 — b,]. We then

keep the first part 27> and transform the second part 22, i.e.,

&)

Sy o=

)
2B © 522, by, 20, b) + (a2, by, 0, b),

where © represents the element-wise (Hadamard) product.
s and ¢ computes the scale and shift factors as the function
of both observed covariates and covariates in group A. Note
that both inputs and outputs of s and ¢ contain arbitrary
dimensional vectors. To deal with arbitrary dimensionality
in inputs, we apply the zero imputing function (3) to z:}
and z, respectively to get two d-dimensional vectors with
missing values imputed by zeros. We also apply ¢ to b, to
get a d-dimensional mask. The shift and scale functions s
and ¢ are implemented as deep neural networks (DNN) over

ze = p(P(23bu); 1 —) + ¢(2,;0) and be = p(by; 1 —

b) + b, ie,

S = DNN(concat(z, b.)) € R?,

6
T = DNN(concat(z., b)) € R?, ©

where concat defines a concatenate function and the two
DNN functions can share weights.

The outputs of s and ¢ need to be adaptive to the dimensions
of z2, thus we apply the indexing mechanism, [, that
takes the corresponding dimensions of non-zero values with
respect to binary masks 1 — b and 1 — b,, i.e.,

)

A visualization of this transformation is presented in
Fig. 1(b). Note that the way we divide z,, might depend
on our prior knowledge about the data correlations. For
image data, we use checkerboard and channel-wise split
as in (Dinh et al., 2016). For real-valued vectors, we use
even-odd split as in (Dinh et al., 2014).

Linear Transformation Another common transforma-
tion for flow-based models is the linear transformation.
Contrary to the coupling transformation that only lever-
ages correlation between two separated subsets, the linear
transformation can take advantage of correlation between
all dimensions. Furthermore, the linear transformation can
be viewed as a generalized permutation which rearranges di-
mensions so that next transformation can be more effective.

In order to transform x,, linearly, we would like to have an
adaptive weight matrix W of size |u| x |u| and a bias vector
t of size |u|. Similar to the affine coupling described above,
we first apply a deep neural network over ¢(z,;b) and bi-
nary mask b to get a d x d matrix W¢ and a d-dimensional
bias vector ¢ ¢, then we index them with respect to the binary

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

mask 1 — b, i.e.,

W; = DNN(é(2,;b),b) € RI*4,
W =We[1—b,1-0b e RUXu
t; = DNN(é(z,;b),b) € R,

t=1t;[1—b R,

(®)

The linear transformation can then be derived as z, =
Wz, + t. Fig. 1(c) illustrates this transformation over an 8-
dimensional example. In practice, we add another learnable
full-rank weight matrix to Wy to guarantee invertibility.

In order to decrease complexity, it is straightforward to
parametrize W with rank r matrices by taking the product
of two rank r matrices with size d x r and r x d respectively.
Hence, the DNN can reduce its output dimensions to 2dr.
During preliminary experiments, we observed minimal drop
in performance when using a large enough 7.

RNN Coupling Transformation The affine coupling
transformation can be viewed as a rather rough recurrent
transformation with only one recurrent step. We can gen-
eralize it by running an RNN over z,, and transform each
dimension sequentially (shown in Fig.1(d)). Note that a
recurrent transformation naturally handles different dimen-
sionality. To leverage conditioning inputs x, and b, we
concatenate ¢(x,;b) and b to each dimension of z,,. The
outputs of the RNN are used to derive the shift and scale
parameters respectively.

o', h' = RNN(concat(z’ 1, ¢(z,;b),b), 1),

i i i i)

2y =y, % 5(0") +1(0"),
where 29 = —1, hY = 0, and i indexes through dimensions.
Other Transformations and Compositions Other trans-

formations like element-wise leaky-ReLU transformation
(Oliva et al., 2018) and reverse transformation (Dinh et al.,
2014) are readily applicable to transform the unobserved
covariates x,, since they do not rely on the conditioning co-
variates. Other than these specific transformations described
above, any transformations that follow the general formula-
tion shown in Fig. 1(a) can be easily plugged into our model.
We obtain flexible, highly non-linear transformations with
the composition of multiple of these aforementioned trans-
formations. (That is, we use the output of the preceding
transformation as input to the next transformation.) The Ja-
cobian of the resulting composed (stacked) transformation
is accounted with the chain rule.

