
ACFlow: Flow Models for Arbitrary Conditional Likelihoods

Appendices
A. ACFlow for Categorical Data
In the main text, we mainly focus on real-valued data,
but our model is also applicable with data that contains
categorical dimensions. Consider a d-dimensional vec-
tor x with both real-valued and categorical features. The
conditional distribution p(xu|xo) can be factorized as
p(xc

u|xo)p(x
r
u|xo, x

c
u), where xr

u and xc
u represent the real-

valued and categorical components in xu respectively. Since
the conditioning inputs in Eq. (4) can be either real-valued
or categorical, p(xr

u|xo, x
c
u) can be directly modeled by

ACFlow. However, ACFlow is not directly applicable to
p(xc

u|xo), because the change of variable theorem, Eq. (1),
cannot be applied to categorical covariates. But we can use
an autoregressive model, i.e., a special ACFlow without any
transformations, to get likelihoods for categorical compo-
nents. Hence, our proposed method can be applied to both
real-valued and categorical data.

B. Synthetic Datasets
To validate the effectiveness of our model, we conduct ex-
periments on synthetic 2-dimensional datasets (Behrmann
et al., 2018), i.e., x = (x1, x2) ∈ R2. The joint distributions
are plotted in Fig. 2. Here, the conditional distributions are
highly multi-modal and vary significantly when conditioned
on different observations. We train arbitrary conditional
models on 100,000 samples from the joint distribution. The
masks are generated by dropping out one dimension at ran-
dom.

We compare our model against VAEAC, the current state-
of-the-art model trained purely by likelihood. We closely
follow the released code for VAEAC1 to construct the pro-
posal, prior, and generative networks. Specifically, we use
fully connected layers and skip connections as is in their
official implementation. We also use short-cut connections
between the prior network and the generative network. We
search over different combinations of the number of layers,
the number of hidden units of fully connected layers, and
the dimension of the latent code. Validation likelihoods are
used to select the best model.

ACFlow is constructed by stacking multiple conditional
transformations and an autoregressive likelihood. One con-
ditional transformation layer (shown in Fig. B.1) contains
one linear transformation, followed by one leaky relu trans-
formation, and then one RNN coupling transformation. The
DNN in the linear transformation is a 2-layer fully connected
network with 256 units. RNN coupling is implemented as a

1https://github.com/tigvarts/vaeac/blob/
master/imputation_networks.py

Figure B.1. One conditional transformation layer.

2-layer GRU with 256 hidden units. We stack four condi-
tional transformation layers and use reverse transformations
in between. The autoregressive likelihood model is a 2-
layer GRU with 256 hidden units. The base distribution is a
Gaussian Mixture Model with 40 components.

Fig. 2 shows imputation results from our model and VAEAC.
We show imputations from both p(x1 | x2, b) and p(x2 |
x1, b) by generating 10 samples conditioned on each ob-
served covariate. Observed covariates are sampled from the
marginal distribution p(x2) and p(x1) respectively. We see
that ACFlow is capable of learning multi-modal distribu-
tions, while VAEAC tends to merge multiple modes into
one single mode.

C. Image Datasets
C.1. Datasets and Masks

We compare ACFlow against baselines using three common
image datasets, MNIST, Omniglot, and CelebA. MNIST
contains grayscale images of size 28× 28. Omniglot data is
also resized to 28× 28 and augmented with rotations. For
CelebA dataset, we take a central crop of 128×128 and then
resize it to 64× 64. Since a flow model requires continuous
inputs, we dequantize the images by adding independent
uniform noise to them.

In order to train the conditional model p(xu | x0, b), we
manually generate the binary masks form some predefined
distributions. We train ACFlow and baselines using a mix-
ture of different masks. For MNIST and Omniglot, we
use MCAR masks, rectangular masks, and half masks. For
CelebA, other than the three masks described above, we also
use a random pattern mask proposed in (Pathak et al., 2016)
and the masks used in (Li et al., 2017). We shall describe
the meaning of different masks below.

