Appendix for “Fine-Grained Analysis of Stability and Generalization for
Stochastic Gradient Descent”

Yunwen Lei'? Yiming Ying3

A. Optimization Error Bounds

For a full picture of generalization errors, we need to address the optimization errors. This is achieved by the following
lemma. Parts (a) and (b) consider the convex and strongly convex empirical objectives, respectively (we make no assumptions
on the convexity of each f(-, z)). Note in Parts (c) and (d), we do not make a bounded gradient assumption. As an alternative,
we require convexity of f(-; z) for all z. An appealing property of Parts (c) and (d) is that it involves O(Z;Zl n?-F s(w))

instead of O(Z;Zl 7]]2-), which is a requirement for developing fast rates in the case with low noises.

Our discussion on optimization errors requires to use a self-bounding property for functions with Holder continuous
(sub)gradients, which means that gradients can be controlled by function values. The case o = 1 was established in Srebro
et al. (2010). The case « € (0, 1) was established in Ying & Zhou (2017) and slightly refined in Lei et al. (2019). The case
a = 0 follows directly from Definition 3. Define

(I+1/a)TaLms,  ifa>0
ol = : (A1)
sup, [|0f(0;2)||2 + L, ifa=0.

Lemma A.1. Assume for all z € Z, the map w — f(w; z) is nonnegative, and w — O f (w; z) is (o, L)-Holder continuous
with o € [0, 1]. Then for cq 1 defined as (A.1) we have

10f (W, 2)||l2 < canfTa (w,2), VYweRY ze€ Z.
Lemma A.2. (a) Let {w}: be produced by (3.3) and Assumption 1 hold. If Fg is convex, then for allt € N and w € 2

t
< Gy i +lwll3

EalPs(w,)] — Fs(w) < —= =

b

1
where wg ) = (Z;=1 njwj)/ Z;=1 ;.
(b) Let Fs be og-strongly convex and Assumption 1 hold. Let ty > 0 and {w}; be produced by (3.3) with n, =
2/(os(t +tg)). Thenforallt € N and w € Q
Ea[Fs(wi?)] = Fs(w) = O(1/(tos) + [ w]3/1),

where wi®) = (34 (G +to — Dywy) /325 (G +to — 1)

(c) Assume for all z € Z, the function w — f(w; z) is nonnegative, convex and L-smooth. Let {w}+ be produced by (3.3)
with ny < 1/(2L). If the step size is nonincreasing, then for allt € N and w € ) independent of the SGD algorithm A

S EalFs(w,) — Fs(w)] < (1/2+ L) |[wl3 + 2L S 12 Fs (w).

Jj=1 Jj=1
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(d) Assume for all z € Z, the function w — f(w; z) is nonnegative, convex, and 0 f(w; z) is (c, L)-Holder continuous
with a € [0,1). Let {w}; be produced by (3.3) with nonincreasing step sizes. Then for allt € N and w € Q
independent of the SGD algorithm A we have

1—a

t L sme
2>y BalFsto) — Fo()] < Il + i (002) 7 (mlwl 42 3 2 Fsow) + 00 Y0 ),
j=1

j=1 =1 =
where
2+2c¥
Cao = 1+a (2&/(1 + a)) = C 1 , fa>0 (A2)
Ci,la ifa=0.

Proof. Parts (a) and (b) can be found in the literature (Lacoste-Julien et al., 2012; Nemirovski et al., 2009). We only prove
Parts (c) and (d). We first prove Part (c). The projection operator Il is non-expansive, i.e.,

Mo (w) — o (W)||, < [[w — W]l (A3)
By the SGD update (3.3), (A.3), convexity and Lemma A.1, we know
Wi = w3 < [lwe = 00 f (wis 2i,) — wlf3
= [lwi — w3 + 210 f (wes i )II5 + 20e(w — wi, Of (We; 23,)
< lwe = wli3 + 207 Lf (We; 2i,) + 200 (f (w3 2i,) = f(wi; 23,)) (A4)
< wi — w3 + 200 f (w3 25,) — 1 f (Wi 23,),

where the last inequality is due to 1, < 1/(2L). It then follows that
nef (We; 2,) < Wi = w3 = [Wer — W3 + 20, f (W5 23,).
Multiplying both sides by 7; and using the assumption 7,41 < 1¢, we know
M f(We; zi,) < el we — W3 = el wesr — wlf3 + 207 f(w; 23,)
< nellwe = w3 = nera [Wepr — w3 + 207 f(w; 23,).
Taking a summation of the above inequality gives (w; = 0)

t t
S onifwyizi) <mlwiE+2> 03 f(wiz,).

j=1 j=1
Taking an expectation w.r.t. A gives (note w; is independent of ;)
t
Z NEA[Fs(w;)] Z MEA[f (Wi 2i,)] <mlwll3 +2) n?EalFs(w)). (A.5)
Jj=1 j=1
On the other hand, taking an expectation w.r.t. i; over both sides of (A.4) shows
20 [Fs(wi) = Fs(w)] < Wi = w3 = i, [[wesr = W3] + 207 LEs(we).
Taking an expectation on both sides followed with a summation, we get
t t
2> mEa[Fs(w;) — Fs(w)] < w3 +2L Y n?EalFs(w;)]
j=1 j=1

t
< (1+ 2Lm)||wf3 + 4L Y 1PEa[Fo(w)],
=1
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where the last step is due to (A.5). The proof is complete since w is independent of A.

We now prove Part (d). Analogous to (A.4), one can show for loss functions with Holder continuous (sub)gradients (Lemma
A.l)

2o
[Werr = w3 < lwe = wl3 + 2 1m7 f 755 (Wi 2i,) + 200 (f (W3 22,) = f(wes 2i,))- (A.6)

By the Young’s inequality
ab<ptalP + ¢ b9, a,beR,p,qg>0withp ' +¢ 1 =1, (A7)

we know (notice the following inequality holds trivially if o = 0)

2a 2a

20 1+« Tfa / 20 \ Tfa
77t¢i,1f1+"‘ (Wi;24,) = ( f(WﬁZit)) ( ) Ci,ﬂ]t

2a 1+«
20 1+« e 1« 200\ T o s
< . .
—1+a( 20 f<wt’z“)) +1+oé((1+a> al”t)
lta
= f(We2i,) + Capny *
Combining the above two inequalities together, we get
2
e f (Wes zi,) < [we = w3 = [Wer — w3+ 200 f(w; 23,) + Caon ™"
Multiplying both sides by n; and using 7,11 < 1y, we derive
3—a
i f(wis zi,) < mellwe — w3 = s [wesr — w3 + 207 f(w; 23,) + caom "
Taking a summation of the above inequality gives
3—
Zn] Wj,z%)<171||w||2+2277] (W; 2, —|—ca2277 =3 (A.8)
Jj=1 Jj=1 Jj=1
According to the Jensen’s inequality and the concavity of = —> e , we know
t . 2a
Wi Zi )\ 2%
S ) ()
j=1 Z] 1 77]
t 1—o 2a
+ O
=(2w) (mllw\|2+2zm i) a0 )

j=1

where in the last step we have used (A.8). Taking an expectation on both sides of (A.6), we know

2Ea[Fs(wi) — Fs(w)] < Ealllwe — wl3] = Ea[llwir1 — wli3] 4+ 2 177 Ea [fl%(wt; zi,)].