4.2. Arbitrary Conditional Likelihoods

The conditional likelihoods in latent space p(z,|z,, b) can
be computed by either a base distribution, like a Gaussian,

or an autoregressive model as in TANs. For Gaussian based
likelihoods, we can get mean and covariance parameters
by applying another function over ¢(x,;b) and b, which is
essentially equivalent to another linear transformation con-
ditioned on x, and b. However, this approach is generally
less flexible than using an autoregressive approach.

For autoregressive likelihoods, conditioning vectors can be
used in the same way as the RNN coupling transformation.
The difference is that the RNN outputs are now used to de-
rive the parameters for some base distribution, for example,
a Gaussian Mixture Model:

o', h" = RNN(concat (2.t é(z,;b),b), " 1),
p(Zu | 27371 Zl :C(nb) = GMM(Z'Z | 9(02))7

PREET 298

(10)

where (o) is a shared fully connected network that maps
to the parameters for the mixture model (i.e. each mixture
component’s location, scale, and mixing weight parameter).
During sampling, we iteratively sample each point, 251,
before computing the parameters for 2% . Incorporating the
autoregressive likelihood into Eq. (4) yields:

o
Hp(zqzl, | 272,1/717 "'72’7:,11,,"1707 b),

i=1
Y
where |u] is the cardinality of the unobserved covariates.

dqz,
p(zu | Io,b) = ‘det :;Tu,b

4.3. Missing Data

During training, if we have access to complete training data,
we will need to manually create binary masks b based on
some predefined distribution py. py, is typically chosen based
on the application. For instance, Bernoulli random masks
are commonly used for real-valued vectors. Given binary
masks, training data z are divided into x,, and z, and fed
into the conditional model p(z,, | ©,,b).

If training data already contains missing values, we can only
train our model on the remaining covariates. As before,
we manually split each data point into two parts, x,, and
z, based on a binary mask b. Note that dimensions in
b corresponding to the missing values are always set to
0, i.e., they are never observed during training. In this
setting, we will need another binary mask m indicating
those dimensions that are not missing. Accordingly, we
define observed dimensions as x, = z [b] and unobserved
dimensions as z,, = x [m ® (1 — b)] and optimize p(z,, |
Zo, M, D).

4.4. Special Cases

We can easily see that arbitrary conditional model p(z,, |
Z,,b) is a special case of p(z,, | z,, m,b) if we set all di-
mensions of the binary mask m to one (no missing data).
As a special case of ACFlow, the joint distribution p(z)

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

can be modeled by the same framework when we set m to
all ones (no missing data) and b to all zeros (no observed
dimensions). Essentially, we are trying to model all the
dimensions by conditioning on an empty set p(x | 0)). Simi-
larly, we can use ACFlow to model the arbitrary marginal
distribution p(z,,) by setting m = 1 — b, that is, all the
observed dimensions are treated as missing data. Note that
T, is an arbitrary subset of the covariates, thus, we are es-
sentially modeling a mixture of all the marginals in just one
single model.

4.5. Imputation and Best Guess Objective

Given a trained ACFlow model, multiple imputations can
be easily accomplished by drawing multiple samples from
the learned conditional distribution. However, certain down-
stream tasks may require a single imputed “best guess”.
Unfortunately, the analytical mean E ., |z, .0)[%4] is not
available for flow-based deep generative models. Further-
more, getting an accurate empirical estimate could be pro-
hibitive in high dimensional space. In this work, we propose
a robust solution that gives a single best guess in terms of
the MSE metric (it can be easily extended to other metrics,
e.g. an adversarial one).

Specifically, we obtain our best guess by inverting the condi-
tional transformation over the mean of the latent distribution,
ie.,

Grp(2) = 470 (B el) [2])- (12)
The mean Z is analytically available for Gaussian mixture
base model. To ensure that this best guess is close to unob-
served values, we optimize with an auxiliary MSE loss:

L= —log p(xy | 70,0) + Alg;. ,(2) —zu? (13)

where A controls the relative importance of the auxiliary
objective. Note that we only penalize one particular point
from p(x, | x,,b) to be close to z,. Hence, it does not
affect the diversity of the conditional distribution.

