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A. Optimization Error Bounds
For a full picture of generalization errors, we need to address the optimization errors. This is achieved by the following
lemma. Parts (a) and (b) consider the convex and strongly convex empirical objectives, respectively (we make no assumptions
on the convexity of each f(·, z)). Note in Parts (c) and (d), we do not make a bounded gradient assumption. As an alternative,
we require convexity of f(·; z) for all z. An appealing property of Parts (c) and (d) is that it involves O(

∑t
j=1 η

2
jFS(w))

instead of O(
∑t
j=1 η

2
j ), which is a requirement for developing fast rates in the case with low noises.

Our discussion on optimization errors requires to use a self-bounding property for functions with Hölder continuous
(sub)gradients, which means that gradients can be controlled by function values. The case α = 1 was established in Srebro
et al. (2010). The case α ∈ (0, 1) was established in Ying & Zhou (2017) and slightly refined in Lei et al. (2019). The case
α = 0 follows directly from Definition 3. Define

cα,1 =

{
(1 + 1/α)

α
1+αL

1
1+α , if α > 0

supz ‖∂f(0; z)‖2 + L, if α = 0.
(A.1)

Lemma A.1. Assume for all z ∈ Z , the map w 7→ f(w; z) is nonnegative, and w 7→ ∂f(w; z) is (α,L)-Hölder continuous
with α ∈ [0, 1]. Then for cα,1 defined as (A.1) we have

‖∂f(w, z)‖2 ≤ cα,1f
α

1+α (w, z), ∀w ∈ Rd, z ∈ Z.

Lemma A.2. (a) Let {wt}t be produced by (3.3) and Assumption 1 hold. If FS is convex, then for all t ∈ N and w ∈ Ω

EA[FS(w
(1)
t )]− FS(w) ≤

G2
∑t
j=1 η

2
j + ‖w‖22

2
∑t
j=1 ηj

,

where w
(1)
t =

(∑t
j=1 ηjwj

)
/
∑t
j=1 ηj .

(b) Let FS be σS-strongly convex and Assumption 1 hold. Let t0 ≥ 0 and {wt}t be produced by (3.3) with ηt =
2/(σS(t+ t0)). Then for all t ∈ N and w ∈ Ω

EA[FS(w
(2)
t )]− FS(w) = O

(
1/(tσS) + ‖w‖22/t2

)
,

where w
(2)
t =

(∑t
j=1(j + t0 − 1)wj

)
/
∑t
j=1(j + t0 − 1).

(c) Assume for all z ∈ Z , the function w 7→ f(w; z) is nonnegative, convex and L-smooth. Let {wt}t be produced by (3.3)
with ηt ≤ 1/(2L). If the step size is nonincreasing, then for all t ∈ N and w ∈ Ω independent of the SGD algorithm A

t∑
j=1

ηjEA[FS(wj)− FS(w)] ≤ (1/2 + Lη1)‖w‖22 + 2L

t∑
j=1

η2
jFS(w).
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(d) Assume for all z ∈ Z , the function w 7→ f(w; z) is nonnegative, convex, and ∂f(w; z) is (α,L)-Hölder continuous
with α ∈ [0, 1). Let {wt}t be produced by (3.3) with nonincreasing step sizes. Then for all t ∈ N and w ∈ Ω
independent of the SGD algorithm A we have

2

t∑
j=1

ηjEA[FS(wj)− FS(w)] ≤ ‖w‖22 + c2α,1

( t∑
j=1

η2
j

) 1−α
1+α
(
η1‖w‖22 + 2

t∑
j=1

η2
jFS(w) + cα,2

t∑
j=1

η
3−α
1−α
j

) 2α
1+α

,

where

cα,2 =

{
1−α
1+α (2α/(1 + α))

2α
1−α c

2+2α
1−α
α,1 , if α > 0

c2α,1, if α = 0.
(A.2)

Proof. Parts (a) and (b) can be found in the literature (Lacoste-Julien et al., 2012; Nemirovski et al., 2009). We only prove
Parts (c) and (d). We first prove Part (c). The projection operator ΠΩ is non-expansive, i.e.,∥∥ΠΩ(w)−ΠΩ(w̃)

∥∥
2
≤ ‖w − w̃‖2. (A.3)

By the SGD update (3.3), (A.3), convexity and Lemma A.1, we know

‖wt+1 −w‖22 ≤ ‖wt − ηt∂f(wt; zit)−w‖22
= ‖wt −w‖22 + η2

t ‖∂f(wt; zit)‖22 + 2ηt〈w −wt, ∂f(wt; zit)

≤ ‖wt −w‖22 + 2η2
tLf(wt; zit) + 2ηt(f(w; zit)− f(wt; zit)) (A.4)

≤ ‖wt −w‖22 + 2ηtf(w; zit)− ηtf(wt; zit),

where the last inequality is due to ηt ≤ 1/(2L). It then follows that

ηtf(wt; zit) ≤ ‖wt −w‖22 − ‖wt+1 −w‖22 + 2ηtf(w; zit).

Multiplying both sides by ηt and using the assumption ηt+1 ≤ ηt, we know

η2
t f(wt; zit) ≤ ηt‖wt −w‖22 − ηt‖wt+1 −w‖22 + 2η2

t f(w; zit)

≤ ηt‖wt −w‖22 − ηt+1‖wt+1 −w‖22 + 2η2
t f(w; zit).

Taking a summation of the above inequality gives (w1 = 0)

t∑
j=1

η2
j f(wj ; zij ) ≤ η1‖w‖22 + 2

t∑
j=1

η2
j f(w; zij ).

Taking an expectation w.r.t. A gives (note wj is independent of ij)

t∑
j=1

η2
jEA[FS(wj)] =

t∑
j=1

η2
jEA

[
f(wj ; zij )

]
≤ η1‖w‖22 + 2

t∑
j=1

η2
jEA[FS(w)]. (A.5)

On the other hand, taking an expectation w.r.t. it over both sides of (A.4) shows

2ηt
[
FS(wt)− FS(w)

]
≤ ‖wt −w‖22 − Eit

[
‖wt+1 −w‖22

]
+ 2η2

tLFS(wt).

Taking an expectation on both sides followed with a summation, we get

2

t∑
j=1

ηjEA[FS(wj)− FS(w)] ≤ ‖w‖22 + 2L

t∑
j=1

η2
jEA[FS(wj)]

≤ (1 + 2Lη1)‖w‖22 + 4L

t∑
j=1

η2
jEA[FS(w)],
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where the last step is due to (A.5). The proof is complete since w is independent of A.

We now prove Part (d). Analogous to (A.4), one can show for loss functions with Hölder continuous (sub)gradients (Lemma
A.1)

‖wt+1 −w‖22 ≤ ‖wt −w‖22 + c2α,1η
2
t f

2α
1+α (wt; zit) + 2ηt(f(w; zit)− f(wt; zit)). (A.6)

By the Young’s inequality

ab ≤ p−1|a|p + q−1|b|q, a, b ∈ R, p, q > 0 with p−1 + q−1 = 1, (A.7)

we know (notice the following inequality holds trivially if α = 0)

ηtc
2
α,1f

2α
1+α (wt; zit) =

(1 + α

2α
f(wt; zit)

) 2α
1+α
( 2α

1 + α

) 2α
1+α

c2α,1ηt

≤ 2α

1 + α

(1 + α

2α
f(wt; zit)

) 2α
1+α

1+α
2α

+
1− α
1 + α

(( 2α

1 + α

) 2α
1+α

c2α,1ηt

) 1+α
1−α

= f(wt; zit) + cα,2η
1+α
1−α
t .

Combining the above two inequalities together, we get

ηtf(wt; zit) ≤ ‖wt −w‖22 − ‖wt+1 −w‖22 + 2ηtf(w; zit) + cα,2η
2

1−α
t .

Multiplying both sides by ηt and using ηt+1 ≤ ηt, we derive

η2
t f(wt; zit) ≤ ηt‖wt −w‖22 − ηt+1‖wt+1 −w‖22 + 2η2

t f(w; zit) + cα,2η
3−α
1−α
t .

Taking a summation of the above inequality gives

t∑
j=1

η2
j f(wj ; zij ) ≤ η1‖w‖22 + 2

t∑
j=1

η2
j f(w; zij ) + cα,2

t∑
j=1

η
3−α
1−α
j . (A.8)

According to the Jensen’s inequality and the concavity of x 7→ x
2α

1+α , we know

t∑
j=1

η2
j f

2α
1+α (wj ; zij ) ≤

t∑
j=1

η2
j

(∑t
j=1 η

2
j f(wj ; zij )∑t
j=1 η

2
j

) 2α
1+α

≤
( t∑
j=1

η2
j

) 1−α
1+α
(
η1‖w‖22 + 2

t∑
j=1

η2
j f(w; zij ) + cα,2

t∑
j=1

η
3−α
1−α
j

) 2α
1+α

, (A.9)

where in the last step we have used (A.8). Taking an expectation on both sides of (A.6), we know

2ηtEA
[
FS(wt)− FS(w)

]
≤ EA[‖wt −w‖22]− EA

[
‖wt+1 −w‖22

]
+ c2α,1η

2
tEA

[
f

2α
1+α (wt; zit)

]
.