Taking a summation of the above inequality gives

t t
2a
2> nEalFs(w;) — Fs(wW)] < |[wl3 +c2, Y n?Ea [ (wy zi,)]
j=1 j=1
-

°‘1+a
<||w\|2+ca1(znj) (muw|\2+2zn§EAFs +cagz )

Jj=1 Jj=1

where we have used (A.9) and the concavity of z 27¥% in the last step. The proof is complete by noting the independence
between w and A. O
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B. Proofs on Generalization by On-average Model Stability
To prove Theorem 2, we introduce an useful inequality for L-smooth functions w — f(w; z) (Nesterov, 2013)

Lijw — w]|3

f(wiz) < f(W;2) +(w — W, 0f(w; 2)) + 5 (B.1)
Proof of Theorem 2. Due to the symmetry, we know
Es4[F(A(S)) — Fs(A(S))] = Bg 5 [ (F(A(SD)) ~ Fs(A(S)))]
i=1
=By [ D0 (A2 - 7(AS); )], ®2)

=1

where the last identity holds since A(S(*)) is independent of z;. Under Assumption 1, it is then clear that

[EsA[F(A(S) ~ Fs(AS)]| < Egs [© Z 1A(S) = AGSD)a] .

This proves Part (a).
We now prove Part (b). According to (B.1) due to the L-smoothness of f and (B.2), we know

Es4[F(A(S)) — Fs(A D Eisa[(4(50) — 451,074 20) + G 1ASY) - AS)IE]

3\'—‘

According to the Schwartz’s inequality we know
(A(SY) — A(S), 0f (A(S): 2)) < | A(SY) — A(S)II2|0f (A(S); 20) 12

v i 1 .
FIAGD) = AS)I + 5-107(A(S): 2013
FIASD) — AS)I -+~ F(A(S): ).

IN

IN

IN

where the last inequality is due to the self-bounding property of smooth functions (Lemma A.1). Combining the above two
inequalities together, we derive

Es.a[F(A(S)) - Fs(A(S

o 2B s allASY) ~ AS)E] + 123 Es Al (A(S): )

The stated inequality in Part (b) then follows directly by noting - "% | f(A(S); z;) = Fs(A(S)).
Finally, we consider Part (c). By (B.2) and the convexity of f, we know

B [F(A(S)) — Fs(A(S))] < = D By s, [(A(5) — A(S), 07 (A(5); )]
i=1

By the Schwartz’s inequality and Lemma A.1 we know

(A(S®) = A(S).05(A(S): ) < TIAS®) = A(S)I3 + - 10F (A5 20)13

Sy (A(SD); z,).

7 (@ 2
s 2H (5%) Sz + 2

Combining the above two inequalities together, we get

Esa[PAS) ~ Fs(A5)] < 513 B alIASY) - AG)E] + > B g a [P (A0,
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. 72'1 . . . 7
Since  + T+« is concave and z; is independent of A(S(*)), we know

2a

Egg.a[/ 5 (ASD); )] < Egg | (Ba[£(A(SD);20)]) T} —Eg54F"

A combination of the above two inequalities then gives the stated bound in Part (c). The proof is complete. O

H(A(SD)] = Bga [FT¥E(A(S))]

C. Proof on Learning without Bounded Gradients: Strongly Smooth Case
C.1. Stability bounds
A key property on establishing the stability of SGD is the non-expansiveness of the gradient-update operator established in
the following lemma.
Lemma C.1 (Hardt et al. 2016). Assume for all z € Z, the function w — f(w; z) is convex and L-smooth. Then for
n < 2/L we know
[w —nof(w;z) =W +n0f(W;z)]]2 < [|w — W]
Based on Lemma C.1, we establish stability bounds of models for SGD applied to two sets differing by a single example.

Lemma C.2. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex and L-smooth. Let S, S and SO be
constructed as Definition 4. Let {w} and {wgl)} be produced by (3.3) with 1; < 2/L based on S and S, respectively.

Then for any p > 0 we have
[\ f(wys )] (C.1)

Es,§7,4[||wt+1 Wf+1||

and

8(1+ l/p )L <
Es,g,A[HWHl leH 5] < Z 1+p/n)"~ JWQ]ESA[f(Wj?Zi)]- (C2)
Jj=1

Proof. If iy # i, we know the updates of w,; and WEQI are based on stochastic gradients calculated with the same example
z;,. By Lemma C.1 we then get

[Wesr — Wil llo < ||we = mdf(weszi,) — Wi +0df (Wi, 2|, < Iwe — Wi o (C3)
If 3 = i, we know
[Wisr =W llo < ||we — m0f (wes zi) — wi” +n0f (wi”, 2],
< [ = w2 + 0| 0f (Wi ) — OF (W Z) |2 (C.4)
< [ = w2 + 0|0 (Wes z0) |2 + ne|0F (Wi 2012

< fwe —wi |l + \ﬁnt(\/ (We; 2i) + m) (C.5)

where the second inequality follows from the sub-additivity of || - ||2 and the last inequality is due to Lemma A.1 on the
self-bounding property of smooth functions.

We first prove Eq. (C.1). Since i, is drawn from the uniform distribution over {1,...,n}, we can combine Egs. (C.3) and
(C.5) to derive

Ea[llwes = Wi lle] < Ea[lwe = wi ] + S [ Vw0 +\/ £ (w5 2).

Since z; and z; follow from the same distribution, we know

Esgal Fowi 2] = Esa[Vf(wi21). (C.6)
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It then follows that

2V Ly

Eg 5 allwies —widill2] < Egz 4 [llwe — wi|l] + == Esa[VF (Wi z)].