5. Related Work
5.1. Arbitrary Conditional Models

Previous attempts to learn probability distributions condi-
tioned on arbitrary subsets of known covariates include
the Universal Marginalizer (Douglas et al., 2017), which
is trained as a feed-forward network to approximate the
marginal posterior distribution of each unobserved dimen-
sion conditioned on the observed ones. VAEAC (Ivanov
et al., 2018), the state-of-the-art model so far for modeling
arbitrary conditional likelihoods, utilizes a conditional varia-
tional autoencoder and extends it to deal with arbitrary con-
ditioning. The decoder network outputs likelihoods that are
over all possible dimensions, although, since they are con-
ditionally independent given the latent code, it is possible

to use only the likelihoods corresponding to the unobserved
dimensions. NeuralConditioner (NC) (Belghazi et al., 2019)
is a GAN-based approach which leverages a discriminator
to distinguish real data and generated samples.

Unlike VAEAC and NC, ACFlow is capable of producing an
analytical (normalized) likelihood and avoids blurry samples
and mode collapse problems ingrained in these approaches.
Furthermore, in contrast to the Universal Marginalizer,
ACFlow captures dependencies between unobserved co-
variates at training time via the change of variables formula.

Another type of model, Sum-Product Network (SPN) (Poon
& Domingos, 2011), where the network structures are spe-
cially designed and contain only sum and product oper-
ations can evaluate both arbitrary conditional likelihoods
and marginal likelihoods efficiently. SPN builds a DAG by
stacking sum and product operations alternately so that the
partition function can be efficiently computed. In contrast,
ACFlow is more flexible since we do not pose constraints on
the network structures. Please see Sec. 6.2.3 for empirical
comparison between ACFlow and SPNs.

5.2. Missing Data Imputation

Classic methods for imputation include k-nearest neigh-
bors (Troyanskaya et al., 2001), random forest (Stekhoven
& Biihlmann, 2011) and auto-encoder (Gondara & Wang,
2018) approaches. Deep generative models have already
been explored to handle missing data. MIWAE (Mattei
& Frellsen, 2019) train a VAE model by a modified lower
bound tailored for missing data and perform imputation by
importance sampling. GAIN (Yoon et al., 2016) addresses
data imputation with a GAN approach, where a generator
produces imputations and a discriminator attempts to dis-
tinguish imputed covariates from observed covariates. Mis-
GAN (Li et al.,, 2019a) is yet another GAN based method
where they train a generator-discriminator pair for both data
and masks.

Many missing data imputation methods assume that the data
are missing completely at random (MCAR, missing indepen-
dently of covariates’ values) or missing at random (MAR,
possibly missing depending on observed covariates’ values)
(Little & Rubin, 2019). Missing not at random (MNAR,
missing depending on unobserved covariates’ values) is
much harder to address, and requires some approximate
inference technique such as variational approaches (Murray
et al., 2018). In this work, we focus on the MCAR scenario.

6. Experiments

6.1. Synthetic Datasets

To validate the effectiveness of our model, we conduct ex-
periments on synthetic 2-dimensional datasets, i.e., z =

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

(x1,72) € R2. The joint distributions and imputed samples
are plotted in Fig. 2. Here, the conditional distributions are
highly multi-modal and vary significantly when conditioned
on different observations. We train arbitrary conditional
models on 100,000 samples from the joint distribution. The
masks are generated by dropping out one dimension at ran-
dom.

We compare our model against VAEAC (Ivanov et al., 2018),
the current state-of-the-art model trained purely by likeli-
hood. We closely follow the released code for VAEAC?
to construct the proposal, prior, and generative networks.
Specifically, we use fully connected layers and skip con-
nections as is in their official implementation. We also use
short-cut connections between the prior network and the
generative network. We search over different combinations
of the number of layers, the number of hidden units of fully
connected layers, and the dimension of the latent code. Val-
idation likelihoods are used to select the best model. The
details about training procedure are provided in Appendix
B. We see that ACFlow is capable of learning multi-modal
distributions, while VAEAC tends to merge multiple modes
into one single mode.

ACFlow

X;7p(Xp)

VAEAC

X ~p(xp) X ™p(x2) X ™p(x)

X
2 p(x1.x2)

X p(Xi X)) X p(Xofxp) X P(Xifxy) X p(Xalx))

Figure 2. Synthetic datasets. Observed covariates are sampled
from the marginal distributions, and the missing covariates are
sampled from the learned conditional distributions.