Taking a summation of the above inequality gives

2

t∑
j=1

ηjEA[FS(wj)− FS(w)] ≤ ‖w‖22 + c2α,1

t∑
j=1

η2
jEA

[
f

2α
1+α (wj ; zij )

]
≤ ‖w‖22 + c2α,1

( t∑
j=1

η2
j

) 1−α
1+α
(
η1‖w‖22 + 2

t∑
j=1

η2
jEA[FS(w)] + cα,2

t∑
j=1

η
3−α
1−α
j

) 2α
1+α

,

where we have used (A.9) and the concavity of x 7→ x
2α

1+α in the last step. The proof is complete by noting the independence
between w and A.
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B. Proofs on Generalization by On-average Model Stability
To prove Theorem 2, we introduce an useful inequality for L-smooth functions w 7→ f(w; z) (Nesterov, 2013)

f(w; z) ≤ f(w̃; z) + 〈w − w̃, ∂f(w̃; z)〉+
L‖w − w̃‖22

2
. (B.1)

Proof of Theorem 2. Due to the symmetry, we know

ES,A
[
F (A(S))− FS(A(S))

]
= ES,S̃,A

[ 1

n

n∑
i=1

(
F (A(S(i)))− FS(A(S))

)]
= ES,S̃,A

[ 1

n

n∑
i=1

(
f(A(S(i)); zi)− f(A(S); zi)

)]
, (B.2)

where the last identity holds since A(S(i)) is independent of zi. Under Assumption 1, it is then clear that

∣∣ES,A[F (A(S))− FS(A(S))
]∣∣ ≤ ES,S̃,A

[G
n

n∑
i=1

‖A(S)−A(S(i))‖2
]
.

This proves Part (a).

We now prove Part (b). According to (B.1) due to the L-smoothness of f and (B.2), we know

ES,A
[
F (A(S))− FS(A(S))

]
≤ 1

n

n∑
i=1

ES,S̃,A
[
〈A(S(i))−A(S), ∂f(A(S); zi)〉+

L

2
‖A(S(i))−A(S)‖22

]
.

According to the Schwartz’s inequality we know

〈A(S(i))−A(S), ∂f(A(S); zi)〉 ≤ ‖A(S(i))−A(S)‖2‖∂f(A(S); zi)‖2

≤ γ

2
‖A(S(i))−A(S)‖22 +

1

2γ
‖∂f(A(S); zi)‖22

≤ γ

2
‖A(S(i))−A(S)‖22 +

L

γ
f(A(S); zi),

where the last inequality is due to the self-bounding property of smooth functions (Lemma A.1). Combining the above two
inequalities together, we derive

ES,A
[
F (A(S))− FS(A(S))

]
≤ L+ γ

2n

n∑
i=1

ES,S̃,A
[
‖A(S(i))−A(S)‖22

]
+

L

nγ

n∑
i=1

ES,A[f(A(S); zi)].

The stated inequality in Part (b) then follows directly by noting 1
n

∑n
i=1 f(A(S); zi) = FS(A(S)).

Finally, we consider Part (c). By (B.2) and the convexity of f , we know

ES,A
[
F (A(S))− FS(A(S))

]
≤ 1

n

n∑
i=1

ES,S̃,A
[
〈A(S(i))−A(S), ∂f(A(S(i)); zi)〉

]
.

By the Schwartz’s inequality and Lemma A.1 we know

〈A(S(i))−A(S), ∂f(A(S(i)); zi)〉 ≤
γ

2
‖A(S(i))−A(S)‖22 +

1

2γ
‖∂f(A(S(i)); zi)‖22

≤ γ

2
‖A(S(i))−A(S)‖22 +

c2α,1
2γ

f
2α

1+α (A(S(i)); zi).

Combining the above two inequalities together, we get

ES,A
[
F (A(S))− FS(A(S))

]
≤ γ

2n

n∑
i=1

ES,S̃,A
[
‖A(S(i))−A(S)‖22

]
+
c2α,1
2γ

1

n

n∑
i=1

ES,S̃,A
[
f

2α
1+α (A(S(i)); zi)

]
.
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Since x 7→ x
2α

1+α is concave and zi is independent of A(S(i)), we know

ES,S̃,A
[
f

2α
1+α (A(S(i)); zi)

]
≤ ES,S̃,A

[(
Ezi
[
f(A(S(i)); zi)

]) 2α
1+α
]

= ES,S̃,A
[
F

2α
1+α (A(S(i)))

]
= ES,A

[
F

2α
1+α (A(S))

]
.

A combination of the above two inequalities then gives the stated bound in Part (c). The proof is complete.

C. Proof on Learning without Bounded Gradients: Strongly Smooth Case
C.1. Stability bounds

A key property on establishing the stability of SGD is the non-expansiveness of the gradient-update operator established in
the following lemma.

Lemma C.1 (Hardt et al. 2016). Assume for all z ∈ Z , the function w 7→ f(w; z) is convex and L-smooth. Then for
η ≤ 2/L we know

‖w − η∂f(w; z)− w̃ + η∂f(w̃; z)‖2 ≤ ‖w − w̃‖2.

Based on Lemma C.1, we establish stability bounds of models for SGD applied to two sets differing by a single example.

Lemma C.2. Assume for all z ∈ Z , the function w 7→ f(w; z) is nonnegative, convex and L-smooth. Let S, S̃ and S(i) be
constructed as Definition 4. Let {wt} and {w(i)

t } be produced by (3.3) with ηt ≤ 2/L based on S and S(i), respectively.
Then for any p > 0 we have

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖2

]
≤ 2
√

2L

n

t∑
j=1

ηjES,A
[√

f(wj ; zi)
]

(C.1)

and

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ 8(1 + 1/p)L

n

t∑
j=1

(1 + p/n)t−jη2
jES,A

[
f(wj ; zi)

]
. (C.2)

Proof. If it 6= i, we know the updates of wt+1 and w
(i)
t+1 are based on stochastic gradients calculated with the same example

zit . By Lemma C.1 we then get

‖wt+1 −w
(i)
t+1‖2 ≤

∥∥wt − ηt∂f(wt; zit)−w
(i)
t + ηt∂f(w

(i)
t , zit)

∥∥
2
≤ ‖wt −w

(i)
t ‖2. (C.3)

If it = i, we know

‖wt+1 −w
(i)
t+1‖2 ≤

∥∥wt − ηt∂f(wt; zi)−w
(i)
t + ηt∂f(w

(i)
t , z̃i)

∥∥
2

≤ ‖wt −w
(i)
t ‖2 + ηt‖∂f(wt; zi)− ∂f(w

(i)
t ; z̃i)‖2 (C.4)

≤ ‖wt −w
(i)
t ‖2 + ηt‖∂f(wt; zi)‖2 + ηt‖∂f(w

(i)
t ; z̃i)‖2

≤ ‖wt −w
(i)
t ‖2 +

√
2Lηt

(√
f(wt; zi) +

√
f(w

(i)
t ; z̃i)

)
, (C.5)

where the second inequality follows from the sub-additivity of ‖ · ‖2 and the last inequality is due to Lemma A.1 on the
self-bounding property of smooth functions.

We first prove Eq. (C.1). Since it is drawn from the uniform distribution over {1, . . . , n}, we can combine Eqs. (C.3) and
(C.5) to derive

EA
[
‖wt+1 −w

(i)
t+1‖2

]
≤ EA

[
‖wt −w

(i)
t ‖
]

+

√
2Lηt
n

EA
[√

f(wt; zi) +

√
f(w

(i)
t ; z̃i)

]
.

Since zi and z̃i follow from the same distribution, we know

ES,S̃,A
[√

f(w
(i)
t ; z̃i)

]
= ES,A

[√
f(wt; zi)

]
. (C.6)
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It then follows that

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖2

]
≤ ES,S̃,A

[
‖wt −w

(i)
t ‖
]

+
2
√

2Lηt
n

ES,A
[√

f(wt; zi)
]
.

Taking a summation of the above inequality and using w1 = w
(i)
1 then give (C.1).