Taking a summation of the above inequality and using w, = wgi) then give (C.1).
We now turn to (C.2). For the case i; = 4, it follows from (C.4) and the standard inequality (a+b)? < (1+p)a®+(1+1/p)b?
that
||w 1 (i)2 1 12119 ) — B (). z\2
t+1 — Wt+1||2 (L +p)lwe —w, [z + (L+p~ )ng[|0f (Wi 21) fw”5 2|15
< (L4 p)llwe = wi |3+ 201+ p " Zl10f (wes 23 + 21+ p~ ) 97 (wis 213
< (L p)lwe = wi |3+ 400+ p~ ) Inf f(wis 20) + 40 +p VL f(wis2), (@)

where the last inequality is due to Lemma A.1. Combining (C.3), the above inequality together and noticing the distribution
of 74, we derive

i 4(1+p ') Ly}
wil||3] + S

allwesr = wii[5] < (14 p/mEaIw - " g s ) + 5],

Analogous to (C.6), we have
Eg g a[f(wW52)] = Esalf(wez)] (C.8)
and get

i i 8(1+p~ ") L}
Eg 5. llweer = wii3] < (1 p/mEg g a[lwe = wi? 3] + == Es.a [f(w; 20)].

Multiplying both sides by (1 4 p/n)~(*+1 yields that

(1+p/n)"HVEg 5 [Iwers — Wiy 3] < A+ p/n) " Eg 5 4 [Iwe — wi” 3]

8(1 + 71L1+ —(t+1),,2
(G ) (np/n) Mg

f(we; Zi)] .

Taking a summation of the above inequality and using wy, = w%i), we get

Zt: 8(1+p " )L(1+p/n)~ U y?

(L4 p/n)” VEg 5 4 [Iween — w2y ] < - LEs.a[f(wji20)]-

j=1

The stated bound then follows. O

Proof of Theorem 3. We first prove (4.3). According to Lemma C.2 (Eq. (C.1)), we know

SSA[ ZHWt-H Wt }_ ZZUJESA f(wjiz)].

=1 j=1

It then follows from the concavity of the square-root function and the Jensen’s inequality that

IN

SSA{ Z”Wtﬂ Wt ||} # njESA|: n_lzf(wj;zi)]
i=1

=1
2\{? IES’A[ Fs(wj)]

This proves (4.3).
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We now turn to (4.4). It follows from Lemma C.2 (Eq. (C.2)) that

n

SSA[ Z”Wtﬂ Wt—i—lH } < uzz L+p/n)"~ JWQESA[f(Wj;Zi)]

<
=1 j=1
8(1+p YL ¢ 4= 2
= f;(l +p/n) 0 Es 4 [Fs(w;)].
The proof is complete. O

Proposition C.3 (Stability bounds for non-convex learning). Let Assumptions of Theorem 3 hold except that we do not
require the convexity of w — f(w; z). Then for any p > 0 we have

SSA[ Z||Wt+1 Wf ||} (1+p/n)(1+mnL)* SSA[ Z”Wt } WES,A[FS(WO]-

Proof. If i; # i, then by the L-smoothness of f we know

[Wisr — Wil llo < lwe = Wi2llo + 1|0 (Wi 25,) — 0f (w23, < (1 4+ neL) [we — Wil (C.9)

If ¢, = 1, then analogous to (C.7), one can get

[Werr — Wi 3 < (14 p)we — w3+ 41+ p~ ) In? f(wis i) + 4(1+ p~ )L f(w(; Z,).

By the uniform distribution of i; € {1,2,...,n} we can combine the above inequality and (C.9) to derive

wiizi) + (w5 5)].

i 41+ p Y Ln?
Baflwies — wii 3] < (1 p/m)(1+mL)Baflw, - wi[3] + 2 g

This together with (C.8) implies

8(1+p~1)Ln?

i i )L77
Eg g alllweer — Wi |3] < (1+p/n)(1+ 0. L)*Eg 5 4 [Iwe —wi”|3] + LB alf(wii )]

n

It then follows that

SSA{ Z”WtJrl Wt H
n

1 ; 8(1+p ) Lnf &
<1 +p/n)(1+ 77tL)2E57§,A [ﬁ Z Wi — Wg )||§} + Tt Z]ES,A [f(wy; 2i)]

i=1 i=1

= (L p/n)(1 + mL)Ea [ an wiig] + S ).

The proof is complete. O

C.2. Generalization bounds

We now prove generalization bounds for SGD.

Proof of Theorem 4. According to Part (c) of Lemma A.2 with w = w*, we know the following inequality

T T
> B a[Fs(wi) — Fs(w*)] < (1/2+ L) [w*|[3 + 2L > n7 Fs(w"). (C.10)

t=1 t=1
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Let A(S) be the (¢ + 1)-th iterate of SGD applied to the dataset S. We plug (4.4) into Part (b) of Theorem 2, and derive

41+ p )L +7L+p/n) Zt:anSA[

" Fs(Wj)].

Esa[F(wis1)] < (1 + Ly )Eg a[Fs(weg)] +

We can plug (A.5) with w = w™ into the above inequality, and derive

A1+ p )L+ )L +p/n)

(mlw*3+2 ) niEs a[Fs(w™)]).

j=1

Es.a[F(wii1)] < (14+Ly ") Es,a [Fs(Wer1)]+

We choose p = n/T, then (1 + p/n)T=1 = (1 +1/T)T=! < e and therefore the following inequality holds for all
t=1,...,T (note Es 4[Fs(w*)] = F(w*))

B a[F(we)] < (14 Ly B alFo(w)] + TR () porei g 53 (o).

Multiplying both sides by 7, followed with a summation gives

S mEsalP(w)] < (14 1/7) Y mEs alFs(wy)] + 2T TOEEDEE S (o2 423 ().
t=1 t=1 t=1 j=1

Putting (C.10) into the above inequality then gives

T T T
> mEs.alF(wn)] < (14 L/7) (X0 mEs.alFs(w)] 4+ (1/2 4+ L) |w* |3+ 2L Y 7 Es.a[Fs(w*)])

t=1 t=1

T t—1
41 +T/n)(L+~v)Le N N
g ML EEE S (w2 423 2P w)).
t=1 j=1

Since Eg[Fs(w*)] = F(w™), it follows that

S B AlF(we) = P £ =S meF(w) + (14 /) (/2 ) w3 +20 Y 0 F(w)])

t=1
T t—1
y AETOEEDEE S w3 423 2 F ().
t=1 j=1
The stated inequality then follows from Jensen’s inequality. The proof is complete. O
Proof of Corollary 5. We first prove Part (a). For the chosen step size, we know
- 2 _ 2 1 2 -
;nt:c ;T:c and ;ntzcﬁ. (C.1D

The stated bound (4.5) then follows from Theorem 4, v = y/n and (C.11).