6.2. Likelihood Evaluation

In this section, we evaluate the ability of ACFlow to model
arbitrary conditional distributions in terms of the negative
log-likelihoods (NLL). We compare to VAEAC (Ivanov
et al., 2018) and an autoregressive counterpart (Salimans
et al., 2017; Larochelle & Murray, 2011). In addition, as
special cases, we compare arbitrary marginal likelihoods
and the joint likelihoods against flow models.

6.2.1. IMAGE DATASETS

We evaluate our method on three common image datasets:
MNIST, Omniglot and CelebA. We assume access to com-

https://github.com/tigvarts/vaeac/blob/
master/imputation_networks.py

plete training data and train arbitrary conditional models
p(zy, | ©,,b) with a varied distribution of binary masks pj.
Details about mask generation and image preprocessing are
available in the Appendix C.1.

The architecture of ACFlow contains a sequence of arbitrary
conditional transformations, which is akin to the RealNVP
model (Dinh et al., 2016) except we replace all the coupling
layers with our proposed arbitrary conditional alternative.
The arbitrary conditional likelihood is implemented as a
conditional PixelCNN conditioned on a vector embedding of
the observed covariates. Implementation details of ACFlow
and baselines are provided in Appendix C.2.

Table 1. NLL for modeling p(z. | o). Mean and std. dev. are
computed by sampling 5 binary masks at random for each testing
data. Lower is better.

MNIST Omniglot CelebA
VAEAC 1034.8646.05 1014.6242.53 17638.83£15.21
PixelCNN 313.93+3.09 160.20£1.97 8806.02£34.95
ACFlow 271.99+3.10 159.32+1.25 8387.011+45.86

We first evaluate the ability to model arbitrary conditional
distributions by comparing the negative log-likelihoods
(NLL) in Table. 1. We generate 5 different masks for each
test image and report the average scores and the standard
deviation. We see that ACFlow outperforms VAEAC by a
large margin and achieve state-of-the-art performance in
terms of arbitrary conditional likelihoods. ACFlow also out-
performs the PixelCNN model due to the transformations’
ability to capture dependencies across all covariates, while
a PixelCNN model can only leverage preceding covariates
to inference the current covariate.

As a special case, we evaluate the joint likelihood p(z) by
setting the binary mask to all zeros during testing, i.e. p(x |
(), where we condition on an empty set to get likelihood for
all covariates. Note that the model is trained using the condi-
tional likelihood p(z,, | x,) rather than the joint likelihood.
In Table. 2 we compare
to the RealNVP model
with similar architecture.
We use Gaussian likeli-
hood in this experiment
for fair comparison. We
see ACFlow achieves bet-

Table 2. Evaluate joint likeli-
hood p(x) by setting bitmask
b to all zeros. Results are pre-
sented as bits per dimension
(bpd). Lower is better.

. . ACFlow RealNVP
ter or comparable likeli-
h . MNIST 0.86 0.87
thds despite not d1r<?ctly Omniglot 0,52 0.5
trained to model the joint CIFARIO 3.50 349
CelebA 2.85 3.02

distribution. We believe
that training ACFlow for
multiple related tasks (the conditional likelihood tasks) with
tied weights may act as a regularizer. Samples from the joint
distributions are shown in Appendix C.3.

Besides conditioning on an empty set, we can apply a Gibbs

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

=0 =1 =2 =3 4

=25 =26 =27 =28 =29

Figure 3. Gibbs sampling using a trained ACFlow. We iteratively sample the upper or lower half conditioned on the rest for 50 mixing
steps. Note we reduce the bit depth to 5 in this experiment for better sample quality. More samples are shown in Appendix C.4.

bsds(N=1M, d=63) gas(N=85.2K, d=8)

-4.841 - -7.593
ACFlow+BG -3.187 -7.212
3.497 -4.818
-5.269 -8.086
ACFlow -4.225 -7.568
1.508 -5.405

1.708 418 10.082
o 10.389

-1.73 -1.646
AutoReg 3.233 -7.536 5723
5

6 -4 2 0 2 4 6 8 10 1. -85 -1.5 -5. -3.5

hepmass(N=31.5K, d=21)

6.833 1.098
9.67 3.577
10.975 849

miniboone(N=29.6K, d=43) power(N=1.66M, d=6)

-0.528 -
-0.417 p=01
Hp=0.5

8.197 0.972
7.784 515
10.538 9.892
3.452
4.242
9.051

6.428 -0.057 0.399
7.824 5.409 -0.466
9.76 24 -0.363
45 5 7 9 11 13 4 1 3 5 7 9 11 07 -05 A

Figure 4. NLL for models trained on different level of missing rates (p). Lower is better. On top of each chart, we present the dataset
name and its training set size (N) and feature dimensions (d). “BG” indicates the proposed best guess penalty.

sampling procedure to sample from the joint distribution.