MCAR mask MCAR mask utilizes a pixelwise indepen-
dent Bernoulli distribution with p = 0.2 to construct masks.
That is, on average, we randomly drop out 80% of the pixels.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

Rectangular mask We randomly generate a rectangle in-
side which pixels are marked as unobserved. The mask is
generated by sampling a point to be the upper-left corner
and randomly generating the height and width of the rectan-
gle, although the area is required to be at least 10% of the
full image area.

Half mask Half mask means either the upper, lower, left
or right half of the image is unobserved.

Random pattern mask Random pattern means we mask
out a random region with an arbitrary shape. We take the
implementation from VAEAC2.

Masks in (Li et al., 2017) They proposed six different
masks to mask out different parts of a face, like eyes, mouth
and checks.

C.2. Models

In this experiment, we compare to VAEAC (Ivanov et al.,
2018) and an autoregressive model, PixelCNN (Salimans
et al., 2017).

VAEAC released their implementation for the 128 × 128
CelebA dataset and we modify their code by removing the
first pooling layer to suit 64 × 64 images. For MNIST
and Omniglot, we build similar networks by using fewer
convolution and pooling layers. Specifically, we pad the
images to 32× 32 and use 5 pooling layers to get a latent
vector. We use 32 latent variables for MNIST and Omniglot
and 256 latent variables for CelebA. We also use short-cut
connections between the prior network and the generative
network as in (Ivanov et al., 2018).

PixelCNN is originally proposed to model the joint likeli-
hoods. However, since it decomposes the joint likelihood
into a sequence of conditionals, it can be easily extended to
model the arbitrary conditional distributions:

p(xu | xo, b) =

|u|�

i=1

p(xi
u | x<i

u , xo, b), (14)

where xi
u represents the ith dimension of xu. In order

to capture the dependencies over xo and b, we apply an
embedding network to get a vector embedding of them. Note
that different from the original PixelCNN implementation,
where they use discrete base distributions, we use mixture
of Gaussian base distribution here to make the comparison
fair.

ACFlow is implemented by replacing affine coupling in Re-
alNVP (Dinh et al., 2016) with our proposed conditional

2https://github.com/tigvarts/vaeac/blob/
master/mask_generators.py#L100

affine coupling transformation. The DNN in affine coupling
is implemented as a ResNet (He et al., 2016). For MNIST
and Omniglot, we use 2 residual blocks. For CelebA, we
use 4 blocks. We also use the multi scale architecture via
the squeeze operation proposed in (Dinh et al., 2016). For
MNIST and Omniglot, we apply 3 squeeze operations. For
CelebA, we apply 4 squeeze operations. Note that we also
need to squeeze the binary mask b in the same way to make
sure it corresponds to xo. The arbitrary conditional likeli-
hood is chosen as either a Gaussian base likelihood model
or an autoregressive one with the same formulation as the
PixelCNN model described above.

For models trained with our proposed “best guess” penalty,
we set the hyperparameter λ to 1.0. During preliminary
experiments, we find our model is quite robust to different
λ values.

C.3. Joint Likelihood

For a model trained with arbitrary conditional likelihood
p(xu | xo, b), we evaluate the joint likelihood by setting
the binary mask b to zeros. We can of course sample from
this joint distribution as well. We show some samples in
Fig. C.2. We see that the model generate decent samples
although it never observes the complete data during training.

C.4. Gibbs Sampling

Due to space limitation, we only show part of the mixing
steps in the Gibbs sampling procedure. In Figure. C.3, we
show all the 50 steps. Please zoom in for better visualization.

C.5. Additional Inpaintings

We show additional inpainting results from ACFlow in
Fig. C.5. We also show some “best guess” inpaintings ob-
tained by a model trained with the auxiliary objective in
Fig. C.4. As we expected, the “best guess” imputations tend
to be blurry due to the MSE penalty. However, the samples
from the same model are still diverse and coherent as can
be seen from Fig. C.6.