We now prove Part (b). The stated bound (4.6) then follows from Theorem 4, F'(w*) = 0 and v = 1. The proof is
complete. O
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D. Proof on Learning without Bounded Gradients: Non-smooth Case
D.1. Stability bounds

Theorem 7 is a direct application of the following general stability bounds with p = n/t. Therefore, it suffices to prove
Theorem D.1.
Theorem D.1. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex and 0f (w; z) is («, L)-Hélder

continuous with a € [0,1). Let S, S and S be constructed as Definition 4 and Cag = \/%FZ(Q oL)T== -
(i

W ) be the t-th iterate produced by (3.3) based on S and SV, respectively. Then for any p > 0 we have

. Let w; and

t
Esgaly antﬂ wili 3] < a0 o) Inre

t (1 t=jp2 2a_
+4(1 +p*1)cilzwﬂzw [F§+“ (wj)] D.1)

L n
J=1

We require several lemmas to prove Theorem D.1. The following lemma establishes the co-coercivity of gradients for convex
functions with Holder continuous (sub)gradients. The case o = 1 can be found in Nesterov (2013). The case a € (0, 1) can
be found in Ying & Zhou (2017). The case o = 0 follows directly from the convexity of f (in this case, the right-hand side
of (D.2) becomes 0).

Lemma D.2. Assume for all z € Z, the map w — f(w; z) is convex, and w — O f(w; z) is («, L)-Holder continuous
with « € [0, 1]. Then for all w, W we have

2L v
1+«

(w— ¥, 0f (w; 2) — Df (W; 2)) > 10f (w; 2) — Of (W5 2)[5= - (D.2)

Based on Lemma D.2, we can prove Lemma 6 on the approximate contractive behavior of the gradient update associated to
a non-smooth function.

Proof of Lemma 6. The following equality holds
[w—ndf(w;2)=W+ndf(W; 2)|[3 = [w—W|3+1°[0f (w; 2) =0 f (W; 2) |3 —2n(w—W, 0 f (w; 2) =0 f (W; 2)). (D.3)
We first consider the case a = 0. In this case, it follows from Definition 3 and Lemma D.2 with o« = 0 that
[w —ndf(w:z) =% +ndf(w;2)|3 < |w — W[5 +n°L%

We now consider the case o > 0. According to Lemma D.2, we know

|0f(w;2) — 0f (w; 2)|I3 < (WW S, 0f (wi2) — 0f(i2)))

= (17—;&<w —w,0f(w;z) — 8f(€v;z)>)% (9727@ T *12+aa)

< 20 (01 + )/ o) 5 (o — 0w 2) — D) P50 ) 4 L (g et )

= 27 (w = W, 0 (w3 2) = 0f(W;2)) + [ (2 L)
where we have used Young’s inequality (A.7). Plugging the above inequality back into (D.3), we derive
Iw =00 f (w:z) =% +9df (W:2) [} < [w = W[5 + oo 5 (20 L) =
Combining the above two cases together, we get
[w —ndf(wiz) =W +n0f (W;2)[13 < lw = W3 + 2 g7, (D4)

where ¢, 3 is defined in Theorem D.1. The proof is complete. O
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Proof of Theorem D.1. For the case i; # i, it follows from Lemma 6 that
. , 2
Wi = w3 < llwe =m0 f (wiizi,) = wi +mdf () 20) 3 < llwe = wi' 3+ €2 gm™
If i; = i, by (C.4) and the standard inequality (a + b)? < (1 + p)a® + (1 + 1/p)b?, we get

[Weir — w12 < (14 p)lwe — w22+ 201+ p~ )2 (10 (we; z0) 13+ |0 (wi?; 2)]13).

Combining the above two inequalities together, using the self-bounding property (Lemma A.1) and noticing the distribution
of i;, we derive

201+ p~eaan;
n

. . 2 2a 2 -
allwei=wi 18] < (tp/n) (Ballwi—wi” 3]+ ani" ) + B [£ 755 (wys 20)+/ 755 (w1 2)].

Analogous to (C.6), we know
2a 2a
S A [f e (w1(51)7 )} =FEsa [f”“ (wi; Zz)]

and therefore

A1 +p Yk n}
n

2c

Esa[fT5a (we; 2)].

. , 2
Eg g4 lIwir1—wih 1] < (1+p/n) (Bg g4 [Iwe—wi 18] +c2 0/~ )+
Multiplying both sides by (1 4 p/n)~¢+1) gives

(1t p/n) VB 5y [Iweer — wih 3] < (1 p/m) (B g u [lwe = wiPIB] + 2 on™ = )+

A1+ p N2 (14 p/n)~ U2
n

Es a [f s (We; ZZ)] .

Taking a summation of the above inequality and using w; = wgi), we derive

t 2
(1 +P/”)7(t+l)Es,§,A[Hwt+1 Wt+1” Z L4 p/n)~In;="

4(1+p He2 | & 20
ol Z 1+p/n)~ 0+ n7Esa [T (wys ;)]

j=1
We can take an average over ¢ and get

n

t

1

EZES,@A[HWI‘,—H Wt+1|| < 3§ (1+ p/n)it1- jnj
i=1 =

A(1 —1\..2 n t -
+ w 22(1 +p/n) I Es A [f T (W 2)].

i=1j=1

n2

It then follows from the concavity of the function z — 2%+ and the Jensen’s inequality that

¢
1
7ZESSA [Wes1 — Wt+1|| Z L+ p/n) 9 me a+
i=1 j=1
t t—7,2 n 20
- (L+p/n)"n; 1 s
4 +p e > B (5 fwisz)
= i=1

The stated inequality then follows from the definition of F's. The proof is complete. O
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D.2. Generalization errors

Theorem 8 can be considered as an instantiation of the following proposition on generalization error bounds with specific
choices of v, T" and 6. In this subsection, we first give the proof of Theorem 8§ based on Proposition D.3, and then turn to the
proof of Proposition D.3.

Proposition D.3. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex, and 0 f (w; z) is (o, L)-Holder
continuous with o € [0,1). Let {w;}; be produced by (3.3) with step sizes n; = cT % 60 € [0, 1] satisfying 0 > (1 — ) /2.
Then for all T satisfying n = O(T) and any v > 0 we have

EsA[F(wi))] — F(w*) = 0(7%) +0(7) (Tl’% e P e e (w*))

+O(1/) (T 4+ P (wh)) + O(177) + O *F") + O(T =" F ¥ (w").