As shown in Fig. 3, we iteratively sample the upper or lower

half conditioning on the remaining half for 50 mixing steps.

We can see that the image changes smoothly and mixes well
as the samples we get are very different from the starting
point. This Gibbs sampling can be viewed as a way of
exploring the local manifold from a specified starting point,
an application that we will explore further in future work.

6.2.2. REAL-VALUED DATASETS

Next, we evaluate our model on real-valued tabular datasets.
We use UCI repository datasets preprocessed as described in
(Papamakarios et al., 2017). We construct models by com-
posing several leaky-ReLU, conditional linear, and RNN
coupling transformations, along with an autoregressive ar-
bitrary conditional likelihood component. Please refer to
Appendix. D.1 for further architectural details.

First, we consider non-missing training data. We construct
masks, b, by dropping a random subset of the dimensions
according to a Bernoulli distribution with p = 0.5. After-
wards, we also evaluate our model when the training data
itself contains missing values that are never available during
training. We consider training and testing with data features
missing completely at random at a 10% and 50% rate.

Figure. 4 presents the arbitrary conditional NLL for models
trained with different level of missing rates. We compare to

Table 3. Marginal log-likelihood evaluated on the first d dimen-
sions. Note that ACFlow captures all the marginals in one single
model, while different TANSs are trained specifically for each case.
Higher is better.

d=3 d=5 d=10
ACFlow TAN | ACFlow TAN | ACFlow TAN
bsds 5.06 5.11 9.26 9.43 19.60 20.44
gas 0.78 1.22 3.01 4.47 10.13 12.09
hepmass -4.03 -4.00 -6.19 -5.92 -11.58 -10.87
miniboone -2.76 -2.13 -5.31 -3.73 -10.36 -8.13
power -0.57 -0.54 1.34 1.40 0.42 0.57

the current state-of-the-art, VAEAC, and an autoregressive
model. One can see that our model gives better NLL on
nearly all scenarios compared to VAEAC, which indicates
our model is better at learning the true distribution. Our
model also outperforms the autoregressive model for most
cases.

In addition to the arbitrary conditional likelihoods, we
can also train ACFlow to learn arbitrary marginal like-
lihoods. Similar to the arbitrary conditional case, a set
of covariates have an exponential number of marginal
distributions. We tested our model against TAN mod-
els trained explicitly on a particular subset of covariates
(we use the first d dimensions for convenience); results
are shown in Table. 3. Scatter plots from the first 3 di-
mensions of miniboone are shown in Fig. 5 and sam-

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

ples of other datasets are available in Appendix Fig. D.7.

Although the ACFlow
model was trained for ar-
bitrary marginals (and did
not know which marginal
tasks it would be eval-
uated on), it performed
as well as flow models
that were traned specifi-
cally for these marginals.
Thus, we expect that a sin-
gle ACFlow model would
also generalize to any arbi-
trary marginal task, which
would require one to train
an exponential number of

ACFlow
TAN
data

Figure 5. Marginal samples of
miniboone from the first 3 di-
mensions.

TAN flow models (one for each task). In essence, ACFlow
is able to do approximate marginalization for flow methods,
which was previously intractable.

6.2.3. COMPARISON WITH SPNs

SPNs (Poon & Domingos, 2011) model joint distri-
butions with a specially designed architecture so that
both arbitrary conditionals and marginals are tractable.

Table 4. Comparison with DC-
SPN on Olivetti Face dataset.
MSE scores for DCSPN are
from (Butz et al., 2019). Lower
is better.

left bottom

First, we compare to the
DCSPN (Butz et al., 2019)
on Olivetti Face dataset.
We evaluate the imputa-
tion performance by sam-
pling from the conditional
distributions p(z,, | ,)

using two different masks
(denoted as ‘left’ and ‘bot-
tom’). Results are shown
in Tab. 4. The MSE scores
for DCSPN are from their paper. Note that they train two
separate models for different masks, while we handle both
cases in one single ACFlow model and still obtain lower
MSE scores.

