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1. Proof of Theorem 5
Proof. The proof proceeds by first showing that each planar
face on the surface Z captured by the SDF F = f ◦ T
uniquely corresponds to an analytic face of an analytic cell,
and then showing that for any pair of planar faces connected
on Z , their corresponding analytic faces are connected via
boundaries of their respective analytic cells.

Let P1 denote a planar face on the surface Z , and n1 ∈ R3

be its normal. We have n>
1 x = 0 ∀ x ∈ P1. Equation

(8) tells that n1 must be proportional at least to one of
{ar

F |r ∈ R}. By the unique plane condition, i.e., each of
{ar

F |r ∈ R} is uniquely defined, we have n1 ∝ ar1>
F of a

certain region r1. Assume r1 is not an analytic cell, which
suggests that there exists no intersection between ar1

F and
r1 and we have ar1

F x = n>
1 x 6= 0 for all x ∈ r1, and thus

P1∧r1 = ∅; it suggests that the normal n1 of P1 is induced
in a different region r′1 by n1 ∝ a

r′1
F = w>

f T
r′1 , which

contradicts with the assumed unique plane condition. We
thus have that r1 must be an analytic cell.

Let n1 ∝ ar̃1>
F of a certain analytic cell r̃1 ∈ R̃ (or C r̃1F ),

and we have the analytic faceP r̃1
F ⊆ P1. Assume there exist

P1 −P r̃1
F = {x ∈ Z|x ∈ P1,x /∈ P r̃1

F }, which means that

for any x ∈ P1 − P r̃1
F , it resides in an analytic face P r̃′1

F

of a different cell C r̃
′
1

F ; since x ∈ P1, we have n1 ∝ a
r̃′1>
F

and thus ar̃1
F ∝ a

r̃′1
F , which contradicts with the unique

plane condition of ar̃1
F 6∝ a

r̃′1
F . We thus have P1 = P r̃1

F and
P1 ⊂ C r̃1F . By the definition (12) of analytic face, the above
argument also tells that planar faces on Z and analytic faces
{C r̃F |r̃ ∈ R̃} are one-to-one corresponded.

AssumeP1 connects with another planar faceP2 on a shared
edge segment E = {x ∈ Z|x ∈ P1,x ∈ P2}. Define
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the normal of P2 as n2 ∈ R3, we have n1 6∝ n2. Let
P2 ⊂ C r̃2F , and we thus have E ⊂ C r̃1F and E ⊂ C r̃2F , which
tells that the two cells C r̃1F and C r̃2F connect at least on E .
Due to the monotonous and convex nature of linear analytic
cells {C r̃F |r̃ ∈ R̃}, E must be on the boundaries of both
C r̃1F and C r̃2F , and the boundaries of C r̃1F and C r̃2F share at
least on E . There exist two cases for the connection of cell
boundaries on E : (1) in the general case, C r̃1F and C r̃2F share
a boundary Br̃1r̃2F defined by a hyperplane H r̃1r̃2

lk = {x ∈
R3|ar̃1r̃2

lk x = 0}, and we have E ∈ Br̃1r̃2F , which, based
on Corollary 4 and Definition 2, suggests that the two cells
have a switching neuron state slk(x) ∀ x ∈ Br̃1r̃2F , and
consequently a switching neuron state slk(x) ∀ x ∈ E ; (2)
in some rare case, E coincides with a cell edge of C r̃1F defined
by {x ∈ R3|ar̃1

l1k1
x = 0,ar̃1

l′1k
′
1
x = 0}, and a cell edge of

C r̃2F defined by {x ∈ R3|ar̃2
l2k2

x = 0,ar̃2
l′2k

′
2
x = 0}, and it

is not necessary that l1k1 and l2k2 specify the same neuron,
and l′1k

′
1 and l′2k

′
2 specify another same neuron. Due to a

phenomenon similar to the blessing of (high) dimensionality
(Gorban & Tyukin, 2018), the second case of coincidence is
expected to happen with a low probability. In any of the two
cases, the boundaries C r̃1F and C r̃2F respectively associated
with P1 and P2 connect on E .