We now turn to (C.2). For the case it = i, it follows from (C.4) and the standard inequality (a+b)2 ≤ (1+p)a2+(1+1/p)b2

that

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)‖wt −w

(i)
t ‖22 + (1 + p−1)η2

t ‖∂f(wt; zi)− ∂f(w
(i)
t ; z̃i)‖22

≤ (1 + p)‖wt −w
(i)
t ‖22 + 2(1 + p−1)η2

t ‖∂f(wt; zi)‖22 + 2(1 + p−1)η2
t ‖∂f(w

(i)
t ; z̃i)‖22

≤ (1 + p)‖wt −w
(i)
t ‖22 + 4(1 + p−1)Lη2

t f(wt; zi) + 4(1 + p−1)Lη2
t f(w

(i)
t ; z̃i), (C.7)

where the last inequality is due to Lemma A.1. Combining (C.3), the above inequality together and noticing the distribution
of it, we derive

EA
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p/n)EA

[
‖wt −w

(i)
t ‖22

]
+

4(1 + p−1)Lη2
t

n
EA
[
f(wt; zi) + f(w

(i)
t ; z̃i)

]
.

Analogous to (C.6), we have
ES,S̃,A

[
f(w

(i)
t ; z̃i)

]
= ES,A

[
f(wt; zi)

]
(C.8)

and get

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p/n)ES,S̃,A

[
‖wt −w

(i)
t ‖22

]
+

8(1 + p−1)Lη2
t

n
ES,A

[
f(wt; zi)

]
.

Multiplying both sides by (1 + p/n)−(t+1) yields that

(1 + p/n)−(t+1)ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p/n)−tES,S̃,A

[
‖wt −w

(i)
t ‖22

]
+

8(1 + p−1)L(1 + p/n)−(t+1)η2
t

n
ES,A

[
f(wt; zi)

]
.

Taking a summation of the above inequality and using w1 = w
(i)
1 , we get

(1 + p/n)−(t+1)ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤

t∑
j=1

8(1 + p−1)L(1 + p/n)−(j+1)η2
j

n
ES,A

[
f(wj ; zi)

]
.

The stated bound then follows.

Proof of Theorem 3. We first prove (4.3). According to Lemma C.2 (Eq. (C.1)), we know

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖2

]
≤ 2
√

2L

n2

n∑
i=1

t∑
j=1

ηjES,A
[√

f(wj ; zi)
]
.

It then follows from the concavity of the square-root function and the Jensen’s inequality that

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖2

]
≤ 2
√

2L

n

t∑
j=1

ηjES,A
[√√√√n−1

n∑
i=1

f(wj ; zi)

]

=
2
√

2L

n

t∑
j=1

ηjES,A
[√

FS(wj)
]
.

This proves (4.3).
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We now turn to (4.4). It follows from Lemma C.2 (Eq. (C.2)) that

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖22

]
≤ 8(1 + p−1)L

n2

n∑
i=1

t∑
j=1

(1 + p/n)t−jη2
jES,A

[
f(wj ; zi)

]
=

8(1 + p−1)L

n

t∑
j=1

(1 + p/n)t−jη2
jES,A

[
FS(wj)

]
.

The proof is complete.

Proposition C.3 (Stability bounds for non-convex learning). Let Assumptions of Theorem 3 hold except that we do not
require the convexity of w 7→ f(w; z). Then for any p > 0 we have

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1−w
(i)
t+1‖22

]
≤ (1 + p/n)(1 + ηtL)2ES,S̃,A

[ 1

n

n∑
i=1

‖wt−w
(i)
t ‖22

]
+

8(1 + p−1)Lη2
t

n
ES,A

[
FS(wt)

]
.

Proof. If it 6= i, then by the L-smoothness of f we know

‖wt+1 −w
(i)
t+1‖2 ≤ ‖wt −w

(i)
t ‖2 + ηt

∥∥∂f(wt; zit)− ∂f(w
(i)
t , zit)

∥∥
2
≤ (1 + ηtL)‖wt −w

(i)
t ‖2. (C.9)

If it = i, then analogous to (C.7), one can get

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)‖wt −w

(i)
t ‖22 + 4(1 + p−1)Lη2

t f(wt; zi) + 4(1 + p−1)Lη2
t f(w

(i)
t ; z̃i).

By the uniform distribution of it ∈ {1, 2, . . . , n} we can combine the above inequality and (C.9) to derive

EA
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p/n)(1 + ηtL)2EA

[
‖wt −w

(i)
t ‖22

]
+

4(1 + p−1)Lη2
t

n
EA
[
f(wt; zi) + f(w

(i)
t ; z̃i)

]
.

This together with (C.8) implies

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p/n)(1 + ηtL)2ES,S̃,A

[
‖wt −w

(i)
t ‖22

]
+

8(1 + p−1)Lη2
t

n
ES,A

[
f(wt; zi)

]
.

It then follows that

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖22

]
≤ (1 + p/n)(1 + ηtL)2ES,S̃,A

[ 1

n

n∑
i=1

‖wt −w
(i)
t ‖22

]
+

8(1 + p−1)Lη2
t

n2

n∑
i=1

ES,A
[
f(wt; zi)

]
= (1 + p/n)(1 + ηtL)2EA

[ 1

n

n∑
i=1

‖wt −w
(i)
t ‖22

]
+

8(1 + p−1)Lη2
t

n
ES,A

[
FS(wt)

]
.

The proof is complete.

C.2. Generalization bounds

We now prove generalization bounds for SGD.

Proof of Theorem 4. According to Part (c) of Lemma A.2 with w = w∗, we know the following inequality

T∑
t=1

ηtEA[FS(wt)− FS(w∗)] ≤ (1/2 + Lη1)‖w∗‖22 + 2L

T∑
t=1

η2
tFS(w∗). (C.10)
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Let A(S) be the (t+ 1)-th iterate of SGD applied to the dataset S. We plug (4.4) into Part (b) of Theorem 2, and derive

ES,A
[
F (wt+1)

]
≤ (1 + Lγ−1)ES,A

[
FS(wt+1)

]
+

4(1 + p−1)(L+ γ)L
(
1 + p/n

)t−1

n

t∑
j=1

η2
jES,A

[
FS(wj)

]
.

We can plug (A.5) with w = w∗ into the above inequality, and derive

ES,A
[
F (wt+1)

]
≤ (1+Lγ−1)ES,A

[
FS(wt+1)

]
+

4(1 + p−1)(L+ γ)L
(
1 + p/n

)t−1

n

(
η1‖w∗‖22+2

t∑
j=1

η2
jES,A[FS(w∗)]

)
.

We choose p = n/T , then (1 + p/n)T−1 = (1 + 1/T )T−1 ≤ e and therefore the following inequality holds for all
t = 1, . . . , T (note ES,A[FS(w∗)] = F (w∗))

ES,A
[
F (wt+1)

]
≤ (1 + Lγ−1)ES,A

[
FS(wt+1)

]
+

4(1 + T/n)(L+ γ)Le

n

(
η1‖w∗‖22 + 2

t∑
j=1

η2
jF (w∗)

)
.

Multiplying both sides by ηt+1 followed with a summation gives

T∑
t=1

ηtES,A[F (wt)] ≤
(
1 + L/γ

) T∑
t=1

ηtES,A[FS(wt)] +
4(1 + T/n)(L+ γ)Le

n

T∑
t=1

ηt
(
η1‖w∗‖22 + 2

t−1∑
j=1

η2
jF (w∗)

)
.

Putting (C.10) into the above inequality then gives

T∑
t=1

ηtES,A[F (wt)] ≤
(
1 + L/γ

)( T∑
t=1

ηtES,A[FS(w∗)] + (1/2 + Lη1)‖w∗‖22 + 2L

T∑
t=1

η2
tES,A[FS(w∗)]

)
+

4(1 + T/n)(L+ γ)Le

n

T∑
t=1

ηt
(
η1‖w∗‖22 + 2

t−1∑
j=1

η2
jF (w∗)

)
.

Since ES [FS(w∗)] = F (w∗), it follows that

T∑
t=1

ηtES,A[F (wt)− F (w∗)] ≤ L

γ

T∑
t=1

ηtF (w∗) +
(
1 + L/γ

)(
(1/2 + Lη1)‖w∗‖22 + 2L

T∑
t=1

η2
tF (w∗)]

)
+

4(1 + T/n)(L+ γ)Le

n

T∑
t=1

ηt
(
η1‖w∗‖22 + 2

t−1∑
j=1

η2
jF (w∗)

)
.

The stated inequality then follows from Jensen’s inequality. The proof is complete.

Proof of Corollary 5. We first prove Part (a). For the chosen step size, we know

T∑
t=1

η2
t = c2

T∑
t=1

1

T
= c2 and

T∑
t=1

ηt = c
√
T . (C.11)

The stated bound (4.5) then follows from Theorem 4, γ =
√
n and (C.11).