DCSPN
ACFlow

455 503
415 434

Next, we conduct experiments on UCI dataset to compare
with SPFlow (Molina et al., 2019), a python library for
SPNs. We report results in terms of the conditional NLL,
the NRMSE, and the marginal NLL in Tab. 5. The marginal
likelihoods are evaluated for the first 3, 5 and 10 dimensions,
respectively. In most of the cases, ACFlow outperforms
SPFlow.

6.3. Imputation

Applying ACFlow for data imputation is straight-forward,
since we can sample from the learned conditional distri-
butions p(z, | x,). In this section, we evaluate the per-
formance of multiple and single imputations against other

Table 5. Comparison to SPFlow on UCI datasets. Lower is better.

bsds gas hepmass miniboone power

(0o | 2y) SPFlow 2415 430 12.78 18.34 1.03
P\Tul®o) ACFlow -527 -8.09 8.20 0.97 -0.56
SPFlow 1.01 0.37 1.02 0.76 0.95

NRMSE ACFlow 0.60 0.57 0.91 0.48 0.88
(el 3)) SPFlow 2.87 0.68 4.01 221 0.63
plel: ACFlow -5.06 -0.78 4.03 2.76 0.57
(f 3)) SPFlow 442 -1.88 6.58 431 -1.01
plzt ACFlow 926 -3.01 6.19 531 134
(o[- 10) SPFlow 8.1 481 13.38 9.85 0.12
et ACFlow -19.60 -10.13 11.58 10.36 042

(c) CelebA inpaintings
Figure 6. Image Inpaintings. Left: groundtruth and inputs. Middle:
samples from ACFlow. Right: samples from VAEAC.

likelihood based generative models, such as VAEAC and au-
toregressive models. We also compare to classic imputation
methods, such as MICE (Buuren & Groothuis-Oudshoorn,
2010) and MissForest (Stekhoven & Biihlmann, 2012).

6.3.1. IMAGE INPAINTING

Figure. 6 shows multiple imputation results from VAEAC
and ACFlow (We use a Gaussian base likelihood for this
experiment, since sampling from an autoregressive model is
time consuming.). More samples are available in Appendix
C.5. We notice ACFlow can generate coherent and diverse
inpaintings for all three datasets and different masks. Com-
pared to VAEAC, our model generates sharp samples and
restores more detail. Even when the missing rate is high,
ACFlow can still generate decent inpaintings.

To quantitatively evaluate the inpainting performance, we re-
port the peak signal-to-noise ratio (PSNR) and the precision
and recall scores (PRD) (Sajjadi et al., 2018) in Table. 6. We
note that PSNR is a metric that may prefer blurry images
over sample diversity (Hore & Ziou, 2010), hence we evalu-
ate the trade-off between sample quality and diversity via
the precision and recall scores (PRD) (Sajjadi et al., 2018).
Since we cannot sample from the groundtruth conditional

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

bsds(N=1M, d=63)
0.572

gas(N=85.2K, d=8)

hepmass(N=32K, d=21)

miniboone(N=29.6K, d=43)

‘0 Qs

power(N=1.66M, d=6)
0.833

ACFlow+BG 0.586 0.384 oo 0.836
0.645 || 0.4210 . e Teo N 0.582 B 0.843 up=0
0.603 . 0.478 0.877 -
AcFiow [53 0.588 B 3% 0.533 0.877 up=01
S 0.667 S 0.488 e 0938 R 0.614 I 0.89 =p=05
0615 0.574 0.462 0.88
VAEAC 062 0.558 - 9855 . 0.467 - 0.881
S 0.666 B 0531 B 0.015 . 0513 [0.892
0.652 0.457 0.46 0.877
AutoReg SIS 0.752 B S 5 Baioss .
LN 0.879 S 0.483 N 0.937 N 0.644 N 0.882
0.895 0.715 0.948 0.62 0.949
GAIN 0.749 0.502 ‘ 1.024 - 0.615 1.074
R, 0.929 1452 s 1.143 . 1101
MissForest [N 0.665 B 0.418 [0.985 . 0.561 [0.981
R 0.662 S 0436] 0.99 B 0573 BN 0.99
MICE [N 0.631 . 0518 [0.964 [0.605 [0.911
BN 0.628 N 0.539 I 0969 R 0.615 I 0.916
0.5 0.7 09 1103 08 13 08 1 12 04 0.6 08 1 08 09 1 1.1 1.2

Figure 7. NRMSE results for real-valued feature imputation on UCI
the missing rate (p) is not zero.