Since for any pair of planar faces P1 and P2 connected
on Z , we prove that they are uniquely corresponded to a
pair of analytic faces P r̃1

F and P r̃2
F , which are connected

via boundaries of their respective analytic cells C r̃1F and C r̃2F .
The theorem is proved.

2. More qualitative results
We show additional qualitative results for the categories of
“Airplane”, “Rifle”, “Chair”, and “Table” in Figures 1, 2, 3,
and 4. To help understand the polygonal mesh produced
by analytic marching, we further zoom in the focused area
of our “Sofa” result reported in Figure 3 of the main text,
and show the zoomed result in Figure 5. Note that the
polygonal mesh produced by analytic marching can be easily
converted as triangle mesh, simply by connecting diagonals
on individual polygonal faces.
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Figure 1. Qualitative comparisons of different meshing algorithms. For greedy meshing (GM), marching cubes (MC), marching tetrahedra
(MT), and dual contouring (DC), results under a resolution range of discrete point sampling from 323 to a GPU memory limit of 5123 are
presented.
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Figure 2. Qualitative comparisons of different meshing algorithms. For greedy meshing (GM), marching cubes (MC), marching tetrahedra
(MT), and dual contouring (DC), results under a resolution range of discrete point sampling from 323 to a GPU memory limit of 5123 are
presented.

3. Numerical results
We show in Table 1 the numerical results corresponding to
the plotted curves in Figure 2 of the main text.
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Figure 3. Qualitative comparisons of different meshing algorithms. For greedy meshing (GM), marching cubes (MC), marching tetrahedra
(MT), and dual contouring (DC), results under a resolution range of discrete point sampling from 323 to a GPU memory limit of 5123 are
presented.
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Figure 4. Qualitative comparisons of different meshing algorithms. For greedy meshing (GM), marching cubes (MC), marching tetrahedra
(MT), and dual contouring (DC), results under a resolution range of discrete point sampling from 323 to a GPU memory limit of 5123 are
presented.
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Figure 5. A local surface area of the polygonal mesh produced by analytic marching, which is obtained by further zooming in the focused
area of our “Sofa” result reported in Figure 3 of the main text. Note that the polygonal mesh produced by analytic marching can be easily
converted as triangle mesh, simply by connecting diagonals on individual polygonal faces.

Table 1. Numerical results of different meshing algorithms under metrics of recovery precision and inference world-clock time. For greedy
meshing (GM), marching cubes (MC), marching tetrahedra (MT), and dual contouring (DC), results under a resolution range of discrete
point sampling from 323 to a GPU memory limit of 5123 are presented, and the dominating computations of their sampled points’ SDF
values are implemented on GPU.

Algorithms CD(×10−1) EMD(×10−3) IoU(%) F@τ (%) F@2τ (%) Time(sec.)

MC32 37.280 25.368 72.266 39.805 78.332 2.25
MC64 6.4457 8.8759 88.461 61.098 96.116 2.41
MC128 5.5740 6.7293 91.348 66.585 97.194 3.41
MC256 5.5731 6.5415 91.410 66.773 97.202 14.0
MC512 5.5730 6.5403 91.445 66.777 97.205 156

GM32 45.599 23.918 63.356 19.725 55.441 2.41
GM64 11.006 11.259 76.122 32.580 88.112 2.50

GM128 6.8142 8.0922 85.078 53.570 96.793 3.40
GM256 5.9424 6.9674 88.446 63.411 97.008 14.2
GM512 5.7248 6.7480 90.098 65.548 97.015 171

MT32 38.485 25.383 73.677 41.673 79.961 2.62
MT64 6.5388 8.8540 88.628 61.548 96.088 3.47
MT128 5.6575 6.6818 91.306 66.691 97.228 7.33
MT256 5.5276 6.6185 91.335 66.994 97.236 29.5
MT512 5.5109 6.6117 91.347 66.995 97.239 204

DC32 41.570 28.735 70.134 37.162 74.564 2.46
DC64 6.9833 9.9407 87.627 59.704 95.506 2.61

DC128 5.6615 6.7204 91.304 66.562 97.215 3.76
DC256 5.5449 6.6735 91.349 66.921 97.220 16.2
DC512 5.5421 6.6165 91.355 66.927 97.221 177

Ours 5.5049 6.5401 91.451 67.153 97.239 20.8