We now prove Part (b). The stated bound (4.6) then follows from Theorem 4, F (w∗) = 0 and γ = 1. The proof is
complete.
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D. Proof on Learning without Bounded Gradients: Non-smooth Case
D.1. Stability bounds

Theorem 7 is a direct application of the following general stability bounds with p = n/t. Therefore, it suffices to prove
Theorem D.1.
Theorem D.1. Assume for all z ∈ Z , the function w 7→ f(w; z) is nonnegative, convex and ∂f(w; z) is (α,L)-Hölder
continuous with α ∈ [0, 1). Let S, S̃ and S(i) be constructed as Definition 4 and cα,3 =

√
1−α√
1+α

(2−αL)
1

1−α . Let wt and

w
(i)
t be the t-th iterate produced by (3.3) based on S and S(i), respectively. Then for any p > 0 we have

ES,S̃,A
[ 1

n

n∑
i=1

‖wt+1 −w
(i)
t+1‖22

]
≤ c2α,3

t∑
j=1

(1 + p/n)t+1−jη
2

1−α
j

+ 4(1 + p−1)c2α,1

t∑
j=1

(1 + p/n)t−jη2
j

n
ES,A

[
F

2α
1+α

S (wj)
]
. (D.1)

We require several lemmas to prove Theorem D.1. The following lemma establishes the co-coercivity of gradients for convex
functions with Hölder continuous (sub)gradients. The case α = 1 can be found in Nesterov (2013). The case α ∈ (0, 1) can
be found in Ying & Zhou (2017). The case α = 0 follows directly from the convexity of f (in this case, the right-hand side
of (D.2) becomes 0).
Lemma D.2. Assume for all z ∈ Z , the map w 7→ f(w; z) is convex, and w 7→ ∂f(w; z) is (α,L)-Hölder continuous
with α ∈ [0, 1]. Then for all w, w̃ we have〈

w − w̃, ∂f(w; z)− ∂f(w̃; z)
〉
≥ 2L−

1
αα

1 + α
‖∂f(w; z)− ∂f(w̃; z)‖

1+α
α

2 . (D.2)

Based on Lemma D.2, we can prove Lemma 6 on the approximate contractive behavior of the gradient update associated to
a non-smooth function.

Proof of Lemma 6. The following equality holds

‖w−η∂f(w; z)−w̃+η∂f(w̃; z)‖22 = ‖w−w̃‖22+η2‖∂f(w; z)−∂f(w̃; z)‖22−2η〈w−w̃, ∂f(w; z)−∂f(w̃; z)〉. (D.3)

We first consider the case α = 0. In this case, it follows from Definition 3 and Lemma D.2 with α = 0 that

‖w − η∂f(w; z)− w̃ + η∂f(w̃; z)‖22 ≤ ‖w − w̃‖22 + η2L2.

We now consider the case α > 0. According to Lemma D.2, we know

‖∂f(w; z)− ∂f(w̃; z)‖22 ≤
(L 1

α (1 + α)

2α

〈
w − w̃, ∂f(w; z)− ∂f(w̃; z)

〉) 2α
1+α

=
(1 + α

ηα

〈
w − w̃, ∂f(w; z)− ∂f(w̃; z)

〉) 2α
1+α
(
η

2α
1+αL

2
1+α 2−

2α
1+α

)
≤ 2α

1 + α

(
((1 + α)/(ηα))

2α
1+α
〈
w − w̃, ∂f(w; z)− ∂f(w̃; z)

〉 2α
1+α

) 1+α
2α

+
1− α
1 + α

(
η

2α
1+αL

2
1+α 2−

2α
1+α

) 1+α
1−α

= 2η−1
〈
w − w̃, ∂f(w; z)− ∂f(w̃; z)

〉
+

1− α
1 + α

η
2α

1−α (2−αL)
2

1−α ,

where we have used Young’s inequality (A.7). Plugging the above inequality back into (D.3), we derive

‖w − η∂f(w; z)− w̃ + η∂f(w̃; z)‖22 ≤ ‖w − w̃‖22 +
1− α
1 + α

η2+ 2α
1−α (2−αL)

2
1−α .

Combining the above two cases together, we get

‖w − η∂f(w; z)− w̃ + η∂f(w̃; z)‖22 ≤ ‖w − w̃‖22 + c2α,3η
2

1−α , (D.4)

where cα,3 is defined in Theorem D.1. The proof is complete.
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Proof of Theorem D.1. For the case it 6= i, it follows from Lemma 6 that

‖wt+1 −w
(i)
t+1‖22 ≤ ‖wt − ηt∂f(wt; zit)−w

(i)
t + ηt∂f(w

(i)
t , zit)‖22 ≤ ‖wt −w

(i)
t ‖22 + c2α,3η

2
1−α
t .

If it = i, by (C.4) and the standard inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2, we get

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)‖wt −w

(i)
t ‖22 + 2(1 + p−1)η2

t

(
‖∂f(wt; zi)‖22 + ‖∂f(w

(i)
t ; z̃i)‖22

)
.

Combining the above two inequalities together, using the self-bounding property (Lemma A.1) and noticing the distribution
of it, we derive

EA
[
‖wt+1−w(i)

t+1‖22
]
≤ (1+p/n)

(
EA
[
‖wt−w(i)

t ‖22
]
+c2α,3η

2
1−α
t

)
+

2(1 + p−1)c2α,1η
2
t

n
EA
[
f

2α
1+α (wt; zi)+f

2α
1+α (w

(i)
t ; z̃i)

]
.

Analogous to (C.6), we know
ES,S̃,A

[
f

2α
1+α (w

(i)
t ; z̃i)

]
= ES,A

[
f

2α
1+α (wt; zi)

]
and therefore

ES,S̃,A
[
‖wt+1−w(i)

t+1‖22
]
≤ (1+p/n)

(
ES,S̃,A

[
‖wt−w(i)

t ‖22
]
+c2α,3η

2
1−α
t

)
+

4(1 + p−1)c2α,1η
2
t

n
ES,A

[
f

2α
1+α (wt; zi)

]
.

Multiplying both sides by (1 + p/n)−(t+1) gives

(1 + p/n)−(t+1)ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p/n)−t

(
ES,S̃,A

[
‖wt −w

(i)
t ‖22

]
+ c2α,3η

2
1−α
t

)
+

4(1 + p−1)c2α,1(1 + p/n)−(t+1)η2
t

n
ES,A

[
f

2α
1+α (wt; zi)

]
.

Taking a summation of the above inequality and using w1 = w
(i)
1 , we derive

(1 + p/n)−(t+1)ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ c2α,3

t∑
j=1

(1 + p/n)−jη
2

1−α
j

+
4(1 + p−1)c2α,1

n

t∑
j=1

(1 + p/n)−(j+1)η2
jES,A

[
f

2α
1+α (wj ; zi)

]
.

We can take an average over i and get

1

n

n∑
i=1

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ c2α,3

t∑
j=1

(1 + p/n)t+1−jη
2

1−α
j

+
4(1 + p−1)c2α,1

n2

n∑
i=1

t∑
j=1

(1 + p/n)t−jη2
jES,A

[
f

2α
1+α (wj ; zi)

]
.

It then follows from the concavity of the function x 7→ x
2α

1+α and the Jensen’s inequality that

1

n

n∑
i=1

ES,S̃,A
[
‖wt+1 −w

(i)
t+1‖22

]
≤ c2α,3

t∑
j=1

(1 + p/n)t+1−jη
2

1−α
j +

4(1 + p−1)c2α,1

t∑
j=1

(1 + p/n)t−jη2
j

n
ES,A

[( 1

n

n∑
i=1

f(wj ; zi)
) 2α

1+α
]
.

The stated inequality then follows from the definition of FS . The proof is complete.
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D.2. Generalization errors

Theorem 8 can be considered as an instantiation of the following proposition on generalization error bounds with specific
choices of γ, T and θ. In this subsection, we first give the proof of Theorem 8 based on Proposition D.3, and then turn to the
proof of Proposition D.3.

Proposition D.3. Assume for all z ∈ Z , the function w 7→ f(w; z) is nonnegative, convex, and ∂f(w; z) is (α,L)-Hölder
continuous with α ∈ [0, 1). Let {wt}t be produced by (3.3) with step sizes ηt = cT−θ, θ ∈ [0, 1] satisfying θ ≥ (1− α)/2.
Then for all T satisfying n = O(T ) and any γ > 0 we have

ES,A[F (w
(1)
T )]− F (w∗) = O

(
γ

1+α
α−1

)
+O(γ)

(
T 1− 2θ

1−α + n−2T
2−2θ
1+α + n−2T 2−2θF

2α
1+α (w∗)

)
+O(1/γ)

(
T−

2α(1−θ)
1+α + F

2α
1+α (w∗)

)
+O(T θ−1) +O(T

αθ−θ−2α
1+α ) +O(T−θF

2α
1+α (w∗)).