Proof of Theorem 8. Tt can be checked that 6 considered in Parts (a)-(c) satisfy § > (1 — «) /2. Therefore Proposition D.3
holds. If v = 1/n, then by Proposition D.3 we know

Esa[F(w)] = F(w*) = O(n*T" " 7% ) + O(n 3 T2 %) + O(n~3) + O(T?"1) + O(T ™ T="") + O(T~?). (D.5)
We first prove Part (a). Since « > 1/2,0 = 1/2 and T < n, it follows from (D.5) that

Es.alF(wi)] = F(w') = O(n=#) + O(n¥~¥%) - O(n” *507) = O(n~%),

where we have used £ — ﬁ —% due to o > 1/2. This shows Part (a).
We now prove Part (b). Since o < 1/2, T < nite and § = 2‘?2—3’3) > 1/2 in (D.5), the following inequalities hold
le—ﬁ — \fT Tae—ay = /nn~ 8*2%2123 = n_%
—3p2-20 o Rt o i ee =
01 < PP R < T30 e = =}
_0 2—a 3a-3 3a—3 1
T = nite 22-a) =< n20+a) = O(TL 2),
where we have used (3o — 3)/( + o) < —1due to a < 1/2. Furthermore, since § > 1/2 and o < 1/2 we know
ab0-2a < —Land T = niFs > n. Therefore T“ T = = O(T~2) = O(n~2). Plugging the above inequalities into

D. 5) gives the stated bound in Part (b).

We now turn to Part (c). Since F/(w*) = 0, Proposition D.3 reduces to

2a(1-0) 672

IES,A[F(W(TI))]—F(W*):O(’y%)+O(7)(T17%+n_2T%)+0(7_1 -2 )+0<T9 Yyo(r*

With v = nT%!, we further get

1t (1+a)6 (90— 1)(& 1) ae e 20
1 —1p1—0) 1= - —1pl=le-l) 1
EsalF(wi)] = F(w*) = O((n ') 75 ) 4 0T =55 + (T )+ O(T*Y) + O(T ).
(D.6)
. 2 oo
For the choice T = nT+ and = 3= =22 we know 1 — 6 = (1 4 «)?/4 and therefore
1lta 2 lta
— lta —a
(n_lTl_g) T (n_lnlia Cap) ) - n_HTa
(140)0 2a4a?-3 a1 a
nT— T—a xnlflzfeu :n1+ 2(I-a) = n2-2a — n71§
(0=1)(a=1) (-0)(+a)? (1—a)(1+a) 14+
nTITT e =TT AR =TT 4 =n= 7

2 (1+a)? 14
Tl =p T8 T =xn 2.
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Furthermore,
0-1)(1+a)—(ab—0-2a)=20+a—-1=2""'3-0"—-20+20—2) >0

and therefore
af—0—2a

T@*l ZT Tra

Plugging the above inequalities into (D.6) gives the stated bound in Part (c). The proof is complete. O

To prove Proposition D.3, we first introduce an useful lemma to address some involved series.
Lemma D.4. Assume for all z € Z, the function w — f(w; z) is nonnegative, convex, and 0f(w; z) is («, L)-Holder
continuous with o € [0,1). Let {w}; be produced by (3.3) with step sizes 1, = ¢TI, 0 € [0,1] satisfying 6 > 15%. Then

T

(an) (771||W*||2+22n,2F +c(,22n a)”a“ = O(T ) 4 (T FT¥5 (w*)), (D7)

T
> 52 (EsalFs(we)]) ™7 = O(T 557 + O(T' -2 F s (w")), D.8)
t=1
d 2o (1=a)(1-6)
S (EsalFs(w)]) ™ =0T e )+ O(T* P F7¥s (w*)). (D.9)

H
I
-

Proof. We first prove (D.7). For the step size sequence 7, = ¢T'~%, we have

T T 3\ 29
* T—a | 1o
(30) ™ (i Hz+22n%F ) eaadon )
:O(T(l 20)0- a))(T s 20F( )+T1 @= a)e)%
O(Tl 1‘15”) +O(TT 2 s (wh)) + O(T o)

= O(T"557) + O(T' 2 F s (w")),

where we have used the subadditivity of x — x1+<, the identity

(1-20)(1-«) 20 1-a—-30+af 1—a-—20
14+ 1+« 1-a  1l-a

in the second step and § > (1 — «)/2 in the third step (the third term is dominated by the first term). This shows (D.7).
We now consider (D.8). Taking an expectation over both sides of (A.8) with w = w*, we get

T T
> miEsalFs(wy)] <mi|w*[3+2)  nfEs[Fs(w*)] + ca2 Zm

t=1 t=1

—a

According to the Jensen’s inequality and the concavity of z +— x 7+, we know

| /\

T
ZUE IESA[FS Wt
t=1

T T
> =1 M Es a[Fs(w)]\ 7=
g ( 1 Zif‘ n?s )

1—a T T 4 4 22

TFfa % T—a 14+
( i) " (mlw 15423 nf () cuay i )
t= t=1

1— a 29
= (

where we have used (D.7) in the last step. This shows (D.8).

IN

) +O(T'" ”F”a (W),
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Finally, we show (D.9). Since we consider step sizes 1, = c¢T—?, it follows from (D.8) that

T T
2a v —1 2a
Y m(BsalFs(wi)]) ™ = (7)Y nf (Es,alFs(we)]) 7
t=1 t=1
1ma=2049 1-0 2 o
=O(T 1+ )+ O(T " F1+a (w")).
This proves (D.9) and finishes the proof. O

Proof of Proposition D.3. Since Eg[Fs(w*)] = F(w*), we can decompose the excess generalization error into an estima-
tion error and an optimization error as follows

(im)l im (Es,alF(w)] - F(w")) = (ZT:m) ZntESA — Fs(w)

+ (Zm)il ZntES,A[FS(Wt) — Fs(w*)]. (D.10)

Our idea is to address separately the above estimation error and optimization error.