Table 6. Inpainting results. Mean and std. dev. are computed by
sampling 5 binary masks for each testing data. Higher is better.

MNIST Omniglot CelebA

VAEAC PSNR 19.613£0.042 17.693£0.023 23.656=0.027
PRD (0.975,0.877) (0.926, 0.525) (0.966, 0.967)

A PSNR 17.349+£0.018 15.572£0.031 22.39340.040

CFlow _

PRD (0.984, 0.945) (0.971, 0.962) (0.988, 0.970)

ACFlow+BG PSNR 20.828+0.031 18.838+0.009 25.723+0.020
PRD (0.983, 0.947) (0.970, 0.967) (0.987,0.964)

distribution, we compute the PRD score between the im-
puted joint distribution p(z,)p(z, | ,) and the true joint
distribution p(z) via sampling 10,000 points. The PRD
scores for two distributions measure how much of one distri-
bution can be generated by another. Higher recall means a
greater portion of samples from the true distribution p(x) are
covered by p(z,)p(z, | ©,); and similarly, higher precision
means a greater portion of samples from p(z,)p(z., | z,)
are covered by p(z). We report the (Fi, F1) pairs in Ta-
ble. 6 to represent recall and precision, respectively.

From the quantitative results, we see that our model gives
higher PSNR and PRD scores compared to VAEAC, demon-
strating that our model better learns the true distribution.
Training with the auxiliary “best guess” penalty (denoted as
“ACFlow+BG”) can further improve the PSNR scores signif-
icantly, but hardly impacts the PRD scores, which verifies
that the proposed penalty does not affect the diversity of the
model.

6.3.2. FEATURE IMPUTATION

In Figure. 7, we compare feature imputation performance
using NRMSE (i.e. root mean squared error normalized by
the standard deviation of each feature and then averaged
across all features). For models that can perform multiple
imputation, 10 imputations are drawn for each test point to

datasets. Lower is better. We test MICE and MissForest only when

compute the average NRMSE scores. For our model trained
with the auxiliary objective (ACFlow+BG), we use the sin-
gle “best guess” to compute the NRMSE. In order to not bias
towards any specific missing pattern, we report the mean
and standard deviations over 5 randomly generated binary
masks (std. dev. are reported in Appendix Table. D.1).

Quantitatively, ACFlow is comparable to the previous state-
of-the-art when trained purely by maximizing the likelihood.
However, training with the auxiliary objective improves the
NRMSE scores significantly and gives state-of-the-art re-
sults on all datasets considered. As expected, higher missing
rate makes it harder to learn the dependencies; however, our
model performs best even when the missing rate is relatively
high.

7. Conclusion

In this work, we demonstrated that we can model the ar-
bitrary conditional distributions p(z., | z,) using a single
model by leveraging conditional flow transformations and
conditional autoregressive likelihoods. As special cases,
ACFlow can also achieve good performance for modeling
the joint distributions and arbitrary marginal distributions.
In regard to applications, ACFlow is applied to imputation
tasks and it empirically outperforms several strong baselines.
We also considered performing both single and multiple im-
putations in a unified platform to provide a “best guess”
single imputation when the mean is not analytically avail-
able. The samples generated from our model show that we
improve in both diversity and quality of imputations in many
datasets. Our model typically recovers more details than
the previous state-of-the-art methods. In future work, we
will apply ACFlow to reason about causal relationships and
learn underlying graphical structures. Our code is available
athttps://github.com/lupalab/ACFlow.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

Acknowledgements

This work was supported in part by the NIH

1RO1AA026879-01A1 grant.

References

Behrmann, J., Duvenaud, D., and Jacobsen, J.-H. Invert-
ible residual networks. arXiv preprint arXiv:1811.00995,
2018.

Belghazi, M. L., Oquab, M., LeCun, Y., and Lopez-Paz,
D. Learning about an exponential amount of conditional
distributions. arXiv preprint arXiv:1902.08401, 2019.