Proof of Theorem 8. It can be checked that θ considered in Parts (a)-(c) satisfy θ ≥ (1− α)/2. Therefore Proposition D.3
holds. If γ =

√
n, then by Proposition D.3 we know

ES,A[F (w
(1)
T )]−F (w∗) = O(n

1
2T 1− 2θ

1−α ) +O(n−
3
2T 2−2θ) +O(n−

1
2 ) +O(T θ−1) +O(T

αθ−θ−2α
1+α ) +O(T−θ). (D.5)

We first prove Part (a). Since α ≥ 1/2, θ = 1/2 and T � n, it follows from (D.5) that

ES,A[F (w
(1)
T )]− F (w∗) = O(n−

1
2 ) +O(n

3
2−

1
1−α ) +O(n−

3α+1
2(1+α) ) = O(n−

1
2 ),

where we have used 3
2 −

1
1−α ≤ −

1
2 due to α ≥ 1/2. This shows Part (a).

We now prove Part (b). Since α < 1/2, T � n
2−α
1+α and θ = 3−3α

2(2−α) ≥ 1/2 in (D.5), the following inequalities hold

√
nT 1− 2θ

1−α �
√
nT 1− 3−3α

(1−α)(2−α) �
√
nn−

(1+α)(2−α)
(2−α)(1+α) � n− 1

2

n−
3
2T 2−2θ � n− 3

2T
4−2α−3+3α

2−α � n− 3
2T

1+α
2−α � n− 1

2

T θ−1 � T
3−3α−4+2α

2(2−α) � T−
1+α

2(2−α) � n− 1
2

T−θ � n
2−α
1+α

3α−3
2(2−α) � n

3α−3
2(1+α) = O(n−

1
2 ),

where we have used (3α − 3)/(1 + α) ≤ −1 due to α < 1/2. Furthermore, since θ ≥ 1/2 and α < 1/2 we know
αθ−θ−2α

1+α ≤ − 1
2 and T � n

2−α
1+α ≥ n. Therefore T

αθ−θ−2α
1+α = O(T−

1
2 ) = O(n−

1
2 ). Plugging the above inequalities into

(D.5) gives the stated bound in Part (b).

We now turn to Part (c). Since F (w∗) = 0, Proposition D.3 reduces to

ES,A[F (w
(1)
T )]−F (w∗) = O

(
γ

1+α
α−1

)
+O(γ)

(
T 1− 2θ

1−α +n−2T
2−2θ
1+α

)
+O

(
γ−1T−

2α(1−θ)
1+α

)
+O(T θ−1)+O(T

αθ−θ−2α
1+α ).

With γ = nT θ−1, we further get

ES,A[F (w
(1)
T )]− F (w∗) = O

((
n−1T 1−θ) 1+α

1−α
)

+O(nT−
(1+α)θ
1−α ) +O(n−1T

(θ−1)(α−1)
1+α ) +O(T θ−1) +O(T

αθ−θ−2α
1+α ).

(D.6)
For the choice T = n

2
1+α and θ = 3−α2−2α

4 , we know 1− θ = (1 + α)2/4 and therefore(
n−1T 1−θ

) 1+α
1−α �

(
n−1n

2
1+α

(1+α)2

4

) 1+α
1−α

= n−
1+α
2

nT−
(1+α)θ
1−α � n1− 2θ

1−α = n1+ 2α+α2−3
2(1−α) = n

α2−1
2−2α = n−

1+α
2

n−1T
(θ−1)(α−1)

1+α � n−1T
(1−α)(1+α)2

4(1+α) � n−1T
(1−α)(1+α)

4 � n−
1+α
2

T θ−1 � n−
2

1+α
(1+α)2

4 � n−
1+α
2 .
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Furthermore,
(θ − 1)(1 + α)− (αθ − θ − 2α) = 2θ + α− 1 = 2−1

(
3− α2 − 2α+ 2α− 2

)
≥ 0

and therefore
T θ−1 ≥ T

αθ−θ−2α
1+α .

Plugging the above inequalities into (D.6) gives the stated bound in Part (c). The proof is complete.

To prove Proposition D.3, we first introduce an useful lemma to address some involved series.

Lemma D.4. Assume for all z ∈ Z , the function w 7→ f(w; z) is nonnegative, convex, and ∂f(w; z) is (α,L)-Hölder
continuous with α ∈ [0, 1). Let {wt}t be produced by (3.3) with step sizes ηt = cT−θ, θ ∈ [0, 1] satisfying θ ≥ 1−α

2 . Then

( T∑
t=1

η2
t

) 1−α
1+α
(
η1‖w∗‖22 + 2

T∑
t=1

η2
tF (w∗) + cα,2

T∑
t=1

η
3−α
1−α
t

) 2α
1+α

= O(T
1−α−2θ

1+α ) +O(T 1−2θF
2α

1+α (w∗)), (D.7)

T∑
t=1

η2
t

(
ES,A[FS(wt)]

) 2α
1+α = O(T

1−α−2θ
1+α ) +O(T 1−2θF

2α
1+α (w∗)), (D.8)

T∑
t=1

ηt
(
ES,A[FS(wt)]

) 2α
1+α = O(T

(1−α)(1−θ)
1+α ) +O(T 1−θF

2α
1+α (w∗)). (D.9)

Proof. We first prove (D.7). For the step size sequence ηt = cT−θ, we have

( T∑
t=1

η2
t

) 1−α
1+α
(
η1‖w∗‖22 + 2

T∑
t=1

η2
tF (w∗) + cα,2

T∑
t=1

η
3−α
1−α
t

) 2α
1+α

= O(T
(1−2θ)(1−α)

1+α )
(
T−θ + T 1−2θF (w∗) + T 1− (3−α)θ

1−α

) 2α
1+α

= O(T
1−α−2θ

1+α ) +O(T 1−2θF
2α

1+α (w∗)) +O(T
1−α−2θ

1−α )

= O(T
1−α−2θ

1+α ) +O(T 1−2θF
2α

1+α (w∗)),

where we have used the subadditivity of x 7→ x
2α

1+α , the identity

(1− 2θ)(1− α)

1 + α
+

2α

1 + α

1− α− 3θ + αθ

1− α
=

1− α− 2θ

1− α

in the second step and θ ≥ (1− α)/2 in the third step (the third term is dominated by the first term). This shows (D.7).

We now consider (D.8). Taking an expectation over both sides of (A.8) with w = w∗, we get

T∑
t=1

η2
tES,A[FS(wt)] ≤ η1‖w∗‖22 + 2

T∑
t=1

η2
tES [FS(w∗)] + cα,2

T∑
t=1

η
3−α
1−α
t .

According to the Jensen’s inequality and the concavity of x 7→ x
2α

1+α , we know

T∑
t=1

η2
t

(
ES,A[FS(wt)]

) 2α
1+α ≤

T∑
t=1

η2
t

(∑T
t=1 η

2
tES,A[FS(wt)]∑T
t=1 η

2
t

) 2α
1+α

≤
( T∑
t=1

η2
t

) 1−α
1+α
(
η1‖w∗‖22 + 2

T∑
t=1

η2
tF (w∗) + cα,2

T∑
t=1

η
3−α
1−α
t

) 2α
1+α

= O(T
1−α−2θ

1+α ) +O(T 1−2θF
2α

1+α (w∗)),

where we have used (D.7) in the last step. This shows (D.8).
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Finally, we show (D.9). Since we consider step sizes ηt = cT−θ, it follows from (D.8) that

T∑
t=1

ηt
(
ES,A[FS(wt)]

) 2α
1+α =

(
cT−θ

)−1
T∑
t=1

η2
t

(
ES,A[FS(wt)]

) 2α
1+α

= O(T
1−α−2θ

1+α +θ) +O(T 1−θF
2α

1+α (w∗)).

This proves (D.9) and finishes the proof.

Proof of Proposition D.3. Since ES [FS(w∗)] = F (w∗), we can decompose the excess generalization error into an estima-
tion error and an optimization error as follows

( T∑
t=1

ηt

)−1 T∑
t=1

ηt
(
ES,A[F (wt)]− F (w∗)

)
=
( T∑
t=1

ηt

)−1 T∑
t=1

ηtES,A[F (wt)− FS(wt)]

+
( T∑
t=1

ηt

)−1 T∑
t=1

ηtES,A[FS(wt)− FS(w∗)]. (D.10)

Our idea is to address separately the above estimation error and optimization error.

We first address estimation errors. Plugging (D.1) back into Theorem 2 (Part (c)) with A(S) = wt+1, we derive

ES,A
[
F (wt+1)− FS(wt+1)

]
≤
c2α,1
2γ

ES,A
[
F

2α
1+α (wt+1)

]
+ 2−1γc2α,3

t∑
j=1

(1 + p/n)t+1−jη
2

1−α
j

+ 2γ(1 + p−1)c2α,1

t∑
j=1

(1 + p/n)t−jη2
j

n
ES,A

[
F

2α
1+α

S (wj)
]
.