We first address estimation errors. Plugging (D.1) back into Theorem 2 (Part (c)) with A(S) = w1, we derive

2 t 2
« 2o - —jo -
E&A [F(Wt—i-l) 7F5(Wt+1)] < 2,;/ |:F1+01 (Wt+1):| +2 170273 Z(l +p/n)t+1 Jnj
j=1
t t—jn,2
(/) o
(14, S L T e ).
+2y(1+p )ca,ljz:; - s.a|Fs™ (wj)

2a
By the concavity and sub-additivity of z — xT+=, we know

2

Ega[F77% (Wi11)] < (Es alF(Wit1)] = Es a[Fs(we )] + Es a[Fs(wii1)]) < 5t1++f + (Es,alFs(wer1)]) 7,
where we denote §; = max{Eg 4[F(w;)] —Eg a[Fg(w;)],0} for all j € N. It then follows from p = n/T that

2 20 'L 2 2ey(14T/n)c? Cat
o1 < o 27 (5&{’ + (Es,a[Fs(wit1)]) ”") +27 veck 3> 0T + Zn] Es A[FS(WJ)])”"-

3 n
j=1 j=1

Solving the above inequality of §;1 gives the following inequality for all t < T’

5t+1:0(7%)4’0(771(ES,A[FS(Wt-H) 1*“) ( Zn ) ( n~t+Tn? in Eg a[Fs(w;)]) %*()

It then follows from the definition of d; that (take a summation of 7;d; and note n = O(T'))

(im)_l ET:%(ES*A[F(Wt)] —Es.alFs(wi)]) = 0(7‘1‘%) + O(’Y_l(iﬂt) zT:nt (Es,alFs Wt)])%>

T
2 2a
Utlfa) +0(’YTTL 2> nf (Es.alFs(wy)]) 1+“>~
t=1

[M]=

+O<'y

t=1

By 1, = ¢I'~%, (D.8) and (D.9), we further get

(ZT: m)il XT: e (Bs,AlF(we)] = Ega[Fs(wi)]) = O(75F) 4+ 0 (7' 77%)
t=1 t=1

(1—a)(1—6)
14+«

+O(’7_1T0_1(T +T1—9F12+7aa<w*))) +O(’YTTL (T 1+a +T1 2\9F1+O¢( ))) (Dl])
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2a
We now consider optimization errors. By Lemma A.2 (Part (d) with w = w*) and the concavity of x — xT+=, we know

T T
(Zﬂt) > s alFs(wi) — Fs(w")]

t=1
11—« T

T . T 4, T 1-a T . 20

* 1+a * * T\ I+

< (2> m) W+ (Y om) ()T (mlw I+ 2 Y m P +cazd 0t )
t=1 t=1 t=1 t=1 t=1

= O(T" Y + O(T 7%=

20

Y FO(TT RS (w)),

where we have used (D.7) in the last step.

Plugging the above optimization error bound and the estimation error bound (D.11) back into the error decomposition
(D.10), we finally derive the following generalization error bounds

T T
() S m(EsalFw] - Fw')) = 0(v#5) +0() (1"~ 40 2T 402122 p i (w) )+
t=1 t=1

O(1/7) (T~ 55 + P (w")) + 0(17) + O(T

af—0—2a
1+

) + O(T P F7¥5 (w*)).
The stated inequality then follows from the convexity of F'. The proof is complete. O

D.3. Empirical Risk Minimization with Strongly Convex Objectives

In this section, we present an optimistic bound for ERM with strongly convex objectives based on the /5 on-average model
stability. We consider nonnegative and convex loss functions with Holder continuous (sub)gradients.

Proposition D.5. Assume for any z, the function w — f(w; z) is nonnegative, convex and w — 0 f (w; z) is (o, L)-Holder
continuous with « € [0, 1]. Let A be the ERM algorithm, i.e., A(S) = argminycra Fs(W). If for all S, Fg is o-strongly

convex, then
2

s [F(A(S) — Fs(A(S))] < 2B [F ¥ (4(9)]

no

Proof. Let S and S@ i = 1,...,n, be constructed as Definition 4. Due to the o-strong convexity of Fgiy and
OF g (A(S®)) = 0 (necessity condition for the optimality of A(S)), we know

Fs (A(S)) — Fs (A(SD)) = 2740 A(S) — A(SD) 5.
Taking a summation of the above inequality yields

% Z (Fsm (A(S)) = Fsw (A(S“)))) > % STACS) = ASD)]5. (D.12)

i=1

According to the definition of .S (@) we know

n

nY- Fso(A(8) = Y- (3 F(AWS): =) + fA(S): %))

i=1  j#i
= (n=1) ) FIAWS);2) + 3 J(A(S); 20) = (n = )nFs(A(S)) + nF5(A(S)).

Taking an expectation and dividing both sides by n? give (A(S) is independent of §)

n—1

g[S Foo (A(S)] = " Bs [Fs(A(S))] + LEs[F(A(S)]. (D.13)
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Furthermore, by symmetry we know
;Es,g[iFsm (A(SD))] = Es [Fs(A(S))].
Plugging the above identity and (D.13) back into (D.12) gives
2 S B lIASY) - AS)IB < SE S [PA($) - Ro(ars)) (D.149)
i=1
We can now apply Part (c) of Theorem 2 to show the following inequality for all v > 0 (notice A is a deterministic algorithm)

Es[F(A(S)) - Fs(A(S))] < S2Es [P (A(S))] + -LEs[F(A(S)) - Fs(A(S))].

2y
Taking v = no /2, we derive

2 1 20 1

Es [F(A(S)) - Fs(A(S))] < 225 [F™5 (A(S))] + 5Es[F(AS)) - Fs(A(S)),
from which we can derive the stated inequality. The proof is complete. O
E. Proofs on Stability with Relaxed Convexity
E.1. Stability and generalization errors
For any convex g, we have (Nesterov, 2013)
(w—w,0g(w) — dg(W)) >0, w,WweR%. (E.1)

Proof of Theorem 9. Without loss of generality, we can assume that S and S differ by the first example, i.e., z; # Z; and
z; = Z;,1 # 1. According to the update rule (3.3) and (A.3), we know

HWtH - V~Vt+1||g < ||Wt - ntaf(wt; Zit) - Wi+ ntﬁf(Wt; Zu)”g
= |[we — Well3 + 070 (Wes 2i,) — Of (W3 Z,) |15 + 20 (Wy — Wy, Of (Wi Zi,) — Of (W5 23,)). (E.2)

We first study the term ||0f (wy; z;,) — Of (Wy; Z;,)||2. The event i, # 1 happens with probability 1 — 1/n, and in this case
it follows from the smoothness of f that (z;, = Z;,)

10f (W zi,) = 0f (We; 2, ) |2 < Llwe — Wi
The event i; = 1 happens with probability 1/n, and in this case
10f (Wi 2i,) = Of (W Zi,)ll2 < [[0f (wes 23, )12 + 10f (W 23, )[|2 < 2G.
Therefore, we get

(n—1)L?