D. Real-valued Datasets
D.1. Models

In this experiment, we compare to VAEAC and an autore-
gressive model in term of the likelihood. We also compare
to a GAN based method, GAIN, and two classic imputation
methods, MICE and MisForest in terms of the imputation
performance.

We modify the official VAEAC implementation for this
experiment. In their original implementation, they restricted
the generative network to output a distribution with variance

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

(a) MNIST (b) Omniglot (c) CelebA

Figure C.2. Joint sampling from a model trained with p(xu | xo, b) by setting b to zeros.

Figure C.3. Gibbs sampling using a pretrained ACFlow. We iteratively sample the upper and lower half for 50 steps conditioned on the
remaining part.

equal to 1. We found that learning the variance can improve
VAEAC’s likelihood significantly and gives comparable
NRMSE scores. Note that during sampling, we still use the
mean of the outputs from the generative network, because it
gives slightly better NRMSE scores.

The autoregressive baseline is implemented as a 4-layer
GRU netowrk with 256 hidden units. We did not observe
further improvements when adding more layers.

We build ACFlow by combining 6 conditional transforma-
tion layers (shown in Fig. B.1) with a 4-layer GRU au-
toregerssive likelihood model. The base distribution is a
Gaussian Mixture with 40 components. “ACFlow+BG” uses
the same network architecture but trained with λ = 1.0. We
search over 0.1, 1.0, and 10.0 for λ and find it gives com-
parable likelihood for all datasets. Hence, we only report
results when λ = 1.0 in the main text.

For GAIN, we use the variant the VAEAC authors proposed.
They observed consistent improvement over the original
one on UCI datasets. When we have complete training data,
we add another MSE loss over the unobserved covariates to
train the generator.

MICE and MissForest are trained using default parameters
in the R packages.

The autoencoder baseline is implemented as a 6-layer fully

connected network with 256 hidden units. ReLU is used
after each fully connected layer except the last one. We use
standard Gaussian as the base distribution.

D.2. Marginal Likelihood

In the main text, we compare the marginal likelihood to
TANs that are trained specifically for the corresponding
marginal distributions. In Figure. D.7, we qualitatively com-
pare them by showing the scatter plots of the samples. We
draw 1024 samples from both ACFlow and TANs, and also
sample 1024 real data.

D.3. Imputation Results

We list all imputation results in Table. D.1. We report mean
and standard deviation by generating 5 different masks for
each test data point.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

Table D.1. Missing feature imputation results. Lower is better for both NRMSE and NLL. Numbers inside a parentheses are standard
deviation for 5 randomly generated binary mask.