By the concavity and sub-additivity of x 7→ x
2α

1+α , we know

ES,A
[
F

2α
1+α (wt+1)

]
≤
(
ES,A[F (wt+1)]− ES,A[FS(wt+1)] + ES,A[FS(wt+1)]

) 2α
1+α ≤ δ

2α
1+α

t+1 +
(
ES,A[FS(wt+1)]

) 2α
1+α ,

where we denote δj = max{ES,A[F (wj)]− ES,A[FS(wj)], 0} for all j ∈ N. It then follows from p = n/T that

δt+1 ≤
c2α,1
2γ

(
δ

2α
1+α

t+1 +
(
ES,A[FS(wt+1)]

) 2α
1+α

)
+ 2−1γec2α,3

t∑
j=1

η
2

1−α
j +

2eγ(1 + T/n)c2α,1
n

t∑
j=1

η2
j

(
ES,A[FS(wj)]

) 2α
1+α .

Solving the above inequality of δt+1 gives the following inequality for all t ≤ T

δt+1 = O
(
γ

1+α
α−1

)
+O
(
γ−1

(
ES,A[FS(wt+1)]

) 2α
1+α

)
+O
(
γ

t∑
j=1

η
2

1−α
j

)
+O
(
γ(n−1+Tn−2)

t∑
j=1

η2
j

(
ES,A[FS(wj)]

) 2α
1+α

)
.

It then follows from the definition of δt that (take a summation of ηtδt and note n = O(T ))

( T∑
t=1

ηt

)−1 T∑
t=1

ηt
(
ES,A[F (wt)]− ES,A[FS(wt)]

)
= O

(
γ

1+α
α−1

)
+O

(
γ−1

( T∑
t=1

ηt

)−1 T∑
t=1

ηt
(
ES,A[FS(wt)]

) 2α
1+α

)
+O

(
γ

T∑
t=1

η
2

1−α
t

)
+O

(
γTn−2

T∑
t=1

η2
t

(
ES,A[FS(wt)]

) 2α
1+α

)
.

By ηt = cT−θ, (D.8) and (D.9), we further get

( T∑
t=1

ηt

)−1 T∑
t=1

ηt
(
ES,A[F (wt)]− ES,A[FS(wt)]

)
= O

(
γ

1+α
α−1

)
+O

(
γT 1− 2θ

1−α

)
+O

(
γ−1T θ−1

(
T

(1−α)(1−θ)
1+α + T 1−θF

2α
1+α (w∗)

))
+O

(
γTn−2

(
T

1−α−2θ
1+α + T 1−2θF

2α
1+α (w∗)

))
. (D.11)
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We now consider optimization errors. By Lemma A.2 (Part (d) with w = w∗) and the concavity of x 7→ x
2α

1+α , we know

( T∑
t=1

ηt

)−1 T∑
t=1

ηtES,A[FS(wt)− FS(w∗)]

≤
(

2

T∑
t=1

ηt

)−1

‖w∗‖22 + c2α,1

(
2

T∑
t=1

ηt

)−1( T∑
t=1

η2
t

) 1−α
1+α
(
η1‖w∗‖22 + 2

T∑
t=1

η2
tF (w∗) + cα,2

T∑
t=1

η
3−α
1−α
t

) 2α
1+α

= O(T θ−1) +O(T
1−α−2θ

1+α +θ−1) +O(T−θF
2α

1+α (w∗)),

where we have used (D.7) in the last step.

Plugging the above optimization error bound and the estimation error bound (D.11) back into the error decomposition
(D.10), we finally derive the following generalization error bounds

( T∑
t=1

ηt

)−1 T∑
t=1

ηt
(
ES,A[F (wt)]− F (w∗)

)
= O

(
γ

1+α
α−1

)
+O(γ)

(
T 1− 2θ

1−α + n−2T
2−2θ
1+α + n−2T 2−2θF

2α
1+α (w∗)

)
+

O(1/γ)
(
T−

2α(1−θ)
1+α + F

2α
1+α (w∗)

)
+O(T θ−1) +O(T

αθ−θ−2α
1+α ) +O(T−θF

2α
1+α (w∗)).

The stated inequality then follows from the convexity of F . The proof is complete.

D.3. Empirical Risk Minimization with Strongly Convex Objectives

In this section, we present an optimistic bound for ERM with strongly convex objectives based on the `2 on-average model
stability. We consider nonnegative and convex loss functions with Hölder continuous (sub)gradients.

Proposition D.5. Assume for any z, the function w 7→ f(w; z) is nonnegative, convex and w 7→ ∂f(w; z) is (α,L)-Hölder
continuous with α ∈ [0, 1]. Let A be the ERM algorithm, i.e., A(S) = arg minw∈Rd FS(w). If for all S, FS is σ-strongly
convex, then

ES
[
F (A(S))− FS(A(S))

]
≤

2c2α,1
nσ

ES
[
F

2α
1+α (A(S))

]
.

Proof. Let S̃ and S(i), i = 1, . . . , n, be constructed as Definition 4. Due to the σ-strong convexity of FS(i) and
∂FS(i)(A(S(i))) = 0 (necessity condition for the optimality of A(S(i))), we know

FS(i)(A(S))− FS(i)(A(S(i))) ≥ 2−1σ
∥∥A(S)−A(S(i))

∥∥2

2
.

Taking a summation of the above inequality yields

1

n

n∑
i=1

(
FS(i)(A(S))− FS(i)(A(S(i)))

)
≥ σ

2n

n∑
i=1

∥∥A(S)−A(S(i))
∥∥2

2
. (D.12)

According to the definition of S(i), we know

n

n∑
i=1

FS(i)(A(S)) =

n∑
i=1

(∑
j 6=i

f(A(S); zj) + f(A(S); z̃i)
)

= (n− 1)

n∑
j=1

f(A(S); zj) +

n∑
i=1

f(A(S); z̃i) = (n− 1)nFS(A(S)) + nFS̃(A(S)).

Taking an expectation and dividing both sides by n2 give (A(S) is independent of S̃)

1

n
ES,S̃

[ n∑
i=1

FS(i)(A(S))
]

=
n− 1

n
ES
[
FS(A(S))

]
+

1

n
ES
[
F (A(S))

]
. (D.13)
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Furthermore, by symmetry we know

1

n
ES,S̃

[ n∑
i=1

FS(i)(A(S(i)))
]

= ES
[
FS(A(S))

]
.

Plugging the above identity and (D.13) back into (D.12) gives

σ

2n

n∑
i=1

ES,S̃
[
‖A(S(i))−A(S)‖22

]
≤ 1

n
ES,S̃

[
F (A(S))− FS(A(S))

]
. (D.14)

We can now apply Part (c) of Theorem 2 to show the following inequality for all γ > 0 (noticeA is a deterministic algorithm)

ES
[
F (A(S))− FS(A(S))

]
≤
c2α,1
2γ

ES
[
F

2α
1+α (A(S))

]
+

γ

nσ
ES
[
F (A(S))− FS(A(S))

]
.

Taking γ = nσ/2, we derive

ES
[
F (A(S))− FS(A(S))

]
≤
c2α,1
nσ

ES
[
F

2α
1+α (A(S))

]
+

1

2
ES
[
F (A(S))− FS(A(S))

]
,

from which we can derive the stated inequality. The proof is complete.

E. Proofs on Stability with Relaxed Convexity
E.1. Stability and generalization errors

For any convex g, we have (Nesterov, 2013)

〈w − w̃, ∂g(w)− ∂g(w̃)〉 ≥ 0, w, w̃ ∈ Rd. (E.1)

Proof of Theorem 9. Without loss of generality, we can assume that S and S̃ differ by the first example, i.e., z1 6= z̃1 and
zi = z̃i, i 6= 1. According to the update rule (3.3) and (A.3), we know

‖wt+1 − w̃t+1‖22 ≤ ‖wt − ηt∂f(wt; zit)− w̃t + ηt∂f(w̃t; z̃it)‖22
= ‖wt − w̃t‖22 + η2

t ‖∂f(wt; zit)− ∂f(w̃t; z̃it)‖22 + 2ηt〈wt − w̃t, ∂f(w̃t; z̃it)− ∂f(wt; zit)〉. (E.2)

We first study the term ‖∂f(wt; zit)− ∂f(w̃t; z̃it)‖2. The event it 6= 1 happens with probability 1− 1/n, and in this case
it follows from the smoothness of f that (zit = z̃it )

‖∂f(wt; zit)− ∂f(w̃t; z̃it)‖2 ≤ L‖wt − w̃t‖2.

The event it = 1 happens with probability 1/n, and in this case

‖∂f(wt; zit)− ∂f(w̃t; z̃it)‖2 ≤ ‖∂f(wt; zit)‖2 + ‖∂f(w̃t; z̃it)‖2 ≤ 2G.

Therefore, we get

Eit
[
‖∂f(wt; zit)− ∂f(w̃t; z̃it)‖22

]
≤ (n− 1)L2

n
‖wt − w̃t‖22 +

4G2

n
. (E.3)

It is clear
Eit
[
f(wt; zit)

]
= FS(wt) and Eit

[
f(w̃t; z̃it)

]
= FS̃(w̃t).