Ei, [10f (we; 2i,) = 0f (We; 2,)II3] < Iwe =Wl + —. (E.3)

It is clear
E,, [f(wt;zit)} = Fg(w;) and E [f(\?vt;iit)] = F5(Wy).
Therefore, by (E.1) we derive
Ei, [ (Wt — Wy, Of (We; Z4,) — 5'f(Wt;Zit)>] = (Wi — Wy, OFg(W¢) — OFs(wy))
= <Wt — \X/'t, 8F§(v~vt) — 8F5(\X/t)> + <Wt — \xlh 8FS(\X/'t) — 8F5(wt))
1
= H<Wt — Wy, 0f (W3 21) — Of (W3 21)) + (W — Wy, OFg(Wy) — OF5(wy))

2Gwr = Well2. (E.4)
n
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Plugging (E.3) and the above inequality back into (E.2), we derive

- - 4G77tHWt — V~Vt||2 (TL — 1)L2 - 4G2
By, (Wi = Wit 18] < llwy = w3 + =T o (S — w3 4 =)

and therefore

~ ~ EA Wi — W G 2
Ea[[lWesr — Wen|3] < (14 L257)Ea [[we — W3] +4G<nt . ;L L %) (E.5)
By the above recurrence relationship and w; = w1, we derive
t ot - 2
Ealllw; = W] | G
14 2 g) (773 J J J)
allweer = We|f3] ZH ( + L - +—
=1j=;
e i (1+L2 2) i (Uj max; <<, Eaf|lw; — w; 2] N Gn?).
- 4 n n
j=1 i=1
Since the above inequality holds for all ¢ € N and the right-hand side is an increasing function of ¢, we get
t ~ 2
max Wi — W3 Gn?
max ]EA[HW —w; ” Z(n] 1<j<t+1 Eall 3 3H2] n 77]).
1<j<t+1 o n n
1
It then follows that (note B [||ws — W;2] < (Ea[llw; — w53])*)
t i 1 top?
max Ea|[lw; —w; <4GC “L max (IE Wi — W5 )2 +4G?C L,
1<j<t+1 A[H I ] tz n 1<j<t+1 A[H I ] t; n
Solving the above quadratic function of max, ;- (IE A [||w3 — \7\/5”3])E then shows
1 t ;i t 2 1
max (Eal|[|w:, ; — W 2>2<4GC J+2G< 7])2
1§3§t+1< allwser = ¥5ala]) - < t; n z:: n
The proof is complete. O

To prove Theorem 10, we require a basic result on series.

Lemma E.1. We have the following elementary inequalities.

(a) If0 € (0,1), then (=0 —1)/(1 —0) < Sp_ k=0 <t'=0/(1 - 0);

IN

(b) If0 > 1, then " _ k=0 < ;%5
We denote by egtan (A, n) the infimum over all € for which (3.2) holds, and omit the tuple (A, n) when it is clear from the
context.

Proof of Theorem 10. For the step sizes considered in both Part (a) and Part (b), one can check that ZtT: | m# can be upper
bounded by a constant independent of T'. Therefore, C; < C forallt = 1,...,T and a universal constant C'. We can apply
Lemma A.2 (Part (a)) on optimization errors to get

Ea[Fs(wi)] - Fs(w*) = O (Zt 12”* +7|7|W*|2) (E6)
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By the convexity of norm, we know

T
1

T T
]EA[HW(Tl) _"NV(T1)||2] < (Znt ZmEA [wi — Wel[2] (Z% 7% 277152 2>7
t=1 pat

where we have applied Theorem 9 (the upper bound in Theorem 9 is an increasing function of ¢). It then follows from
1
the Lipschitz continuity that eg.p, = O( EtT 14 n2 ( Ethl nf) 2 ) This together with the error decomposition (3.1),

Lemma 1 and the optimization error bound (E.6) shows

- ! S i + w3
EsalF(wi)] = Fw") =0( 3. % +n (3 n?)7) +0( “Z"t , ). E7)

o~
Il
_
o~
Il
_

T — *

)+O(Zt:1t 2+ ||lw II%)
T 46

t=1 Zt:lt

O(n_1T1_9 +n77 4 Te_l).

&
b
=
SE
n
=
2*
i
Q
/N
M
_|_
3,
M
~
T
m\._.

This proves the first part.

Part (b) follows by plugging (C.11) into (E.7). The proof is complete. O

F. Proofs on Stability with Relaxed Strong Convexity

Proof of Theorem 11. Due to the og-strong convexity of Fis, we can analyze analogously to (E.4) to derive

- - 2G||wy — w .
E, [(we — 0 (W) — 0ftwes 5] < 2l o2

Therefore, analogous to the derivation of (E.5) we can derive

it mEallw = Sl
n

allwipr = Wi 3] < (1+ L0 = 205m)Ea[[[w; — Wel[3] + 4G< "

4G277t2 + 8G*1
TLZO'S

3 -
<1+ LGf — §Osnt)EA[HWt - Wt”%] +

)

where we have used

4G N 8G2 o E W — W 2
7EAH|Wt Wt||2] < > + S AHI t t”g].
n n<og 2

We find tg > 4L?/0%. Thenn, < og/(2L?) and it follows that

4G2771:2 + 8G?n,

Allwerr = Wi 3] < (1= osne)Ea[llwe — well3] + "o

2 4G? 2,
(1 g el it 4+ 2.
( i JEallwe = will3] + = (7 +

Multiplying both sides by (¢ + t)(t + to — 1) yields

(t+to)(t+to — DEA[[Wepr — Wepall3] < (E+to — 1)(t + to — 2)Ea[[|we — Wel|3] + ne+—— ).

nog

802(t+to—1)( 2 )

nog
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Taking a summation of the above inequality and using w; = W then give
t

~ 8G2 (. 2
(t+t0)(t +to — DEa[lIwirs — Wil < =S +to— 1) (nj + —)

nogs =1 nos
8G2 4 2 U

= tto— D+ — S (+to—1 )
mS(Z(J+ o= Unj+ > (i+to—1)

Jj=1 Jj=1
2 _

. 8G <ﬁ+t(t+2to 1)>'

nosg \og nogs

It then follows

t+to T
The stated bound then follows from the elementary inequality v/a + b < v/a + v/b for a,b > 0. The proof is complete. [

16G? /1 1
Eallwen —wint]) = 2 ()
A[Hwt+1 Wt+1|\2} = no_%

Proof of Theorem 12. By the convexity of norm, we know

T
(Yt+to-1)""

[M]=

Eaf|wy — %] < (t+ to — DEA[|ws — We|s]
t=1 t=1
T T
4G —1 1 1
< —(D (t+to—1) (t+to— 1) ——=+—
Us(; ) ; ( n(t+to) n)

= O(o5 ' ((nT) "% +n7"),

where we have used Lemma E.1 in the last step. Since the above bound holds for all S| S differing by a single example,
it follows that ¢; on-average model stability is bounded by O(Eg[og"] ((nT)_% +n~1)). By Part (b) of Lemma A.2 we
know
2 * *
EalFs(wy)] = Fs(w*) = O(1/(Tos) + |[w"|3/T?).
It then follows from (3.1) and Part (a) of Theorem 2 that
Esa[F(w)] — F(w*) = O(Es[o5" (nT)"% +n~")]) + O(Es[1/(Tos)] +1/T?).