Missing Rate Method bsds gas hepmass miniboone power

p=0

GAIN NRMSE 0.895±0.151 0.715±0.041 0.948±0.006 0.620±0.002 0.949±0.017

AutoEncoder NRMSE 0.635±0.000 1.016±0.178 0.930±0.001 0.483±0.003 0.887±0.002

NLL 3.502±0.014 -2.543±0.115 12.707±0.018 6.861±0.114 2.488±0.039

VAEAC NRMSE 0.615±0.000 0.574±0.033 0.896±0.001 0.462±0.002 0.880±0.001

NLL 1.708±0.005 -2.418±0.006 10.082±0.010 3.452±0.067 0.042±0.002

AutoRegressive NRMSE 0.652±0.000 0.457±0.011 0.903±0.001 0.460±0.005 0.877±0.002

NLL -1.73±0.010 -7.646±0.009 6.428±0.006 -0.057±0.022 -0.399±0.003

ACFlow NRMSE 0.603±0.000 0.567±0.050 0.909±0.000 0.478±0.004 0.877±0.001

NLL -5.269±0.007 -8.086±0.010 8.197±0.008 0.972±0.022 -0.561±0.003

ACFlow+BG NRMSE 0.572±0.000 0.369±0.016 0.861±0.001 0.442±0.001 0.833±0.002

NLL -4.841±0.008 -7.593±0.011 6.833±0.006 1.098±0.032 -0.528±0.003

p=0.1

MICE NRMSE 0.631±0.003 0.518±0.004 0.964±0.004 0.605±0.004 0.911±0.008

MissForest NRMSE 0.665±0.002 0.418±0.005 0.985±0.002 0.561±0.003 0.991±0.019

GAIN NRMSE 0.749±0.128 0.502±0.070 1.024±0.023 0.615±0.017 1.074±0.038

AutoEncoder NRMSE 0.648±0.001 0.761±0.095 0.936±0.001 0.498±0.002 0.887±0.002

NLL 4.300±0.038 -2.266±0.169 12.851±0.012 7.305±0.043 2.521±0.028

VAEAC NRMSE 0.620±0.000 0.558±0.047 0.899±0.000 0.467±0.004 0.881±0.003

NLL 2.245±0.015 -2.823±0.009 10.389±0.005 4.242±0.071 0.103±0.005

AutoRegressive NRMSE 0.752±0.000 0.472±0.011 0.915±0.000 0.539±0.004 0.876±0.001

NLL 3.233±0.015 -7.536±0.009 7.824±0.006 5.409±0.066 -0.466±0.003

ACFlow NRMSE 0.610±0.000 0.588±0.025 0.908±0.001 0.533±0.005 0.877±0.002

NLL -4.225±0.018 -7.568±0.005 7.784±0.006 5.150±0.053 -0.557±0.003

ACFlow+BG NRMSE 0.586±0.001 0.384±0.018 0.863±0.001 0.468±0.003 0.836±0.002

NLL -3.187±0.017 -7.212±0.008 9.670±0.007 3.577±0.057 -0.510±0.003

p=0.5

MICE NRMSE 0.628±0.001 0.539±0.005 0.969±0.002 0.615±0.002 0.916±0.005

MissForest NRMSE 0.662±0.001 0.436±0.003 0.990±0.002 0.573±0.005 0.990±0.012

GAIN NRMSE 0.929±0.123 1.152±0.180 1.143±0.035 0.800±0.042 1.101±0.044

AutoEncoder NRMSE 0.739±0.001 0.618±0.056 0.962±0.001 0.567±0.005 0.905±0.002

NLL 10.078±0.021 0.990±0.097 13.482±0.012 10.775±0.091 2.858±0.047

VAEAC NRMSE 0.666±0.001 0.531±0.036 0.915±0.001 0.513±0.004 0.892±0.002

NLL 9.930±0.029 -1.952±0.023 11.415±0.012 9.051±0.079 0.343±0.004

AutoRegressive NRMSE 0.879±0.001 0.483±0.021 0.937±0.000 0.644±0.002 0.882±0.002

NLL 11.348±0.010 -5.723±0.004 9.760±0.007 11.024±0.069 -0.363±0.003

ACFlow NRMSE 0.667±0.001 0.488±0.030 0.938±0.000 0.614±0.004 0.890±0.000

NLL 1.508±0.010 -5.405±0.008 10.538±0.006 9.892±0.084 -0.458±0.005

ACFlow+BG NRMSE 0.645±0.000 0.421±0.016 0.890±0.000 0.582±0.007 0.843±0.001

NLL 3.497±0.015 -4.818±0.009 10.975±0.006 10.849±0.105 -0.417±0.005

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

(a) MNIST (b) Omniglot (c) CelebA

Figure C.4. Single imputation from our “best guess”. Left: inputs. Middle: best guess imputation. Right: groundtruth.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

(a) MNIST (b) Omniglot

(c) CelebA

Figure C.5. Additional inpaintings from ACFlow. Left: inputs. Middle: Samples. Right: groundtruth.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

(a) MNIST (b) Omniglot

(c) CelebA

Figure C.6. Multiple imputations from ACFlow+BG. Left:inputs. Middle: Samples. Right: groundtruth.

ACFlow: Flow Models for Arbitrary Conditional Likelihoods

(a) bsds (b) gas (c) hepmass

(d) miniboone (e) power

Figure D.7. sample the first 3 dimensions from the learned marginal distributions.