Therefore, by (E.1) we derive

Eit
[
〈wt − w̃t, ∂f(w̃t; z̃it)− ∂f(wt; zit)〉

]
= 〈wt − w̃t, ∂FS̃(w̃t)− ∂FS(wt)〉

= 〈wt − w̃t, ∂FS̃(w̃t)− ∂FS(w̃t)〉+ 〈wt − w̃t, ∂FS(w̃t)− ∂FS(wt)〉

=
1

n
〈wt − w̃t, ∂f(w̃t; z̃1)− ∂f(w̃t; z1)〉+ 〈wt − w̃t, ∂FS(w̃t)− ∂FS(wt)〉

≤ 2G‖wt − w̃t‖2
n

. (E.4)
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Plugging (E.3) and the above inequality back into (E.2), we derive

Eit
[
‖wt+1 − w̃t+1‖22

]
≤ ‖wt − w̃t‖22 +

4Gηt‖wt − w̃t‖2
n

+ η2
t

( (n− 1)L2

n
‖wt − w̃t‖22 +

4G2

n

)
and therefore

EA
[
‖wt+1 − w̃t+1‖22

]
≤ (1 + L2η2

t )EA
[
‖wt − w̃t‖22

]
+ 4G

(ηtEA[‖wt − w̃t‖2]

n
+
Gη2

t

n

)
. (E.5)

By the above recurrence relationship and w1 = w̃1, we derive

EA
[
‖wt+1 − w̃t+1‖22

]
≤ 4G

t∑
j=1

t∏
j̃=j+1

(
1 + L2η2

j̃

)(ηjEA[‖wj − w̃j‖2]

n
+
Gη2

j

n

)

≤ 4G

t∏
j̃=1

(
1 + L2η2

j̃

) t∑
j=1

(ηj max1≤j̃≤t EA[‖wj̃ − w̃j̃‖2]

n
+
Gη2

j

n

)
.

Since the above inequality holds for all t ∈ N and the right-hand side is an increasing function of t, we get

max
1≤j̃≤t+1

EA
[
‖wj̃ − w̃j̃‖

2
2

]
≤ 4GCt

t∑
j=1

(ηj max1≤j̃≤t+1 EA[‖wj̃ − w̃j̃‖2]

n
+
Gη2

j

n

)
.

It then follows that (note EA[‖wj̃ − w̃j̃‖2] ≤
(
EA
[
‖wj̃ − w̃j̃‖22

]) 1
2 )

max
1≤j̃≤t+1

EA
[
‖wj̃ − w̃j̃‖

2
2

]
≤ 4GCt

t∑
j=1

ηj
n

max
1≤j̃≤t+1

(
EA
[
‖wj̃ − w̃j̃‖

2
2

]) 1
2

+ 4G2Ct

t∑
j=1

η2
j

n
.

Solving the above quadratic function of max1≤j̃≤t+1

(
EA
[
‖wj̃ − w̃j̃‖22

]) 1
2

then shows

max
1≤j̃≤t+1

(
EA
[
‖wj̃+1 − w̃j̃+1‖

2
2

]) 1
2 ≤ 4GCt

t∑
j=1

ηj
n

+ 2G
(
Ct

t∑
j=1

η2
j

n

) 1
2

.

The proof is complete.

To prove Theorem 10, we require a basic result on series.

Lemma E.1. We have the following elementary inequalities.

(a) If θ ∈ (0, 1), then (t1−θ − 1)/(1− θ) ≤
∑t
k=1 k

−θ ≤ t1−θ/(1− θ);

(b) If θ > 1, then
∑t
k=1 k

−θ ≤ θ
θ−1 .

We denote by εstab(A,n) the infimum over all ε for which (3.2) holds, and omit the tuple (A,n) when it is clear from the
context.

Proof of Theorem 10. For the step sizes considered in both Part (a) and Part (b), one can check that
∑T
t=1 η

2
t can be upper

bounded by a constant independent of T . Therefore, Ct < C for all t = 1, . . . , T and a universal constant C. We can apply
Lemma A.2 (Part (a)) on optimization errors to get

EA[FS(w
(1)
T )]− FS(w∗) = O

(∑T
t=1 η

2
t + ‖w∗‖22∑T
t=1 ηt

)
. (E.6)
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By the convexity of norm, we know

EA
[
‖w(1)

T − w̃
(1)
T ‖2

]
≤
( T∑
t=1

ηt
)−1

T∑
t=1

ηtEA[‖wt − w̃t‖2] = O
( T∑
t=1

ηt
n

+ n−
1
2

( T∑
t=1

η2
t

) 1
2

)
,

where we have applied Theorem 9 (the upper bound in Theorem 9 is an increasing function of t). It then follows from

the Lipschitz continuity that εstab = O
(∑T

t=1
ηt
n + n−

1
2

(∑T
t=1 η

2
t

) 1
2

)
. This together with the error decomposition (3.1),

Lemma 1 and the optimization error bound (E.6) shows

ES,A[F (w
(1)
T )]− F (w∗) = O

( T∑
t=1

ηt
n

+ n−
1
2

( T∑
t=1

η2
t

) 1
2

)
+O

(∑T
t=1 η

2
t + ‖w∗‖22∑T
t=1 ηt

)
. (E.7)

For the step sizes ηt = η1t
−θ with θ ∈ (1/2, 1), we can apply Lemma E.1 to show

ES,A[F (w
(1)
T )]− F (w∗) = O

( T∑
t=1

t−θ

n
+ n−

1
2

( T∑
t=1

t−2θ
) 1

2

)
+O

(∑T
t=1 t

−2θ + ‖w∗‖22∑T
t=1 t

−θ

)
= O

(
n−1T 1−θ + n−

1
2 + T θ−1

)
.

This proves the first part.

Part (b) follows by plugging (C.11) into (E.7). The proof is complete.

F. Proofs on Stability with Relaxed Strong Convexity
Proof of Theorem 11. Due to the σS-strong convexity of FS , we can analyze analogously to (E.4) to derive

Eit
[
〈wt − w̃t, ∂f(w̃t; zit)− ∂f(wt; zit)〉

]
≤ 2G‖wt − w̃t‖2

n
− σS‖wt − w̃t‖22.

Therefore, analogous to the derivation of (E.5) we can derive

EA
[
‖wt+1 − w̃t+1‖22

]
≤ (1 + L2η2

t − 2σSηt)EA
[
‖wt − w̃t‖22

]
+ 4G

(Gη2
t

n
+
ηtEA[‖wt − w̃t‖2]

n

)
≤ (1 + L2η2

t −
3

2
σSηt)EA

[
‖wt − w̃t‖22

]
+

4G2η2
t

n
+

8G2ηt
n2σS

,

where we have used
4G

n
EA[‖wt − w̃t‖2] ≤ 8G2

n2σS
+
σSEA[‖wt − w̃t‖22]

2
.

We find t0 ≥ 4L2/σ2
S . Then ηt ≤ σS/(2L2) and it follows that

EA
[
‖wt+1 − w̃t+1‖22

]
≤ (1− σSηt)EA

[
‖wt − w̃t‖22

]
+

4G2η2
t

n
+

8G2ηt
n2σS

=
(

1− 2

t+ t0

)
EA
[
‖wt − w̃t‖22

]
+

4G2

n

(
η2
t +

2ηt
nσS

)
.

Multiplying both sides by (t+ t0)(t+ t0 − 1) yields

(t+ t0)(t+ t0 − 1)EA
[
‖wt+1 − w̃t+1‖22

]
≤ (t+ t0 − 1)(t+ t0 − 2)EA

[
‖wt − w̃t‖22

]
+

8G2(t+ t0 − 1)

nσS

(
ηt +

2

nσS

)
.
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Taking a summation of the above inequality and using w1 = w̃1 then give

(t+ t0)(t+ t0 − 1)EA
[
‖wt+1 − w̃t+1‖22

]
≤ 8G2

nσS

t∑
j=1

(j + t0 − 1)
(
ηj +

2

nσS

)

=
8G2

nσS

( t∑
j=1

(j + t0 − 1)ηj +
2

nσS

t∑
j=1

(j + t0 − 1)
)

≤ 8G2

nσS

( 2t

σS
+
t(t+ 2t0 − 1)

nσS

)
.

It then follows

EA
[
‖wt+1 − w̃t+1‖22

]
≤ 16G2

nσ2
S

( 1

t+ t0
+

1

n

)
.

The stated bound then follows from the elementary inequality
√
a+ b ≤

√
a+
√
b for a, b ≥ 0. The proof is complete.