The stated bound holds since T' < n. The proof is complete. O

Proposition F.1. Let S = {z1,...,2,} and Cg = % S xiz). Then the range of Cs is the linear span of {x1,. .., }.

Proof. Tt suffices to show that the kernel of Cg is the orthogonal complement of V' = span{z1,...,z,} (we denote
span{x1, ..., 2, } the linear span of x1, . .., x,). Indeed, for any x in the kernel of Cg, we know Csz = 0 and therefore
2"Csx =LY (x]2)? =0, from which we know that 2 must be orthogonal to V. Furthermore, for any « orthogonal
to V, it is clear that Cgx = 0, i.e., x belongs to the kernel of C's. The proof is complete. O

G. Extensions

In this section, we present some extensions of our analyses. We consider three extensions: extension to stochastic proximal
gradient descent, extension to high probability analysis and extension to SGD without replacement.

G.1. Stochastic proximal gradient descent

Our discussions can be directly extended to study the performance of stochastic proximal gradient descent (SPGD). Let
r: RY — RT be a convex regularizer. SPGD updates the models by

Wil = PI‘OXmT(Wt — m@f(wt, Zit)),

where Prox,(w) = arg mingcga [g(W) + 3||w — W][3] is the proximal operator. SPGD has found wide applications in
solving optimization problems with a composite structure (Parikh & Boyd, 2014). It recovers the projected SGD as a specific
case by taking an appropriate r. Our stability bounds for SGD can be trivially extend to SPGD due to the non-expansiveness
of proximal operators: ||Prox,(w) — Proxy(w)||2 < ||w — W||2, YW, W if g is convex.
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G.2. Stability bounds with high probabilities

We can also extend our stability bounds stated in expectation to high-probability bounds, which would be helpful to
understand the fluctuation of SGD w.r.t. different realization of random indices.

Proposition G.1. Let Assumption 1 hold. Assume for all z € Z, the function w — f(w; z) is convex and w — O f (w; z)
is (., L)-Hélder continuous with o € [0,1). Let S = {zy,...,2z,} and S = {Z1, ..., 2.} be two sets of training examples
that differ by a single example. Let {w}; and {W}; be produced by (3.3) based on S and S, respectively, and § € (0, 1).
If we take step size n; = ct=0forj =1,...,tand c > 0, then with probability at least 1 — §

|[Wir1 —Wip1]l2=0 (tl_% R (1+ Vnt~1 log(l/é))).

High-probability generalization bounds can be derived by combining the above stability bounds and the recent result on
relating generalization and stability in a high-probability analysis (Bousquet et al., 2019; Feldman & Vondrak, 2019).

To prove Proposition G.1, we need to introduce a special concentration inequality called Chernoff’s bound for a summation
of independent Bernoulli random variables (Boucheron et al., 2013).

Lemma G.2 (Chernoff’s Bound). Let X1, ..., X; be independent random variables taking values in {0,1}. Let X =
ZJ X and p = E[X]. Then for any § € (O 1) with probability at least 1 — exp ( — u(52/3) we have X < (14 0)p.

Proof of Proposition G.1. Without loss of generality, we can assume that S and S differ by the first example, i.e., z; # 21
and z; = Z; for ¢ # 1. If iy # 1, we can apply Lemma 6 and (A.3) to derive

lWir1r — Wepalla < [[we — 00 f (W5 25,) — Wi + 00 f (Wi 23,) |2
_1
< |lwe — Will2 + casn @

If 7; = 1, we know

||Wt+1 - V~v1t+1||2 < ||Wt - ntaf(Wt; 21) - Wy + ﬂtaf(VNVt; 51)”2
< |lwy — Wyl|2 + 2 G.

Combining the above two cases together, we derive

W1 — Wiz < [[we — Will2 + ca, 377t * 2 Gl =y

Taking a summation of the above inequality then yields

t
[Wit1 = Wipa]l2 < Caszn +QGZ77J j=1]-
Jj=1
Applying Lemma G.2 with X; = I[;,—;) and z = t/n (note E [X;] = 1/n), with probability 1 — § there holds
t
Z]I[ =1 < = (1 + v/3nt—1log(1/4)).

j=1

Therefore, for the step size n; = ct=? j=1,...,t weknow

(lWit1 — Wiga]l2 < ca’gcﬁtlfﬁ +2Gen (14 v/3nt~1log(1/5)) .

The proof is complete. O
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G.3. SGD without replacement

Our stability bounds can be further extended to SGD without replacement. In this case, we run SGD in epochs. For the

k-th epoch, we start with a model w} € R<, and draw an index sequence (7%, . . ., i) from the uniform distribution over all
permutations of {1, ...,n}. Then we update the model by
Wt_H—Wt 8f(wt,zk) t=1,...,n, (G.1)

where {nF} is the step size sequence. We set warl =wk 11, 1.e., each epoch starts with the last iterate of the previous

epoch. The following proposition establishes stablllty bounds for SGD without replacement when applied to loss functions
with Holder continuous (sub)gradients.
Proposition G.3. Suppose assumptions of Proposition G.1 hold. Let {w}, and {W}; be produced by (G.1) based on S
and § respectively. Then
2 a XK. K n
Eallwi =Wl o] < S5 30 g e Y0 )

k=1t=1 k=1t=1

Proof. Without loss of generality, we can assume that .S and S differ by the first example, i.e., z; # Z; and z; = Z; for
1 # 1. Analogous to the proof of Proposition G.1, we derive the following inequality forall k € Nand ¢t =1,...,n

~ ~ _1
Iwie s — Wi ll2 < Wy — Wellz + cas(nf) ™= Ijikpa) + ZUfGH[if:l]-

Taking a summation of the above inequality from ¢ = 1 to n gives

Wi i1 — Wil < Wi — %72+ Cas Z ) =alle ) + QGZ% Ijje—y)-

t=1 t=1

k+1

Let i* be the unique ¢ € {1,...,n} such that i} = 1. Since wi ™' = wF |, we derive

n
~ ~ k _1
Iwi =W lo < [WE = Wiz + cas Y ()7 + 26
t=1

Since we draw (i%, ..., i*) from the uniform distribution of all permutations, i* takes an equal probability to each 1, ..., n.
Therefore, we can take expectations over A to derive

. - - 1 2GY )k
Eallwh* = W ] < Ba[lwh — W] 4 cas Yy 4 25 2tm e

We can take a summation of the above inequality from & = 1 to K to derive the stated bound. The proof is complete. [
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