Butz, C. J., Oliveira, J. S., dos Santos, A. E., and Teixeira,
A. L. Deep convolutional sum-product networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 3248-3255, 2019.

Buuren, S. v. and Groothuis-Oudshoorn, K. Mice: Multi-
variate imputation by chained equations in r. In Journal
of statistical software, pp. 1-68, 2010.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I, and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversar-
ial nets. In Advances in neural information processing
systems, pp. 2172-2180, 2016.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Douglas, L., Zarov, 1., Gourgoulias, K., Lucas, C., Hart, C.,
Baker, A., Sahani, M., Perov, Y., and Johri, S. A uni-
versal marginalizer for amortized inference in generative
models. arXiv preprint arXiv:1711.00695, 2017.

Gondara, L. and Wang, K. Mida: Multiple imputation using
denoising autoencoders. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 260-272.
Springer, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Hore, A. and Ziou, D. Image quality metrics: Psnr vs.
ssim. In 2010 20th International Conference on Pattern
Recognition, pp. 2366-2369, Aug 2010. doi: 10.1109/
ICPR.2010.579.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck,
F., and Abbeel, P. Vime: Variational information maxi-
mizing exploration. In Advances in Neural Information
Processing Systems, pp. 11091117, 2016.

Ivanov, O., Figurnov, M., and Vetrov, D. Variational au-
toencoder with arbitrary conditioning. arXiv preprint
arXiv:1806.02382, 2018.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, pp. 10215-10224, 2018.

Larochelle, H. and Murray, I. The neural autoregressive
distribution estimator. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and
Statistics, pp. 29-37, 2011.

Ledig, C., Theis, L., Huszér, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 4681-4690, 2017.

Li, S. C.-X., Jiang, B., and Marlin, B. Misgan: Learning
from incomplete data with generative adversarial net-
works. arXiv preprint arXiv:1902.09599, 2019a.

Li, Y, Liu, S., Yang, J., and Yang, M.-H. Generative face
completion. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3911-
3919, 2017.

Li, Y, Gao, T., and Oliva, J. A forest from the trees:
Generation through neighborhoods. arXiv preprint
arXiv:1902.01435, 2019b.

Little, R. J. and Rubin, D. B. Statistical analysis with
missing data, volume 793. John Wiley & Sons, 2019.

Mattei, P.-A. and Frellsen, J. Miwae: Deep generative
modelling and imputation of incomplete data sets. In
International Conference on Machine Learning, pp. 4413—
4423, 2019.

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subra-
mani, P., Di Mauro, N., Poupart, P., and Kersting, K.
Spflow: An easy and extensible library for deep prob-
abilistic learning using sum-product networks. arXiv
preprint arXiv:1901.03704, 2019.

Murray, J. S. et al. Multiple imputation: A review of prac-
tical and theoretical findings. Statistical Science, 33(2):
142-159, 2018.

Oliva, J. B., Dubey, A., Zaheer, M., P6czos, B., Salakhutdi-
nov, R., Xing, E. P, and Schneider, J. Transformation au-
toregressive networks. arXiv preprint arXiv:1801.09819,
2018.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Advances in
Neural Information Processing Systems, pp. 2338-2347,
2017.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and
Efros, A. A. Context encoders: Feature learning by
inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2536-2544,
2016.

Poon, H. and Domingos, P. Sum-product networks: A new
deep architecture. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pp.
689-690. IEEE, 2011.

Sajjadi, M. S., Bachem, O., Lucic, M., Bousquet, O., and
Gelly, S. Assessing generative models via precision and
recall. In Advances in Neural Information Processing
Systems, pp. 5228-5237, 2018.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
Pixelenn++: Improving the pixelcnn with discretized lo-
gistic mixture likelihood and other modifications. arXiv
preprint arXiv:1701.05517, 2017.

Stekhoven, D. J. and Biithlmann, P. Missforest—non-
parametric missing value imputation for mixed-type data.
Bioinformatics, 28(1):112-118, 2011.

Stekhoven, D. J. and Biihlmann, P. Missforest — non-
parametric missing value imputation for mixed-type data.
In Bioinformatics, Volume 28, Issue 1, pp. 112-118, 2012.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P,
Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B.
Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520-525, 2001.

Yoon, J., Jordon, J., and Schaar, M. v. d. Gain: Missing
data imputation using generative adversarial nets. arXiv
preprint arXiv:1605.08803, 2016.