Proof of Theorem 12. By the convexity of norm, we know

EA
[
‖w(2)

T − w̃
(2)
T ‖2

]
≤
( T∑
t=1

(t+ t0 − 1)
)−1

T∑
t=1

(t+ t0 − 1)EA[‖wt − w̃t‖2]

≤ 4G

σS

( T∑
t=1

(t+ t0 − 1)
)−1

T∑
t=1

(t+ t0 − 1)
( 1√

n(t+ t0)
+

1

n

)
= O(σ−1

S

(
(nT )−

1
2 + n−1

)
),

where we have used Lemma E.1 in the last step. Since the above bound holds for all S, S̃ differing by a single example,
it follows that `1 on-average model stability is bounded by O(ES [σ−1

S ]
(
(nT )−

1
2 + n−1

)
). By Part (b) of Lemma A.2 we

know
EA[FS(w

(2)
T )]− FS(w∗) = O

(
1/(TσS) + ‖w∗‖22/T 2

)
.

It then follows from (3.1) and Part (a) of Theorem 2 that

ES,A[F (w
(2)
T )]− F (w∗) = O(ES

[
σ−1
S

(
(nT )−

1
2 + n−1

)]
) +O

(
ES
[
1/(TσS)

]
+ 1/T 2

)
.

The stated bound holds since T � n. The proof is complete.

Proposition F.1. Let S = {z1, . . . , zn} and CS = 1
n

∑n
i=1 xix

>
i . Then the range of CS is the linear span of {x1, . . . , xn}.

Proof. It suffices to show that the kernel of CS is the orthogonal complement of V = span{x1, . . . , xn} (we denote
span{x1, . . . , xn} the linear span of x1, . . . , xn). Indeed, for any x in the kernel of CS , we know CSx = 0 and therefore
x>CSx = 1

n

∑n
i=1(x>i x)2 = 0, from which we know that x must be orthogonal to V . Furthermore, for any x orthogonal

to V , it is clear that CSx = 0, i.e., x belongs to the kernel of CS . The proof is complete.

G. Extensions
In this section, we present some extensions of our analyses. We consider three extensions: extension to stochastic proximal
gradient descent, extension to high probability analysis and extension to SGD without replacement.

G.1. Stochastic proximal gradient descent

Our discussions can be directly extended to study the performance of stochastic proximal gradient descent (SPGD). Let
r : Rd → R+ be a convex regularizer. SPGD updates the models by

wt+1 = Proxηtr
(
wt − ηt∂f(wt; zit)

)
,

where Proxg(w) = arg minw̃∈Rd
[
g(w̃) + 1

2‖w − w̃‖22
]

is the proximal operator. SPGD has found wide applications in
solving optimization problems with a composite structure (Parikh & Boyd, 2014). It recovers the projected SGD as a specific
case by taking an appropriate r. Our stability bounds for SGD can be trivially extend to SPGD due to the non-expansiveness
of proximal operators: ‖Proxg(w)− Proxg(w̃)‖2 ≤ ‖w − w̃‖2,∀w, w̃ if g is convex.
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G.2. Stability bounds with high probabilities

We can also extend our stability bounds stated in expectation to high-probability bounds, which would be helpful to
understand the fluctuation of SGD w.r.t. different realization of random indices.

Proposition G.1. Let Assumption 1 hold. Assume for all z ∈ Z , the function w 7→ f(w; z) is convex and w 7→ ∂f(w; z)

is (α,L)-Hölder continuous with α ∈ [0, 1]. Let S = {z1, . . . , zn} and S̃ = {z̃1, . . . , z̃n} be two sets of training examples
that differ by a single example. Let {wt}t and {w̃t}t be produced by (3.3) based on S and S̃, respectively, and δ ∈ (0, 1).
If we take step size ηj = ct−θ for j = 1, . . . , t and c > 0, then with probability at least 1− δ

‖wt+1−w̃t+1‖2 =O
(
t1−

θ
1−α + n−1t1−θ

(
1+
√
nt−1 log(1/δ)

))
.

High-probability generalization bounds can be derived by combining the above stability bounds and the recent result on
relating generalization and stability in a high-probability analysis (Bousquet et al., 2019; Feldman & Vondrak, 2019).

To prove Proposition G.1, we need to introduce a special concentration inequality called Chernoff’s bound for a summation
of independent Bernoulli random variables (Boucheron et al., 2013).

Lemma G.2 (Chernoff’s Bound). Let X1, . . . , Xt be independent random variables taking values in {0, 1}. Let X =∑t
j=1Xj and µ = E[X]. Then for any δ̃ ∈ (0, 1) with probability at least 1− exp

(
− µδ̃2/3

)
we have X ≤ (1 + δ̃)µ.

Proof of Proposition G.1. Without loss of generality, we can assume that S and S̃ differ by the first example, i.e., z1 6= z̃1

and zi = z̃i for i 6= 1. If it 6= 1, we can apply Lemma 6 and (A.3) to derive

‖wt+1 − w̃t+1‖2 ≤ ‖wt − ηt∂f(wt; zit)− w̃t + ηt∂f(w̃t; zit)‖2

≤ ‖wt − w̃t‖2 + cα,3η
1

1−α
t .

If it = 1, we know

‖wt+1 − w̃t+1‖2 ≤ ‖wt − ηt∂f(wt; z1)− w̃t + ηt∂f(w̃t; z̃1)‖2
≤ ‖wt − w̃t‖2 + 2ηtG.

Combining the above two cases together, we derive

‖wt+1 − w̃t+1‖2 ≤ ‖wt − w̃t‖2 + cα,3η
1

1−α
t + 2ηtGI[it=1].

Taking a summation of the above inequality then yields

‖wt+1 − w̃t+1‖2 ≤ cα,3
t∑

j=1

η
1

1−α
j + 2G

t∑
j=1

ηjI[ij=1].

Applying Lemma G.2 with Xj = I[ij=1] and µ = t/n (note EA[Xj ] = 1/n), with probability 1− δ there holds

t∑
j=1

I[ij=1] ≤
t

n

(
1 +

√
3nt−1 log(1/δ)

)
.

Therefore, for the step size ηj = ct−θ, j = 1, . . . , t, we know

‖wt+1 − w̃t+1‖2 ≤ cα,3c
1

1−α t1−
θ

1−α + 2Gcn−1
(
1 +

√
3nt−1 log(1/δ)

)
t1−θ.

The proof is complete.
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G.3. SGD without replacement

Our stability bounds can be further extended to SGD without replacement. In this case, we run SGD in epochs. For the
k-th epoch, we start with a model wk

1 ∈ Rd, and draw an index sequence (ik1 , . . . , i
k
n) from the uniform distribution over all

permutations of {1, . . . , n}. Then we update the model by

wk
t+1 = wk

t − ηkt ∂f(wk
t ; zikt ), t = 1, . . . , n, (G.1)

where {ηkt } is the step size sequence. We set wk+1
1 = wk

n+1, i.e., each epoch starts with the last iterate of the previous
epoch. The following proposition establishes stability bounds for SGD without replacement when applied to loss functions
with Hölder continuous (sub)gradients.

Proposition G.3. Suppose assumptions of Proposition G.1 hold. Let {wt}t and {w̃t}t be produced by (G.1) based on S
and S̃, respectively. Then

EA[‖wK+1
1 − w̃K+1

1 ‖2] ≤ 2G

n

K∑
k=1

n∑
t=1

ηkt + cα,3

K∑
k=1

n∑
t=1

(ηkt )
1

1−α .

Proof. Without loss of generality, we can assume that S and S̃ differ by the first example, i.e., z1 6= z̃1 and zi = z̃i for
i 6= 1. Analogous to the proof of Proposition G.1, we derive the following inequality for all k ∈ N and t = 1, . . . , n

‖wk
t+1 − w̃k

t+1‖2 ≤ ‖wk
t − w̃k

t ‖2 + cα,3(ηkt )
1

1−α I[ikt 6=1] + 2ηktGI[ikt=1].

Taking a summation of the above inequality from t = 1 to n gives

‖wk
n+1 − w̃k

n+1‖2 ≤ ‖wk
1 − w̃k

1‖2 + cα,3

n∑
t=1

(ηkt )
1

1−α I[ikt 6=1] + 2G

n∑
t=1

ηkt I[ikt=1].

Let ik be the unique t ∈ {1, . . . , n} such that ikt = 1. Since wk+1
1 = wk

n+1, we derive

‖wk+1
1 − w̃k+1

1 ‖2 ≤ ‖wk
1 − w̃k

1‖2 + cα,3

n∑
t=1

(ηkt )
1

1−α + 2Gηkik .

Since we draw (ik1 , . . . , i
k
n) from the uniform distribution of all permutations, ik takes an equal probability to each 1, . . . , n.

Therefore, we can take expectations over A to derive

EA
[
‖wk+1

1 − w̃k+1
1 ‖2

]
≤ EA

[
‖wk

1 − w̃k
1‖2
]

+ cα,3

n∑
t=1

(ηkt )
1

1−α +
2G
∑n
t=1 η

k
t

n
.

We can take a summation of the above inequality from k = 1 to K to derive the stated bound. The proof is complete.
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